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Abstract—There is increasing demand for running interacting
applications in a secure and controllable way on mobile devices.
Such demand is not fully supported by the Java/.NET security
model based on trust domains nor by current security monitors
or language-based security approaches. We propose an approach
that allows security policies that are i) expressive enough to
capture multiple sessions and interacting applications, ii) suitable
for efficient monitoring, iii) convenient for a developer to specify
them. Since getting all three at once is impossible, we advocate a
logical language, 2D-LTL a bi-dimensional temporal logic fit for
multiple sessions and for which efficient monitoring algorithms
can be given, and a graphical language based on standard UML
sequence diagrams with a tight correspondence between the two.

I. INTRODUCTION

Mobile devices are increasingly powerful and popular. The
smart phone in our pocket has more computing power than the
PC encumbering our desk 15 years ago. Yet, if we look at the
amount of software available on high-end mobile phones we
cannot find even remotely the amount of third party software
that was available on our old PC. A prominent reason for this
lack of applications is also the security model adopted for
mobile devices represented by the .NET security model.

One of the problems of this security model is its reliance on
the certificates issued by some (presumably) trusted authority.
In practice, if the code is produced by a small company, it
is likely that the developer cannot afford certification from
the mobile operators. So a big number of these applications
comes on the market self-certified. In this situation users tend
to accept the certificates from unknown producers without due
consideration, which makes the very idea of certification close
to pointless.

Another problem is created by the coarse granularity of
the .NET permissions. If you grant the third-party application
a permission to use the network connection on your device
you have no control on the amount of data that will be
downloaded using this connection. Also, there is no such
thing as “conditional permissions” that would grant access
to the sensitive functionality depending on the fulfilment of
specified conditions. For instance, WiFi connection can drain
the battery of the device very quickly, therefore the application
should not be given permission to use it unless the battery
level is reasonably high. Also external connections might be
prohibited to the applications after it read some sensitive
information.

Equipping every mobile device with a security system able
to enforce the user’s security requirements can be a solution.
One of the components of such a system must be a run-time
monitor which controls the program execution and prevents it
from performing illegitimate actions. This is the tenet behind
security automata [21], [6] and history-based access control
[5], [8], [13] or usage-based access control [18].

Before monitoring security policies, we must first find a way
to express them, and policy languages have many conflicting
requirements (see also [22]). They should be:

1) expressive enough to reflect desired security policies;
2) suitable for efficient monitoring, as we intend to enforce

them on devices as performance-critical as smart phones;
3) convenient for a human as we cannot expect a SME

developer to be accustomed with logics, type systems
or the like.

It is a folk theorem that all three cannot be satisfied at once.

Our proposal is to design two languages: a formal language
that satisfies requirements (1) and (2) and a graphical language
that satisfies (1) and (3). The formal language guarantees
soundness and precision of security policies. The graphical
language greatly simplifies specification of policies and se-
curity properties. Then we must establish a correspondence
between the graphical constructs and the logical policies.

To meet (1+2) we propose a policy language 2D-LTL, based
on the past-time linear temporal logic and extended to describe
multiple sessions of a program or the concurrent execution
of multiple programs. In a companion technical report [15]
we have shown how effective monitoring algorithms can be
devised for 2D-LTL. In this paper we focus on (1+3) and show
how 2D-LTL can be used for formalizing UML interaction
diagrams [17] exploiting the STAIRS trace semantics for
UML [9]. The diagrams can be used to specify policies and
than be translated in 2D-LTL. We believe the usage of a
well know graphical notation is more likely to get industry
acceptance than inventing a new one.

In the rest of the paper we give the intuition behind
our policy language (xII) and introduce it formally (xIII).
Formalization of the diagrams in 2D-LTL is discussed in (xIV)
and (xV). The survey of the related work (xVI) and final
remarks end the paper.



II. SECURITY CONSTRAINTS ACROSS SESSIONS: AN
INTUITION

An analysis of the security requirements for the booming
domain of mobile games [23] identifies the following type of
requirements:

� permitting or prohibiting the activation or deactivation
of a security relevant service (e.g. opening a communi-
cation, sending an SMS text, starting an application)

� presence of past events as a pre-requisite for allowing
another present event (e.g. the user confirmation before
an SMS is send or an image is downloaded)

� cumulative accounting of events (e.g. the application
loads images only once)

� enabling or disabling features since an initial event took
place, for instance disabling the external connections
since the sensitive data was read.

However, to enable more fine-grained protection of the
mobile device with the “multitasking” operating system (like
Windows Mobile) the security enforcement mechanism should
take into account not only actions of the application itself but
also the security-relevant actions of other applications running
in parallel at the same device. To justify the need for this let
us consider the following example.

Example 1: Bob owns a smartphone, which is equipped
with a GPS receiver and uses WiFi for accessing the Internet.
Now he arrives for a holiday in the city of Pleasantville,
and in the airport he downloads the navigation software
GoPleasant with a map to help him find his way around
the city. He installs also another application, VilleOnline,
which checks the Internet for news about cultural events
and local weather. To protect himself from the leakage
of information about his location Bob demands that the
following policy is respected by all programs at his device:
“No connection to the Internet is allowed after the current
location was obtained from the GPS receiver” (this is, actually,
a variation on the well-known Chinese Wall policy). However,
programs GoPleasant and VilleOnline come from
the same (dishonest) producer. After GoPleasant reads
Bob’s coordinates from the receiver it establishes local socket
connection to VilleOnline. VilleOnline never asked
the GPS receiver about Bob’s coordinates, and it is allowed
to send data over the Internet. So it uses this opportunity to
send Bob’s coordinates (obtained from GoPleasant) to its
producers, who can now trace Bob as he walks around the city.

To prevent this situation we propose to monitor all the
applications that run in the system at once. However, to
preserve the association between the event and the application
that produced it we keep for each running application its own
local history of events, which we call session.

The constraints on what may happen during a session can
be easily characterized with pure-past linear temporal logic:
“you can do A only if previously you did B”; or “if you have
been doing B since you did A” and so on. Time is linear
and rooted, it starts at the moment we invoke the application
and ends when we terminate it. However constraints across

sessions are not easily representable in the same setting.
The existence of these two levels of execution was un-

derlined by Abadi and Fournet in [1]. They describe the
first level as sensitive access requests history and history of
control transfers. However, there are cases when it seems
advantageous to combine both approaches together.

Our solution is to exploit a bi-dimensional model where
one dimension is a sequence of events within a session
and the second one - a sequence of sessions itself. In a
nutshell, we consider a session as a sequence of states, i.e. an
execution trace in traditional temporal logic. The combination
of multiple sessions forms the global application history that
are represented as a sequence of sessions. We believe that such
representation is a more faithful reflection of what happens
in reality, with single threaded execution of “concurrent”
applications.

III. A BI-DIMENSIONAL MODEL OF EXECUTION

We represent execution of applications as sequences of
abstract states [11]. The information about these states is
formalized in the usual way by means of boolean predicates:
predicate p holds in state s if p(s) is true. Predicates can
correspond to any computable boolean functions. In particular
they can refer to:

� access to the sensitive functionality or data; for instance,
predicate Connect might be specified to hold in a state
if in this state application attempts to start a connection.

� ID of the application. For instance, in our running exam-
ple the predicate VilleOnline will hold in all states
produced by any run of the corresponding applications,
and the predicate GoPleasant is defined likewise.

Technically, we link states of each application by using two
threads: the session and the frontier. A session represents the
sequence of states corresponding to a single execution of an
application. A frontier is formed of the last active states of all
previously started sessions. From an application perspective,
the session represents what it did by running itself. The frontier
is the point of arrival of what the others did so far. The frontier
formed by the last states of all sessions is the current frontier.

Definition 1: A history is a tuple H =
hS; sf ; T ;F ; L; P; V i, where S is a set of states, a special
state sf 2 S, is the final state of the history, the functions
T ;F : S ! S+ link every state to a sequence of states, i.e.
its session and its frontier, V : P ! 2S is an assignment of
predicates from a set P to a set of states, L is a set of labels
of sessions.

Intuitively sf corresponds to the final state of the last open
session. T (s) returns a prefix of the session, to which s

belongs, including s itself. Similarly, F (s) is a frontier formed
of the states of all previously started sessions. The frontier
F (sf ) is a current frontier and includes final states of all
session. This frontier represents the global present of the entire
system. If s is the final state of its session F (s) is a prefix
of F (sf ). When a new event occurs after s in its session and
s becomes the past of its session, F (s) becomes frozen and
does not change any more.
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Fig. 1. Evolution of the history

Example 2: Consider evolution of the system depicted at
Fig. 1. Figure 1(a) shows the history of execution after appli-
cation GoPleasant obtained the coordinates from the GPS
receiver and sent it to VilleOnline. The curve represents
the frontier of the final state Socket accept, which is also
the current frontier of the history. After a new state arrives
from VilleOnline (WiFi connect) this state becomes the
final state of the history, and the new current frontier is
hSocket send; WiFi connecti. State Socket accept be-
comes now past of its session, and its frontier is frozen. The
updated history is represented at Fig. 1(b) (the dashed line
represents the ex-current frontier of the execution).
For formal policy specification we use an extension of Linear
Temporal Logic (LTL). Because of the bi-dimensional nature
of our logic temporal operators are of two kinds: local and
global. Local operators relate to the states of the same session
while global operators apply to the frontiers. Table I presents
the temporal operators of 2D-LTL.

The operators are evaluated with respect to a given state
with its frontier and its session. For instance, formula
YL Read GPS evaluates to true for state Socket send in
Fig. 1(b) and to false for state WiFi connect. We say that
the history satisfies the formula if it holds in the final state sf
of the history. As starting from this state one can “observe”
the entire history it allows policies that put restrictions on the
whole execution of the system.

So, more formally, if p 2 P are atomic propositions then
2D-LTL formulae are:

F ::= ? j > j p j :F j F1 _ F2 j F1 ^ F2 jF1 ! F2 j

j YL F jOL F jHL F j F1 SL F2 j

j YG F jOG F j HG F j F1 SG F2

Example 3: Policy “No external connections since the GPS

Local operators
YL  “previously locally” ( was true in

the previous state of this session)
OL  “once locally” ( was true

in some past state of this session)
HL  “historically locally” ( was true

in all past states of this session)
 0 SL  1 “since locally” ( 1 was true

in some past state of this session
and  0 is true in all past states
since then)

Global operators
YG  “previously globally” ( was

true in the previous session)
OG  “once globally” ( was

true in some past session)
HG  “historically globally” ( 

was true in all past sessions)
 0 SG  1 “since globally” ( 1 was

true in some past session
and  0 is true in all past
sessions since then)

TABLE I
2D-LTL TEMPORAL OPERATORS

coordinates have been accessed in this session” can be ex-
pressed in 2D-LTL in the following way:

HG (WiFi connect! :OL (Read GPS))

Example 4: Let us write the policy preventing the fraud
explained in Ex. 1: “Application VilleOnline is allowed
to connect to the Internet only if

� application GoPleasant never read GPS coordinates,
� or after reading this information it did not send this

information through sockets,
� or if VilleOnline did not accept any information by

sockets1”.

HG ((VilleOnline ^ WiFi connect) !

! :OL (VilleOnline ^ Socket accept)) _

_ (OG (VilleOnline ^ WiFi connect) !

! :OG OL (GoPleasant ^ Socket send ^

^ OL (GoPleasant ^ Read GPS)))

An efficient algorithm for monitoring 2D-LTL formulae is
presented in [15].

IV. ENCODING UML POLICIES IN 2D-LTL

It is evident that in case when interactions are considered
the logical formulae even for simple cases become overcom-
plicated (see Ex. 4). This raises the probability of mistake
if such formula is written by human. From the other hand,
interactions can normally be easily represented graphically.
Further we describe how it is possible to generate monitorable
logical formulae from the policies specified by UML sequence
diagrams automatically.

1We do not consider here other forms of communication because in mobile
devices they are few and can be captured in the same manner.
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Fig. 2. The diagram representing the policy from Ex. 1

UML sequence diagrams are used to represent interactions
between applications. Applications communicate with each
other through messages. Each application is represented at the
diagram as a labelled lifeline with a sequence of events of it
(events are sending and transmitting of the message or internal
actions of the application represented as loop-messages). A
message is a triple m = (s; tr; re), where s is a unique name
of the message, and tr, re are correspondingly transmitting
and receiver events. The transmitter of a message m is denoted
as !m, and the receiver as ?m. The events on each lifeline are
ordered. If both sender and receiver of the message are present
in the diagram then the transmitting event must precede the
receiving. The order of other messages is unspecified.

Primitive diagrams are combined together by UML opera-
tors [17]:

seq[ <list of interactions> ] the diagrams are executed
one after another. The order-
ing of events on each lifeline
is preserved with respect to
the ordering of the operands.
The events from different life-
lines are unordered.

alt[ <list of interactions> ] all enumerated variants of
behavior are acceptable.

refuse[ <interaction> ] the behavior is unaccept-
able.For the reason, why we
use refuse operator, and not
neg , see [10].

We assume that a message between the lifelines specifies
the socket connection between two applications, and a loop
message, for which the sender and the receiver are equal,
denotes an internal operation in the program. Then Fig. 2
shows the UML sequence diagram that captures the security
policy preventing fraud from Ex. 1.

This section demonstrates how a security policy in 2D-LTL
can be defined for every UML interaction. We only describe
here the translation of interaction diagrams because state
diagrams can be easily translated into finite state automata
and then into LTL.

In our interpretation of UML sequence diagrams we rely on

the STAIRS semantic [9]. In this semantic the diagrams imply
two kinds of constraints: those defining the acceptable (posi-
tive) traces of execution, and those defining the unacceptable
(negative) ones. Some traces cannot be put in any category
and are called inconclusive.

We propose to encode every UML interaction d (either
a single diagram or a composition of diagrams) by two
2D-LTL formulae [jdj]

+ and [jdj]
�. The first one is satisfied

by the positive executions, and, the second bu the negative
ones. So the trace of execution is positive (resp. negative) for
the system specified by the diagram if at every moment of
time it satisfies the constraint [jdj]

+ (resp. [jdj]
�). Each of

these constraints consists of the following three 2D-LTL parts:
[jdj]

+=�
b – a 2D-LTL formula that becomes true/false

immediately when the interaction begins,
[jdj]

+=�
e – true/false immediately when the interaction

ends,
[jdj]

+=�
i – true/false in the meanwhile.

An additional constraint [jdj]l enumerates the labels of lifelines
present in the diagram.

Normally, if we use the diagrams to enforce security policies
we chiefly focus on protection from the undesired behavior,
and therefore negative traces of execution are of greater inter-
est. However, we maintain also positive constraints for the sake
of compositionality, as application of the operator refuse
transforms the positive traces of execution into negative.

The additional constraint [jdj]l serves the same purpose.
When the diagrams are composed using the sequential join
operator seq, it is necessary to assure that events from the
lifelines common for both diagrams occur in the correct order.
However, no restrictions are put to the lifelines that appear
only in one diagram. To distinguish between the two we use
the auxiliary 2D-LTL formula [jdj]l = l1 _ : : : _ ln, where
l1; : : : ; ln are all the lifelines that participate in the diagram d.

We start monitoring of the policy when the initial
condition of the diagram becomes true, that is when
the formula OG

�
[jdj]

+=�
b

�
becomes true. Since that

the invariant [jdj]
+=�
i must hold until the final condition

HG OL

�
[jdj]

+=�
e _ : [jdj]l

�
is fulfilled. When this condition

holds we know that the interaction was finished at all lifelines
participating in the interaction. If it was the negative part
of the constraints that was fulfilled then the violation is
detected. Otherwise, if the positive part of the constraints
was satisfied then the interaction was performed correctly, and
further execution of the programs is allowed.

Exploiting the structure of the constraints we can easily
compose them to reflect such UML operators as seq and alt .
As events on one lifeline relate to a single particular run of the
application we consider them to belong to the same session in
our model. We also treat the label of the lifeline as a predicate,
which is historically true in all sessions that correspond to
runs of the application associated with the lifeline. Note,
however, that as in our monitoring system different runs of
the application map into different sessions the events from
the different runs will not be mixed together. So the policy
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specified for an abstract run of the application will be applied
to all sessions (an arbitrary number of them), but separately.
That is the advantage of using the bi-dimensional model for
this purpose.

V. COMPOSITIONAL ENCODING OF DIAGRAMS

A primitive diagram (message m between lifelines with
labels l1 and l2, sending of the message is denoted as !m,
receiving - as ?m) is encoded in the following way:

� the globally first/last event of the interaction is the
first/last event of some lifeline,

� the invariant requires that the transmitter of the message
must precede the receiver,

� all negative constraints are set to false.
Formally this is captured by the following formulae:

[jdj]
+

b;e = l1^!m _ l2^?m

[jdj]
+

i = OG (l2^?m) ! OG OL (l1^!m)

[jdj]
�

b;e;i = ?

[jdj]l = l1 _ l2

Note that though 2D-LTL formula is evaluated in the final
state of the history (that is, the last state of the last open
session) [jdj]

+

i captures the message exchange between any
two lifelines. The reason is that by applying the OG operator
from the final state we observe the entire history and therefore
both lifelines that participate in the communication.

Let us define some preliminary operations on the con-
straints.

Definition 2: Let [jd1j]
�, [jd2j]

� be constraints (either pos-
itive or negative, � and � standing for either + or �) of
interactions d1, d2, and [jd1j]l, [jd2j]l – the corresponding
synchronization formulae. The weak sequential join [jd1j]

� -
[jd2j]

� is defined as follows:
�
[jd1j]

� - [jd2j]
�
�
b;e

= [jd1j]
�

b;e _
�
[jd2j]

�

b;e ^ : [jd1j]l

�
�
[jd1j]

� - [jd2j]
�
�
i

= [jd1j]
�

i ^ [jd2j]
�

i ^

^ ([jd2j]
�

b ! OL

�
[jd2j]

�

b _ : [jd2j]l
�
)

The result of this operation is the interaction with the
following properties:

� it starts when its first interaction starts, or when the sec-
ond interaction starts at the lifelines that do not participate
in the first interaction,

� it ends when the second interaction is finished at all
lifelines, and when the first interaction ends at all lifelines
that are not included in the second one,

� both invariant conditions must hold, and additionally
at the lifelines that participate in both interactions the
second one may start only after the first one is finished.

So the weak sequential join of the diagrams means that two
interactions will be executed one after another.

Any simple sequence diagram (i.e., a diagram that does not
use UML operators) can be represented as a weak sequencing
of individual messages. Therefore, by applying the weak

sequential join to these primitive parts we can represent any
simple sequence diagram.

By ^ we denote the parallel join of the constraints. To
define the parallel join of [jd1j]

�, [jd2j]
�, we introduce two

fresh predicates p1, p2 such that:
� no more than one of two predicates can be true at any

time;
� predicate values cannot be changed since either [jd1j]

�

b or
[jd2j]

�

b became true.
These constraints can be easily expressed and monitored in
2D-LTL. The intuition behind their introduction is that the
alt construct gives us two alternatives: one is represented
by p1 and the second is represented by p2. Once we select
one alternative execution we must consistently select the
same alternative for all possible constraints (precondition,
postcondition, invariant, and lifeline).

Then the parallel join of two constraints can be defined as
follows:

�
[jd1j]

�

^ [jd2j]
�
�
b;e;i

=
�
p1 ^ [jd1j]

�

b;e;i

�
_

_
�
p2 ^ [jd2j]

�

b;e;i

�

To represent weak sequencing by 2D-LTL formulae for
positive constraints is fairly simple. The precondition must
be equivalent to the precondition of the first argument with
addition of the first events from those second argument’s
lifelines that are not involved in the first interaction. The
postcondition can be constructed in a similar manner: it
includes the last events of all the lifelines of the second
argument together with the last events of those lifelines of
the second argument that are not present in the first diagram.
During the interaction the invariants of both arguments must
hold, and the following additional constraint is introduced: if
the first event of some lifeline of the second diagram occurs,
and this lifeline participates in the first interaction, then the
last event of the first interaction from the same lifeline must
have already occurred.

Negative constraints are more complicated since negative
traces include not only those obtained by composing negative
traces of the diagrams but also compositions of positive traces
of one diagram and negative traces of another.

So the diagram d = seq[d1; d2] can be represented in a
following way:

[jdj]
+

b;e;i =
�
[jd1j]

+ - [jd2j]
+
�
b;e;i

[jdj]
�

b;e;i =
��

[jd1j]
� - [jd2j]

+
�
^

�
[jd1j]

� - [jd2j]
�

�
^

^
�
[jd1j]

+ - [jd2j]
�

��
b;e;i

[jdj]l = [jd1j]l _ [jd2j]l

We illustrate the algorithm on a simple example.
Example 5: Let d1, d2 be simple diagrams, d1 encoding a

transition of the message m1 from the lifeline l1 to the lifeline
l2 and d2 – a transition of the message m2 from the lifeline l2
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to the lifeline l3. Their positive constraints and synchronization
formulae have the following form:

[jd1j]
+

b = l1^!m1 _ l2^?m1

[jd1j]
+

e = l1^!m1 _ l2^?m1

[jd1j]
+

i = OG (l2^?m1) ! OG OL (l1^!m1)

[jd1j]l = l1 _ l2

[jd2j]
+

b = l2^!m2 _ l3^?m2

[jd2j]
+

e = l2^!m2 _ l3^?m2

[jd2j]
+

i = OG (l3^?m2) ! OG OL (l2^!m2)

[jd2j]l = l2 _ l3

The positive constraints for the interaction d = seq[d1; d2]
is:

[jdj]
+

b = l1^!m1 _ l2^?m1 _

_ : (l1 _ l2) ^ (l2^!m2 _ l3^?m2) =

= l1^!m1 _ l2^?m1 _ :l1 ^ :l2 ^ l2^!m2 _

_ :l1 ^ :l2 ^ l3^?m2 =

= l1^!m1 _ l2^?m1 _ l3^?m2

as lifelines are mutually exclusive. Similarly,

[jdj]
+

e = l2^!m2 _ l3^?m2 _

_ : (l2 _ l3) ^ (l1^!m1 _ l2^?m1) =

= l2^!m2 _ l3^?m2 _ l1^!m1

[jdj]
+

i = (OG (l2^?m1) ! OG OL (l1^!m1)) ^

^ (OG (l3^?m2) ! OG OL (l2^!m2)) ^

^ (YL (l1^!m1 _ l2^?m1) !

! ((l2^!m2 _ l3^?m2) _ : (l2 _ l3)))

The last clause can be transformed by a bit of boolean algebra
and the observation that lifelines are mutually inconsistent as
follows:

[jdj]
+

i = (OG (l2^?m1) ! OG OL (l1^!m1)) ^

^ (OG (l3^?m2) ! OG OL (l2^!m2)) ^

^ (YL (l2^?m1) ! (l2^!m2))

This constraint ensures that at each lifeline of the composed
diagram the events come in the right order, and for every
message transmitting precedes receiving, as it was intended
for the result of the sequencing operation.

The interaction d = alt[d1; d2] can be translated to 2D-LTL
as follows:

[jdj]
+=�
b;e;i =

�
[jd1j]

+=�
^ [jd2j]

+=�
�
b;e;i

[jdj]l = p1 ^ [jd1j]l _ p2 ^ [jd2j]l ;

where p1, p2 - predicates, introduced by the ^ operator.

Finally, the refuse operator (d0 = refuse[d]) makes all
positive constraints negative (preserving old ones). It can be
translated to 2D-LTL as follows:

[jd0j]
+

b;e;i = >

[jd0j]l = [jdj]l
[jd0j]

�

b;e;i =
�
[jdj]

+
^ [jdj]

�

�
b;e;i

Encoding of these operators gives us the instrumentary
for transformation of many diagrams representing interesting
security policies into 2D-LTL formulae. For instance, by
encoding of the diagram from Fig. 2 we obtain the policy for
preventing the fraud from Ex. 1. The result of this translation
is the following set of formulae:

[jdj]
+

b;e;i = >

[jdj]
�

b = GoPleasant ^ Read GPS _ VilleOnline^?m

[jdj]
�

e = GoPleasant^!m _

_ VilleOnline ^ WiFi connect

[jdj]
�

i = HG (GoPleasant^!m!

! OL (GoPleasant ^ Read GPS)) ^

^ HG (VilleOnline ^ WiFi connect!

! OL (VilleOnline^?m)) ^

^ (OG (VilleOnline^?m) !

! OG OL (GoPleasant^!m))

VI. RELATED WORK

Run-time monitors are security policy enforcement mecha-
nisms that work by monitoring execution steps of a system,
called the target, and performing some specified actions (e.g.
terminating the target’s execution) if it is about to violate the
security policy. They can be loosely classified as follows:

� Each instance of an application is monitored separately.
This approach is utilized by Erlingsson and Schneider [7]
and has the advantage of being simple. Another feature
is that it enables full in-lining of the monitor in the code
of the program. However, there is a number of useful
security policies, such as “one-out-of-k”, proposed by
Edjlali et al. [5], that cannot be captured.

� All instances of one application are monitored at once.
This approach is used work [13] of Krukow et al. and
makes history-based decisions possible. Yet, monitoring
the interactions among applications remains impossible.

� All instances of all applications are monitored globally.
The third approach (which we have chosen for our
system) has the advantage of being suitable for handling
application interactions. We believe that it is very im-
portant to control this kind of properties, especially in
the mobile device environment, where applets often have
to exchange information between each other or with the
system. However, this approach makes full monitor in-
lining difficult. The problem of application identification
(by name, source code etc.) can be solved with the same
techniques used for naming assemblies in .NET.
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Specification Graphic History-base Support for Policy Enforcement
language notation decisions sessions composition algorithm

Polymer [2] Java - X ? X X
Deeds [5] Java - X ? X X
SASI [7] automaton - X - - X
JPaX [11] PLTL - X - - X

LaSCO [12] graphic X X - - -
Krukow et al. [13] PLTL - X X - X

2D-LTL PLTL X X X X X

TABLE II
COMPARISON OF EXISTING LANGUAGES FOR HISTORY-BASED POLICIES ENFORCEMENT

Schneider [21] introduced the notion of a security au-
tomaton, which takes as input a program’s requested actions
and determines whether a legal transition can be made from
the current state. If no transition can be made, then the
requested action is illegal and the target program is terminated.
Security policies are represented by automata: easy to inline
and process, less easy to write. Additional practical details
can be found in Erlingsson’s PhD Thesis [6]. Ligatti et al.
[14] extended the automaton’s behavior. They represent it as
a transformation mechanism that can edit the stream of the
target’s actions. Their edit automaton can both terminate the
target in response on illegal actions or modify its execution to
make it respect the desired property.

Run-time monitoring can be applied not only for comparing
a program’s behavior with a prescribed one. It is also widely
used for implementing various history-based policies. For
instance, Fong [8] describes a class of policies that can
be enforced by monitors that track a selective history of
previously granted access events. This class contains such
useful policies, such as Chinese Wall and one-out-of-k [5].

Besides a mechanism for enforcement we need a language
for policy writing, which is expressive enough to handle real-
life policies and formal enough to enable effective enforcement
[22]. Yet, writing directly a security automaton for a given
security property is not easy. When looking for alternatives
it is worth noting that only safety properties [21] can be
enforced by monitors because monitors observe only single
executions and cannot speculate on future executions. For
instance, access control restrictions define safety properties,
but not information flow (it does not mean that it cannot be
controlled by other means [3], [20]).

Thus, pure-past Linear Temporal Logic (pLTL) seems to
be a good candidate for these properties. The idea and the
practical implementation of run-time monitoring based on the
recursive evaluation of pLTL formulae belong to Havelund and
Roşu [11]. They write policies as pLTL formulae with pred-
icates depending on the state of the execution, propositional
and temporal logic operators and proposed an efficient way to
monitor a program by using the recursive semantics of pLTL.
Yet, they consider only single executions of the program.

Krukow et al: [13] extend this idea to multiple executions
by replacing the notion of state with the notion of session,
which intuitively corresponds to a single instance (run) of
the application. A session is represented as a set of events
but the order of events within a session is not recorded. In
their work Krukow et al. underline that a session may be

possibly updated with events even after the succeeding session
is open and propose the monitoring algorithm for that case.
Temporal operators are used for policy writing, but are applied
to sessions rather than to events.

Furthermore, there are systems where no general means for
tracking history of security-relevant events are provided, but
instead policies are written as programming languages classes
and can therefore use programming languages constructs (such
as variables or lists) for logging. Deeds by Edjlali et al. [5]
and Polymer by Bauer et al. [2] belong to this class. This
approach, though allowing great flexibility, has a disadvantage
of making policy writing feasible only for programmers.
Another problem is that as the policy is not specified formally
it becomes hard to verify that the implementation of the policy
really enforces the desired property. Besides, it seems that
these systems lack support for separate logging of events from
different sessions.

While Havelund and Roşu allow any computable predicates
on the execution states in pLTL formulae, Krukow et al.
restrict them to the statements concerning the presence of
events in the session. These latter statements are computa-
tionally convenient but are not enough for expressing useful
policies. For this reason Krukow et al. extend their language
and monitoring algorithm to handle parameterized events,
quantified and quantitative properties.

However even temporal logic specifications, let alone pro-
gramming languages classes or security automata, are hard
enough for human understanding. Attempts to simplify policy
writing by using a graphical language for policy specification
were also made. Hoagland et al. in [12] propose to specify
access control policies in a graph-based policy language
LaSCO. This proposed language does not rely on an widely
used standard. Another issue is lack of compositionality: the
policies in LaSCO can be composed only by intersection, the
result of which is not a LaSCO policy but rather a set of
policies.

Table II presents a comparison of 2D-LTL against above-
listed policy languages and tools. We do not consider in
the related work such languages as XACML [16], Ponder
[4], EPAL [19] because they are rather intended for design
of policy enforcement infrastructures for role-based access
control than for run-time monitoring of the code.

VII. FINAL REMARKS

Venkatakrishnan et al. [22] enumerates a number of de-
sired features of a policy framework for mobile applications:
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flexibility to state policies in terms of externally observable
operations, ability to express policies by temporal sequencing
of operations, modular specifications with precise and simple
semantics, and efficient enforcement.

Our framework has these features because it is based
on a refined bi-dimensional model. It allows distinguishing
between local and global policy constraints and therefore more
fine-grained decision making with an efficiently enforceable
monitoring mechanism. Technically, one could obtain the same
results by using plain LTL and a global security monitor, which
keeps track of all actions in a heap. However this solution leads
to cumbersome, unreadable policies with a blow up of the
formula due to the need of explicitly mentioning all sessions.
Further it poses a limit on the maximum number of sessions
that can be captured.

We also show how UML sequence diagrams can be mapped
to 2D-LTL formulae, providing a possibility to specify prop-
erties in a more friendly graphical manner.

In the future we plan to study the optimizations of logical
representation of policies by introducing different cost notions
for predicates.

REFERENCES

[1] M. Abadi and C. Fournet. Access control based on execution history.
In Proc. of NDSS ’03, 2003.

[2] L. Bauer, J. Ligatti, and D. Walker. A language and system for
composing security policies. Technical Report TR-681-03, Princeton
University, 2004.

[3] P. Bieber, J. Cazin, P. Girard, J. L. Lanet, V. Wiels, and G. Zanon.
Checking secure interactions of smart card applets. In Proc. of ESORICS
’00, 2000.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy
specification language. Lecture Notes in Computer Science, 2001.

[5] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control
for mobile code. In Proc. of CCS ’98, 1998.
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