
An Ontology for Secure Socio-Technical Systems1

Fabio Massacci, John Mylopoulos, Nicola Zannone
Dep. of Information and Communication Technology

University of Trento
{massacci,jm,zannone}@dit.unitn.it

1 Introduction

The last years have seen the emergence of standards for capturing security and
privacy aspects of information systems [Ashley et al., 2003, Cranor et al.,
2002, OASIS, 2005]. Those standards provide language constructs but offer no
methodological tool for actually making design decisions. In this setting, the inclusion
of security features within the system design is usually done after the functional
design phase. This is a critical issue since security services and related protection
mechanisms have to be fitted into an existing design that might be not able to
accommodate them.

It is generally accepted in the Requirements Engineering (RE) research
community that system development requires models that represent the system-to-be
along with its intended operational environment. This is even more important when
the system has to meet security requirements, since security breaches often occur at an
organizational level, rather than a technical one [Anderson, 1994, Strens and Dobson,
1993]. Even though there are mature methodologies for modeling and analyzing
enterprises and their organizational structure, their focus is mostly on process and
marketing aspects, rather than security [AMICE Consortium, 1993, Bryce and
Associates, 2006, Dignum, 2004, Fuxman et al., 2001, Hübner et al., 2002, Stader,
1996].

Socio-technical system analysis has been proposed to overcome this issue [Emery
et al., 1960]. This approach aims at capturing the interactions between people and
technology in workplaces. In this setting, security is the ability of the socio-technical
system to protect itself against deliberate misbehavior by actors of the organizations
involved in the application scenario while still providing expected services when
requested by benign actors. For instance, an actor may abuse his position within the
organization to gain personal advantages [House of Lords, 1999, Michaely et al.,
1999, Ponemon, 2003]. Therefore, modeling and analyzing the organizational
environment where the system will act is crucial for building secure systems. This
allows designers to identify security mechanisms that can best protect the system, and
their impacts on the system.

This chapter aims at analyzing the problem of modeling security at an
organizational level. Based on such an analysis, we identify and formally define basic
ontological primitives for modeling organizational and security concepts, paying
particular attention to the security relevant social interaction within organizations.

1Methodological aspects of this research have been addressed in [Giorgini et al., 2005, Giorgini et al.,
2006].

To allow for a systematic design of security in organization, we have developed
an agent-oriented requirements engineering methodology, Secure Tropos [Giorgini
et al., 2005, Giorgini et al., 2006], tailored to describe both the organizational
environment of a system and the system itself. The methodology provides a
requirements analysis process that drives system designers from the acquisition of the
requirements model up to its verification and validation. One of its main features is
the prominent role given to early requirements analysis phase that precedes a
prescriptive requirements specification. The main advantage in having such a phase is
that one can capture not only the “what” or the “how”, but also the “why” a software
system is developed. Secure Tropos was originally based on the i* modeling
framework [Yu, 1996], which is based on the concepts of actors, goals, tasks,
resources, and social dependencies [Fuxman et al., 2001]. i* has already been used to
model and analyze security requirements [Liu et al., 2003]. In this work, security
requirements are treated as non-functional requirements. This approach supports the
representation of design decisions that can contribute to a security goal and the
modeling of attackers (both internal and external) who prevent the fulfillment of
goals.

However, our work revealed early on that the i* ontology needs to be extended in
order to adequately model security, because it lacks fundamental concepts needed in
order to talk about security within an organization [Giorgini et al., 2006]. To this end,
we have proposed an enhanced ontology with three main notions, namely ownership,
delegation and trust, which together form the very foundation of all security concerns
[Giorgini et al., 2005]. Ownership is used to identify goals, tasks and resources that an
actor controls; delegation is used to model the transfer of entitlements and
responsibilities between actors; finally, trust represents the belief of actors about the
behavior and capabilities of other actors [Mayer et al,. 1995, Rousseau et al., 1998].
Once basic ontological primitives have been identified, we develop a comprehensive
ontology tailored to model security at an organizational level. To this end, we provide
an axiomatic characterization of their intended semantics using Datalog [Leone et al.,
2006]. The proposed ontology is intended to serve as the basis for security-related
domain ontologies. From an IT perspective, it can serve as a basis for specifying
together functional and security requirements.

The chapter is organized as follows. The next section reviews the current state-of-
the-art in ontologies for organization and security modeling by presenting the issues
in current proposals. Section 3 introduces a bank scenario used as a running example
to illustrate the application of the proposed ontology. Section 4 introduces a set of
primitive concepts for modeling security at organizational level. Section 5 presents an
axiomatic theory of the identified primitives. Section 6 shows how the introduced
concepts are enough to detect security vulnerabilities. Finally, Section 7 concludes the
paper with some directions for future work.

2 Related Work

Several research communities have approached the problem of enterprise modeling
and analysis, and some of these have addressed issues of security. We discuss below
some of the more prominent approaches.

Enterprise Engineering. Organizational modeling of enterprises is often dealt with
by enterprise engineering methodologies [AMICE Consortium, 1993, Bernus and
Nemes, 1996, Bryce and Associates, 2006, Stader, 1996]. Each methodology
includes an ontology for modeling organizations, usually supported by a modeling
environment and various analysis tools.

Multi-Agent Systems (MAS). Efforts towards modeling organizations have also
originated in the MAS community [Dignum, 2004, Hübner et al., 2002]. These
approaches propose to model multi-agent systems as organizational structures.

Semantic Web. Ontologies constitute basic infrastructure for the Semantic Web. The
idea underling Semantic Web proposals is to use shared vocabularies for describing
entities of the domain and their inter-relationships [Masolo et al., 2004].

Security Engineering. One of main challenges of security is data protection.
Resources must be protected against unauthorized access and/or tampering. This
has spurred many researchers to define languages tailored to model privacy and
access control policies [OASIS, 2005, Ashley et al., 2003, Cranor et al., 2002].

Enterprise engineering approaches tackle the issues of organizational analysis and
modeling from an enterprise perspective. For instance, the Enterprise Project [Stader,
1996] is intended to capture an enterprise-wide perspective of organizations. Such
models are intended to drive enterprises in making strategic, tactical and operational
decisions. To achieve a high degree of integration, the Enterprise Project has proposed
the Enterprise Ontology [Uschold et al., 1998] which includes a set of terms often
used to describe enterprises. In particular, the ontology focuses on organizational
structure, strategy, activities and processes, as well as marketing aspects. The
Enterprise Engineering Methodology [Bryce and Associates, 2006] provides a
framework that allows the study of an organization and the development of an
enterprise strategy synchronized with organizational goals. The methodology includes
an ontology for specifying priorities within an organization, along with plans for
implementing them.

The Computer-Integrated Manufacturing Open-System Architecture (CIMOSA)
[AMICE Consortium, 1993] aims at integrating enterprise operations by means of
efficient information exchange within the enterprise. CIMOSA models enterprises
using four perspectives: the function view describes the functional structure required
to satisfy the objectives of an enterprise and related control structures; the information
view describes the information required by each function; the resource view describes
the resources and their relations to functional and control structures; and the
organization view describes the enterprise organizational structure, i.e., the
responsibilities assigned to individuals for functional and control structures. The
Generalised Enterprise Reference Architecture and Methodology (GERAM) [Bernus
and Nemes, 1996] defines a set of concepts for designing and maintaining enterprises
during their entire life-history spanning from products to enterprise integration and
strategic enterprise management. This framework identifies basic concepts used to
describe the structure, content, and behavior of enterprises. Such concepts enable the
modeling of the human component in an enterprise operation as well as the parts of
business processes and their supporting technologies.

Among proposals from the multi-agent systems domain, OperA [Dignum, 2004]
aims at designing models of organizations that support dynamic and autonomous
interactions by focusing on agent societies. This proposal uses the agent paradigm to

provide a natural way to view and characterize intelligent organizational systems. To
model different roles, goals and interactions within an organization, the framework
adopts a 3-layer approach: the organizational model describes the intended behavior
and overall structure of the society from the perspective of the organization in terms
of roles, interactions and social norms; the social model instantiates the organizational
model with specific agents mapped to roles through a social contract; finally, the
interaction model describes the society agents interactions by the means of interaction
contracts. The OperA framework is supported by a Logic for Contract Representation
(LCR), a language based on deontic temporal logic that provides a formal framework
and integrated semantics at all three levels of society specification. MOISE+ [Hübner
et al., 2002] focuses on the structure and functionalities of an organization, and the
deontic relation between them in order to explain how a MAS achieves its purpose.
Accordingly, the organizational specification is formed by a structural specification, a
functional specification, and a deontic specification. The structural specification
adopts the concepts of role, role relation, and groups to model the individual, social,
and collective structural levels of organizations. The functional specification is based
on the concepts of missions (a set of global goals) and global plans (the goals in a
structure). The deontic specification then links the structural specification to
functional specification in terms of permissions and obligations.

The Tropos methodology [Bresciani, 2004] is an agent-oriented software
engineering methodology intended to support all analysis and design activities in the
software development process. The methodology consists of five phases, namely
Early Requirements, Late Requirements, Architectural Design, Detailed Design, and
Implementation. Early Requirements aims at understanding the domain with its
stakeholders and their individual and shared goals. Late Requirements focuses on the
elicitation of requirements for the system-to-be. Architectural Design specifies the
system architecture in terms of a set of interacting software agents. Detailed Design is
concerned with the specification of agent capabilities and interaction. Finally,
Implementation deals with the production of code from the detailed design
specification. The Tropos methodology adopts the i* modeling language [Yu, 1996],
which allows designers to model the organizational environment of a system and the
system itself. This language offers primitive concepts such as actor, goal, plan,
resource, as well as social dependency relationships between two actors. A goal
represents strategic interests of an actor. A plan specifies a particular course of action
that produces a desired effect, and can be executed in order to satisfy a goal. A
resource represents a physical or an informational entity. Finally, a dependency
between two actors indicates that one actor depends on another to accomplish a goal,
execute a plan, or deliver a resource. The modeling framework of i* includes strategic
dependency models for describing the network of inter-dependencies among actors, as
well as strategic rationale models for describing and supporting the reasoning of each
actor vis-a-vis other actors.

Among proposals for Semantic Web, we note the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) [Masolo et al., 2004]. DOLCE aims
to capture ontological categories that underlie natural language and human common
sense. Such an ontology uses three main entities for modeling organizational settings:
organizations, norms and roles. Norms describe the structure and purposes of an
organization by identifying its main concerns and the behavior of its agents. The link

between agents and norms is represented in terms of roles. In DOLCE, agents must
perform specific activities because they are associated with particular roles.

In the realm of security and privacy modeling, we find sophisticated proposals
such as XACML [OASIS, 2005], EPAL [Ashley et al., 2003], and P3P [Cranor et al.,
2002]. XACML is an OASIS standard supporting both an access control policy
language and an access control decision language. XACML defines schemes for the
specification of both a context and access control policies. The context schema
defines how to represent access requests in terms of the attributes describing a subject,
a resource, an action, and an environment, whereas the policy schema defines how to
represent access control policies in terms of access permissions and access denials.
An EPAL policy is essentially a set of privacy rules that includes a data user, an
action, a data category, and a purpose with conditions and obligations. On the other
hand, P3P aims at formalizing privacy statements that are published by an enterprise.
The goal is to define a machine-readable equivalent for the human readable privacy
promises that are published as a privacy statement on a web page. Unlike XACML
and EPAL, P3P defines a global terminology that can be used to describe privacy
policies for an enterprise. However, these standards do not address issues of design:
the system administrator must manually decide which is the right policy to protect the
information system he is responsible for. Moreover, these proposals do not provide
facilities for modeling the structure of an organization together with organizational
goals. Accordingly, it is not possible to verify whether a given policy is consistent
with the functionalities of the system.

Requirements Engineering usually treats security as a non-functional requirement
[Chung et al., 2000]. Non-functional requirements introduce quality characteristics,
but they also represent constraints under which the system must operate
[Sommerville, 2001]. Although system designers have recognized the need to
integrate most of the non-functional requirements, such as reliability and
performance, into the software development process [Dardenne et al., 1993], security
is still an afterthought. The usual approach is to identify security requirements after
the definition of the functional design. This attitude may lead to generating serious
design challenges that usually translate into software vulnerabilities or serious
organizational blunders.

Security needs are generically expressed by organizational security policies. An
organization defines high-level policies about security with respect to its strategic
objectives and its organizational structure. Such policies have to be mapped to the
specific functionalities of their information systems. Without an explicit model of the
organization and the trust relationships among its components it can be result
particularly complex to find the reasons that have motivated their introduction
[Lampson, 2004]. For instance, ignoring trust concerns seriously affects the
effectiveness of security measures imposed on a system. Such measures might be
either excessive in some cases or inadequate in others. For instance, system designers
may not introduce security measures since they may implicitly assume trust
relationships among users that are in fact not there in the domain. Alternatively,
system designers may introduce expensive mechanisms for protecting a trusted
system that has not been perceived as such by designers.

The purpose of this chapter is to define a novel ontology supporting the
integration of security and requirements engineering during early phases of system
development. Such an ontology is intended to aid designers in understanding why
security mechanisms such as authentication, access control, or back ups are necessary,
and once they are selected, what are the trade-offs from the standpoint of corporate
missions. Indeed, current methodologies for software development do not meet the
needs for resolving security problems [Tryfonas et al., 2001], and fail to provide
evidence of integrating successfully security concerns thought the whole development
process. Although there have been several proposals for modeling security features,
what is still missing are models that focus on high-level security concerns, i.e.,
models that do not force designers to immediately get down to security mechanisms.

For instance, Jürjens has proposed UMLsec [Jürjens, 2004] for modeling security
related features, such as confidentiality and access control. Basin et al. proposed an
UML-based modeling language, SecureUML [Basin et al., 2006]. Their approach is
focused on modeling access control policies and integrating them into a model-driven
software development process. McDermott and Fox adapt use cases to capture and
analyze security requirements, and they call these abuse cases [McDermott and Fox,
1999]. An abuse case is an interaction between a system and one or more actors,
where the results of the interaction are harmful to the system, or one of the
stakeholders of the system. Guttorm and Opdahl define misuse cases, the converse of
UML use cases, which describe uses that the system should not allow [Sindre and
Opdahl, 2005].

3 A Running Example

A major source of vulnerabilities is due to the presence of conflicts and loopholes at
the interface between an IT system and its operational environment. Only by
analyzing the system from an organizational perspective designers can identify
appropriate security solutions.

An application domain where such issues are prominent is the banking domain.
Banks, by their very nature, have to enforce security in the context of distributed
control and responsibility, also evolving services and infrastructures. Protection
measures, such as access control policies, separation of duties, auditing, non-
repudiation action, digital signatures, all need to be considered and applied to comply
with security and legal requirements besides functional requirements for a system-to-
be.

In this chapter, we focus on a banking scenario and more specifically on loan
process in the context of which activities take place and assignment of rights, roles,
and tasks need to be carefully considered from a security perspective. In this scenario,
we are going to emphasize the necessity of preventing frauds, preserving data
integrity, and protecting customer privacy rights.

4 Si*: A Language for SRE

The definition of a modeling language for designing secure socio-technical systems
includes the definition of primitive concepts for modeling organizational and security
concerns, as well as the logical formalization of such primitives. Our language, Si*

(Secure i*), is based on the i* ontology [Fuxman et al., 2001], where specifications
employ basic primitives such as “actor”, “role”, “goal”, “task”, “resource”, and
“social relationships between actors”.

4.1 Actors and their specializations

An actor is an active entity that has strategic goals and performs actions to achieve
them. Actors can be decomposed into sub-units for modeling the internal structure of
organizations. Complex social actors can be modeled using two types of sub-units:
agents, and roles. An agent is an actor with concrete, physical manifestations. The
term agent can be used to refer to human as well as software agents and organizations.
A role is the abstract characterization of the behavior of a social actor within some
specialized context. Figure 1 shows the graphical representation of actors and their
specializations.

RoleAgent

Figure 1 Si* graphical representation of agents and roles

An agent is said to play a role. The play relation is similar in the intuition to the
user-role assignment of the RBAC approach [Sandhu et al., 1996]. According to such
an approach, an agent inherits the properties of the roles he plays. Agents and roles
can be further analyzed by decomposing them using the relation is part of. For
instance, this relation can be used to identify the member of an organization as well as
the sub-components of a software agent.

Si* provides support for modeling role hierarchies based on the concept of
specialization. A role is a specialization of another if it refers to more specialized
activities. In this setting, all specialized sub-roles inherit all properties of the
generalized super-role.

Together with the notion of specialization, Si* adopts the notion of supervision
from [Moffett, 1998]. Actually, a role hierarchy based on specialization does not
correspond to the organizational structure of systems. The basic idea underlying
supervision is that, if a role supervises another role, the first is responsible for the
behavior of the latter and has the capabilities to control and evaluate the latter’s work.
This concept is used to build the organizational hierarchy (or organization chart)
(Figure 3), whereas the specialization role hierarchy is built by using the ISA relation
(Figure 2).

Example 1 The director of a bank is responsible for the correct delivery of the service
offered by bank itself. The director cannot perform all such services by himself, and
so appoints managers and clerks (e.g., pre-processing clerks and post-processing
clerks) to perform some of the tasks he is responsible for. If services are not provided
in compliance with bank policies, he is personally liable. Thereby, the director has
good reasons to check and evaluate the behavior of subordinate roles. Figures 2 and
3 represent the roles presented above and the relations between them.

Customer
Division
Manager

Post−processing
Clerk

Pre−processing
Clerk

Manager Clerk

Employee

Financial
Division
Manager

Branch
Director

ISA ISA ISA ISA

ISA
ISA

ISA

Figure 2 Role Specialization Hierarchy

Customer
Division
Manager

Financial
Division
Manager

Pre−processing
Clerk

Post−processing
Clerk

Branch
Director

supervises supervises

supervises supervises

Figure 3 Role Supervision Hierarchy

4.2 Goals, tasks and resources

A goal represents a strategic interest of an actor. Si*, as well as i*, differentiates
between hard (only goals hereafter) and soft goals. The latter have no clear definition
or criteria for deciding whether they are satisfied or not, and are typically used to
model non-functional requirements. According to [Chung et al., 2000], the different
nature of fulfillment is underlined by saying that goals are satisfied, while softgoals
are satisficed.

Goals can be fulfilled by means of tasks or resources. A task represents a
particular course of actions that produces a desired effect. A task can be executed in
order to satisfy a goal or satisfice a softgoal. A resource represents a physical or an
informational entity without intentionality. A resource can be consumed or produced

by a task. Figure 4 depicts the graphical representation of goals, softgoals, tasks, and
resources.

Figure 4 Si* graphical representation of goal, softgoal, task, and resource

Si* is based on the idea of building a model of the system that is incrementally
refined and extended. Specifically, goal modeling consists of refining goals and
eliciting new social relationships among actors. Goals are analyzed from the
perspective of single actors using three techniques, namely AND/OR decomposition,
contribution analysis, and means-end analysis. In particular, AND/OR decomposition
combines AND and OR refinements of a root goal into subgoals, modeling a finer
goal structure. In essence, AND-decomposition is used to define the process for
achieving a goal, while OR-decomposition defines alternatives for achieving a goal.
Contribution analysis identifies goals and tasks that contribute positively or
negatively in the fulfillment of the goal to be analyzed. Means-end analysis aims at
identifying goals, softgoals, tasks, and resources that provide means for achieving a
goal.

Example 2 One of the services offered by the bank is to offer loans. The provisioning
of such a service contributes to increase bank profits. The bank AND-decomposes
offer loans into identify customers, manage the loan process, sell the loan.
These subgoals can be further decomposed until a plan to fulfill them is identified.
For instance, getting customer data can be achieved by executing tasks insert
customer identifier and retrieve customer data. Figure 5 shows the goal diagram
derived applying goal analysis to offer loans.

identify
customers

manage the
loan process

check customer
financial

credentials

select an
appropriate

loan product

sell the loan

check
customer data

reliability
receive

customers

verify truth of
customer data

evaluate
customer data

get customer
data from

the bank IS

insert
customer
identifier

retrieve
customer

data

increase
bank

profits

AND AND

AND

AND

AND

offer loans

+

Figure 5 Goal diagram

4.3 Objectives, Entitlements, and Capabilities

The first intuition in modeling security aspects of information systems is to
distinguish between actors who want access to a resource, fulfillment of a goal or
execution of a task, from actors who have the capabilities to do any of the above, and
– last but not least – actors who are entitled to do any of the above. Essentially, every
actor is defined along with a set of objectives, capabilities, and entitlements.

Objectives, entitlements and capabilities of actors are modeled through relations
between actors and services, namely require, be entitled, and provide.

Require indicates that an actor intends to achieve a goal, execute a task, or requires a
resource.

Be entitled indicates that an actor is the legitimate “owner” of a goal, a task, or a
resource. The basic idea is that an owner has full authority concerning access and
disposition over his entitlements.

Provide indicates that the actor has the capability to achieve a goal, execute a task, or
deliver a resource.

The distinction between being entitled and providing allows us to model situations
where the actor that has the capabilities to fulfill a goal is different from the one that
has the permission to do it.

Example 3 According to data protection legislation, a customer is entitled to control
the use of his personal data. The pre-processing clerk is appointed to identify
customers. Thereby, he needs to access customer information to achieve his duties.
However, he does not directly interact with the customer, but he retrieves such data
from the bank IT system (that it has been designed to provide customer information to
employees of the bank). Thus, the bank should seek the consent of the customer for
granting access to the customer’s data to all employees assigned to him.

In the graphical representation we represent relations require, be entitled, and
provide as edges between an actor and a service, labeled by R, O and P, respectively.

4.4 Trust and Delegation

Si* supports the notion of delegation in order to model the transfer of entitlements
and responsibilities from an actor to another. Thus, delegation is a ternary relation
among two actors (the delegator and the delegatee) and a goal, task or resource (the
delegatum).

Example 4 A pre-processing clerk is interested in gathering customer data, for which
he depends on the bank IT system. However, customer personal information is an
entitlement of the customer himself. The customer delegates the permission to provide
his data to the bank IT system on condition that they are not disclosed to third parties.

Bank IT
System

O

provide
customer

information
R

P

Pre−processing
clerk

provide
customer

information

Customer

De

De
Dp

Dp

Figure 6 Delegation

In this scenario (Figure 6), there is a difference of relationship between the pre-
processing clerk and the bank IT system and between the customer and the bank IT
system. This difference is based on the type of delegation used in the two
relationships. Thereby, we introduce a conceptual refinement of delegation, that will
allow us to capture and model important security facets.

Delegation of execution indicates that one actor delegates to other actors the
responsibility to achieve a goal, execute a task, or deliver a resource. This would be
matched, for instance, by a call to an external procedure. In this setting, the
delegatee will take care of the achievement of the goal, execution of the task, or
delivery of the resource. At the same time, the delegator becomes vulnerable.

Actually, the delegator has no warranty that the delegatee will achieve the goal,
execute the task, or deliver the resource.

Delegation of permission indicates that one actor delegates to other actors the
permission to achieve a goal, execute a task, or use a resource. This would be
matched by issuing a delegation certificate, such as digital credential or a letter. In
this setting, the delegatee is entitled to achieve the goal, execute the task, or use the
resource. At the same time, the delegator becomes vulnerable. Actually, the
delegator has no warranty that the delegatee will not misuse the delegatum.

In the graphical representation of Figure 6 we represent these relationships as edges
respectively labeled De and Dp.

Example 5 The customer delegates the permission to the bank IT system to provide
only information relevant for the required service. On the other hand, the pre-
processing clerk, who wants customer data, delegates the execution of his goal to the
bank IT system. According to the pre-processing clerk, the bank IT system should
provide the required information. He is not interested in what the bank IT system does
with the customer consent, apart from getting his information. The clerk’s major
concern would be that tasks are delegated to people that can actually do them,
whereas the customer would be concerned that his data are given to people who will
not misuse the permissions they have acquired.

Further, we want to separate the concepts of trust and delegation, as we might
need to model systems where some actors must delegate permission or execution to
untrusted actors. Trust represents the willingness to accept vulnerability based on
positive expectations about the behavior of another actor [Mayer et al,. 1995,
Rousseau et al., 1998]. It is related to belief in honesty, trustfulness, competence, and
reliability [Castelfranchi and Falcone, 1998, McKnight and Chervany, 1996] and it is
to build collaboration between humans and organizations [Axelrod, 1984]. Trust is an
important aspect for making decisions on security. This positive assumption about the
intentions of another actor allows the system to economize on information processing
and protection mechanisms. Trust supports system designers in making decisions
more efficiently by simplifying the acquisition and interpretation of information.
Trust also drives designers by suggesting protection mechanisms and procedures that
are most practicable under the assumption that the trusted counterpart will not exploit
vulnerabilities.

Similarly to delegation, we represent trust as a ternary relation among two actors
(the trustor and the trustee) and a goal, a task or a resource. The object around which
the trust relationship centers is called trustum. Also in this case it is convenient to
have a suitable distinction for trust in managing permission and trust in managing
execution.

Trust of execution indicates the belief of one actor on the capabilities of the other
actor. In general, by trusting in execution another actor for a trustum, an actor is
sure that the trustee will achieve the goal, perform the task, or furnish the resource.

Trust of permission indicates the belief of one actor that the other does not misuse a
goal, a task, or some resource. By trusting in permission another actor for a
trustum, an actor is sure that the trustum is properly used.

In the graphical representation we represent these relationships as edges respectively
labeled Te and Tp.

5 A Formal Ontology

To define a formal semantics for the new primitives, we use the Answer Set
Programming (ASP) paradigm [Leone et al., 2006]. The ASP paradigm is based on
the concepts of facts and rules expressed as Horn clauses and evaluated using the
stable model semantics2. Facts are atomic statements representing the extensional
description of the system. Rules can be axioms or properties: axioms are used to
complete the extensional description of the system, whereas properties correspond to
integrity constraints and are used to verify requirements consistency.

5.1 Predicates

Our setting distinguishes two types of predicates: intensional and extensional.
Extensional predicates (Table 1) correspond to the edges and circles drawn by the
requirements engineer during the modeling phase and are used to formalize the
intuitive description of the system. Intensional predicates (Table 2) are determined
with the help of rules by the reasoning system.

5.1.1 Extensional Predicates

For an automatic and precise analysis of requirements, graphical diagrams need to be
translated in formal specifications. This has spurred us to define an extensional
predicate for each primitive concept. Next, this set of predicates is presented and a
summary is given in Table 1.

Type Predicates
service(Service:s)
goal(Goal:g)
task(Task:t)
resource(Resource:r)
actor(Actor:x)
agent(Agent:a)
role(Role:p)
Goal Analysis
AND_decomp(Service:s,Service:s1,Service:s2)
OR_decomp(Service:s,Service:s1,Service:s2)
pos_contribution(Service:s1,Service:s2)
neg_contribution(Service:s1,Service:s2)
means_end(Service:s1,Service:s2)
Association Relations
play(Agent:a,Role:p)
is_a(Role:p,Role:q)
supervises(Role:p,Role:q)
is_part_of(Actor:a,Actor:b)

2 We assume that the reader is familiar with such concepts. Otherwise see
[Leone et al., 2006] for a tutorial.

Actor Properties
requires(Actor:a,Service:s)
owns(Actor:a,Service:s)
provides(Actor:a,Service:s)
Delegation and Trust
delegate(perm,x,y,s)
delegate(exec,x,y,s)
trust(perm,x,y,s)
trust(exec,x,y,s)

Table 1 Extensional predicates

• Type Predicates: The unary predicates goal, task and resource are used
respectively for identifying goals, tasks, and resources. Actually, some
systems for ASP reasoning need them as explicit predicates; others allow their
definition as types. For sake of compactness, we will use the unary predicate
service when it is not necessary to distinguish among goals, tasks, and
resources. We shall use letters S, G, T and R possibly with indexes as variables
ranging over services, goals, tasks and resources, respectively. The unary
predicates agent and role are used respectively for identifying agents, and
roles. For sake of compactness, we introduce the unary predicate actor when is
not necessary to distinguish among them. We shall use letters X, Y and Z as
variable to indicate generic actor, A, B and C as variables to indicate agents,
and P, Q and V as variables to indicate roles.

• Goal Analysis: Predicates AND_decomp and OR_decomp are used to model
AND- and OR-decomposition, respectively. Predicates pos_contribution and
neg_contribution are used to model positive and negative contribution,
respectively. Finally, means_end states that a service provides means for
achieving a goal with respect to the perspective of an actor.

• Association Relations: Predicate play identifies the role played by an agent.
Predicate is_a is used to build specialization role hierarchies, whereas
predicate supervises is used to build the organization chart of the system.
Finally, predicate is_part_of identifies the sub-components of an actor.

• Actor Properties: Predicate require identifies the objectives of actors, provide
the capabilities of actors, and entitled the legitimate owner of services.

• Delegation and Trust: Predicates delegate(perm,x,y,s) and delegate(exec,x,y,s)
correspond to delegation of permission and delegation of execution,
respectively. Predicates trust(perm,x,y,s) and trust(exec,x,y,s) correspond to
trust of permission and trust of execution, respectively.

5.1.2 Intensional Predicates

The intuitive description of the system is not sufficient for an accurate verification of
the system [Giorgini et al., 2006]. To derive the right conclusions from an intuitive
model, such a model is completed using rules. To distinguish the relations drawn by
the requirements engineer from the ones derived by the system, we introduce a set of
intensional predicates. Next, we present such predicates and a summary is given in
Table 2.

Goal Analysis
subservice(Service:s1,Service:s2)

AND_subservice(Service:s1,Service:s2)
OR_subservice(Service:s1,Service:s2)
Actor Properties
aims(Actor:a,Service:s)
has_perm(Actor:a,Service:s)
Trust
trustChain(perm,Actor:x,Actor:y,Service:s)
trustChain(exec,Actor:x,Actor:y,Service:s)
Confidence and Need-to-Know
in_charge(Actor:x,Service:s)
fulfills(Actor:x,Service:s)
can_satisfy(Actor:x,Service:s)
can_execute(Actor:x,Service:s)
confident(satisfy,Actor:x,Service:s)
confident(execute,Actor:a,Service:s)
confident(owner,Actor:x,Service:s)
need_to_have_perm(Actor:x,Service:s)

Table 2: Intensional Predicates

• Goal Analysis: These predicates identify the relations among services in terms
of subparts. Predicates subservice, OR_subservice and AND_subservice
respectively identifies a subservice, OR-subservice and AND-subservice of a
service. More specific predicates should be introduced for goal, task and
resource decomposition.

• Actor Properties: Predicate aims identifies direct and indirect objectives of
actors and has_perm identifies direct and indirect entitlements of actors.

• Trust: Trust relations can be combined to build trust chains. In particular,
trustChain(perm,x,y,s) and trustChain(perm,x,y,s) chains of trust of
permission and trust of execution, respectively.

• In charge and fulfill: Predicate in_charge identifies actors who take care of the
final delivery of a service and fulfills identifies actors who are actually willing
to deliver a service.

• Confidence of execution: This set of predicates is used to capture the notions
of confidence from the point of view of the requester. Predicate can_satisfy
identifies actors who delegate their objectives to actors who have the
capabilities to fulfill them. Predicate can_execute identifies actors who
delegate their objectives to actors who will fulfill them. confident(satisfy,x,s)
identifies actors that are confident that a service can be satisfied.
confident(execute,x,s) identifies actors that are confident that a service will be
fulfilled. This is the case if an actor knows that all delegations have been done
to trusted actors and that the actor, who will ultimately deliver the service, has
permission to do so.

• Confidence of entitlements: From the point of view of the owner, confidence
means that the owner is confident that the permission that he has delegated
will not be misused. Thereby, confident(owner,x,s) holds if owner x is
confident to give the permission on service s is granted only to trusted actors.

• Need-to-Know: Current privacy and data protection legislation requires that
information is unavailable to actors except those who need legitimately to
know (need-to-know principle). Essentially, this corresponds to the desire of
owners to delegate permissions to providers only if the latter actually do need
the permission. Predicate need_to_have_perm is used to capture this idea.

5.2 Axioms

This section describes the axioms that define the semantics underlying Si*. They are
used to complete the extensional description of the system.3

5.2.1 Trust

Table 3 presents the set of axioms for propagating trust relations along chains and
service refinement.4

Trust
T1 trustChain(exec,X,Y,S)←trust(exec,X,Y,S)
T2 trustChain(exec,X,Y,S)←trust(exec,X,Z,S)�trustChain(exec,X,Y,S)
T3 trustChain(exec,X,Y,S1)←subservice(S,S1)�trustChain(exec,X,Y,S)
T4 trustChain(perm,X,Y,S)←trust(perm,X,Y,S)
T5 trustChain(perm,X,Y,S)←trust(perm,X,Z,S)�trustChain(perm,X,Y,S)
T6 trustChain(perm,X,Y,S)←subservice(S,S1)�trustChain(perm,X,Y,S1)

Table 3: Trust Propagation

• Trust (T1-6) These axioms are used to builds trust chains. T1-2 are used to
build trust chains for execution. T3 propagates trust relationships from a
service to its parts. T4-5 are used to build trust chains for permission. T6
propagate along service refinements. If an actor trusts that another will not
overstep the set of actions required to fulfill a part of a service, then the first
can trust the last will not overstep the set of actions required to fulfill the
service. Thereby, trust of permission flows bottom-up with respect to goal
refinements.

5.2.2 Fulfillment, Confidence, and Need-to-Know

Tables 4 and 5 present the set of axioms for identifying entitlements and
responsibilities of actors; also, actors who will fulfill services and actors who are
confident that their objectives will be fulfilled and their entitlements will not misused.

Aims
AP1 aims(X,S)←requires(X,S)
AP2 aims(X,S) ←delegate(exec,Y,X,S)�aims(Y,S)
AP3 aims(X,S)←subservice(S1,S)�aims(Y,S)
Has permission
AP4 has_perm(X,S)←requires(X,S)

3 We do not present here the axiomatization for the user-role assignment and
goal analysis. We refer to [Giorgini et al., 2005] for it.

4 For the sake of simplicity we do not deal with the question of depth here. See
Li et al. [Li et al, 2003] for an account of trust with depth. What has emerged from
several case studies is that depth is less important than qualifications such as “only to
members of the same office”.

AP5 has_perm(X,S) ←delegate(perm,Y,X,S)�has_perm(Y,S)
AP6 has_perm(X,S)←subservice(S1,S)�has_perm(Y,S)
In charge
AP7 in_charge(X,S)←aims(X,S)�provides(X,S)
Fulfill
AP8 fulfills(X,S)←in_charge(X,S)�has_perm(X,S)
Can satisfy
AP9 can_satisfy(X,S)←in_charge(X,S)
AP10 can_satisfy(X,S)←delegate(exec,X,Y,S)�can_satisfy(Y,S)
AP11 can_satisfy(X,S)←OR_subservice(S1,S)�can_satisfy(X,S1)
AP12 can_satisfy(X,S)←AND_decomp(S,S1,S2)�can_satisfy(X,S1)�can_satisfy(X,S2)
Can execute
AP13 can_execute(X,S)←fulfills(X,S)
AP14 can_execute(X,S)←delegate(exec,X,Y,S)�can_execute(Y,S)
AP15 can_execute(X,S)←OR_subservice(S1,S)�can_execute(X,S1)
AP16 can_execute(X,S)←AND_decomp(S,S1,S2)�can_execute(X,S1)�can_execute(X,S2

)
Table 4: Entitlements and Objectives Transfer and Fulfillment

• Aims (AP1-3) AP1 states that if an actor requests a service fulfilled, he aims
its fulfillment. AP2 states that if an actor requires a service delivered and
delegates its execution to another actor, the delegatee takes care of its
fulfillment so that it becomes his objective. Finally, AP3 propagates objectives
through service refinement.

• Has permission (AP4-6) The owner of a service has full authority concerning
access and disposition of it. Thus, AP4 states that if an actor owns a service,
he is entitled to deliver it. AP5 states that if an actor is entitled to deliver a
service and delegates the permission to another actor, the delegatee is entitled
to deliver the service. Finally, AP6 propagates entitlements through service
refinement.

• In charge (AP7) An actor will take charge of the fulfillment of a service if he
has the capabilities to fulfill it and it belongs to his objectives.

• Fulfill (AP8) An actor will fulfill a service if he has taken charge of its
fulfillment and has the permission to fulfill it.

• Can satisfy (AP9-12) An actor can satisfy his objectives if either he has taken
charge of them (AP9) or has delegated it to someone who will take charge of
them (AP10). Service decompositions are accounted for through axioms
AP11-12. If an actor can satisfy at least one of the OR-subservices of a
service, then he can satisfy the root service. Dual axiom holds for AND-
decompositions.

• Can execute (AP13-16) These axioms is used to identify actors that actually
can deliver a service by combining execution with permission. An actor can
fulfill his objectives if either he will fulfill them directly (AP13) or has
delegated its execution to someone who will fulfill them (AP14). Service
decompositions are accounted for through axioms AP15-16. If an actor can
execute at least one of the OR-subservices of a service, then he can execute
the root service. Dual axiom holds for AND-decompositions.

Confident of satisfaction
AP17 confident(satisfy,X,S)←in_charge(X,S)
AP18 confident(satisfy,X,S)←delegate(exec,X,Y,S)�trustChain(exec,X,Y,S)�

 confident(satisfy,X,S)
AP19 confident(satisfy,X,S)←OR_subservice(S1,S)�confident(satisfy,X,S1)
AP20 confident(satisfy,X,S)←AND_decomp(S,S1,S2)�confident(satisfy,X,S1)�

 confident(satisfy,X,S1)
Confident of execution
AP21 confident(execute,X,S)←fulfills(X,S)
AP22 confident(execute,X,S)←delegate(exec,X,Y,S)�trustChain(exec,X,Y,S)�

 confident(execute,X,S)
AP23 confident(execute,X,S)←OR_subservice(S1,S)�confident(execute,X,S1)
AP24 confident(execute,X,S)←AND_decomp(S,S1,S2)�confident(execute,X,S1)�

 confident(execute,X,S1)
Confident of entitlements
AP24 confident(owner,X,S)←owns(X,S)�not diffident(X,S)
AP26 diffident(X,S)←delegate(exec,X,Y,S)�not trustChain(perm,X,Y,S)
AP27 diffident(X,S)←delegate(exec,X,Y,S)�diffident(X,S)
AP28 diffident(X,S)←subservice(S1,S)�diffident(X,S)
Need to know
AP29 need_to_have_perm(X,S)←in_charge(X,S)
AP30 need_to_have_perm(X,S)←delegate(perm,X,Y,S)�not other_delegater(X,Y,S)�

 need_to_have_perm(Y,S)
AP31 other_delegater(X,Y,S)←delegate(perm,X,Y,S)�delegate(perm,Z,Y,S)�

 need_to_have_perm(Z,S)�X≠Z
Table 5: Confidence and Need-to-Know

• Confidence of satisfaction (AP17-20) An actor is confident that its objectives
will be satisfied if he takes care of them (AP17) or he has delegated their
execution to a trusted actors who take care of them (AP18). Axioms AP19-20
specify how confidence of satisfy is propagated upwards along service
decomposition.

• Confidence of execution (AP21-24) An actor is confident to fulfill his
objectives if he fulfills them by himself (AP21) or he has delegated their
execution to trusted actors who will fulfill them (AP22). Axioms AP23-24
propagate confidence of execution upwards along service decomposition.

• Confidence of entitlements (AP25-28) An owner is confident, if there is no
likely misuse of his permission. It can be seen that there is an intrinsic double
negation in the statement. We model it using a predicate diffident. At any point
of delegation of permission, the delegating agent is diffident, if the delegation
is being done to an untrusted agent (AP26) or if the delegatee could be
diffident himself (AP27). AP28 propagates diffidence upwards along service
decomposition.

• Need to Know (AP29-31) These axioms defines the semantics of intensional
predicates that are necessary to analyze need-to-know properties. This set of
axioms also captures the possibility of having alternate paths of permission
delegations through predicate other_delegater. In this case the formal analysis
will not yield one model but multiple models in which only one path of

delegation is labeled by the need-to-have property and the others are not.
Essentially, AP30 introduces non-determinism, so it makes search and
verification harder.

6 Analysis and Verification

The suggested primitives were sufficient to deal with most of the security
organizational requirements we encountered. For instance, it has been shown that Si*
is able to cope with the complexity of a real ISO-17799-like case study [Massacci
et al., 2005]. Security requirements are verified using properties. Such properties are
defined in form of patterns that have to be checked. In ASP, they are represented as
integrity constraints that a good design should satisfy. If the set of features is not
consistent, i.e., properties cannot all be simultaneously satisfied, the system is not
secure. In this setting, ASP solvers will return a model only if the design complies
with all properties. Indeed, they do not return inconsistent model. Table 6 presents the
basic set of properties.

Authorization
Pro1 ←delegate(perm,X,Y,S)�not trustChain(perm,X,Y,S)
Pro2 ←delegate(perm,X,Y,S)�not has_perm(X,S)
Pro3 ←owns(X,S)�not confident(owner,X,S)
Availability
Pro4 ←delegate(exec,X,Y,S)�not trustChain(exec,X,Y,S)
Pro5 ←requests(X,S)�not can_satisfy(X,S)
Pro6 ←requests(X,S)�not can_execute(X,S)
Pro7 ←requests(X,S)�not confident(satisfy,X,S)
Pro8 ←requests(X,S)�not confident(execute,X,S)
Pro9 ←need_to_have_perm(X,S)�not has_perm(X,S)
Privacy
Pro10 ←has_perm(X,S)�not need_to_have_perm(X,S)

Table 6: Security Properties

• Authorization (Pro1-3) Pro1 is used to verify if an actor has delegated
permission to another actor that he trusts. This corresponds to the assumption
that trust is a prerequisite for delegation. Pro2 verifies whether an actor who
delegates the permission to deliver a service is entitled to do it. Pro3 verifies
that the owner of the service has to be confident to give the service only to
trusted actors.

• Availability (Pro4-9) Pro4 is used to verify if an actor has delegated the
execution of a service to another actor that he believes has the capability to
achieve it. Other properties are used to verify the expectancies of actors. Pro5-
6 check if actors can satisfy and execute the required services. Pro7-8 deal
with the notion of confidence and, in particular, verify whether a requester is
confident to satisfy and execute required services, respectively. Pro9 verifies
that actors who need the permission for performing their duties have such
permission.

• Privacy (Pro10) Pro10 verifies that actors, who have the permission on a
service, actually need such permission.

7 Conclusion

This chapter has proposed an ontology intended to model security at an organizational
level. Our proposal is founded on the concepts of ownership, trust and delegation.
Moreover, by making explicit the objectives, entitlements and capabilities of
stakeholder and system actors, as well as their delegations to other actors, we can
analyze functional and security requirements at the same time. The proposed concepts
proved up to the challenge, and revealed a number of pitfalls, especially when formal
analysis techniques were applied [Massacci and Zannone, 2006].

We are currently extending the ontology to capture behavioral aspects of the
system. Such an extension has two implications. On one hand, it allows system
designers to capture more sophisticated security properties. On the other hand, such
concepts support the (semi-)automatic derivation of business processes from the
requirements model.

Another direction under investigation involves the enrichment of the Si* ontology
with concepts necessary for capturing privacy concerns. According to existing privacy
legislations in many countries (e.g., the US Privacy Act and the EU Privacy
Directive), privacy is mainly maintained by controlling the usage of information. This
requires that information be linked to the functional requirements of the original
application. Following this trend, researchers have recently proposed frameworks for
specifying and enforcing privacy policies [OASIS, 2005, Ashley et al., 2003, Cranor
et al., 2002]. These proposals introduce concepts appropriate for modeling privacy
policies such as the ones of purpose and obligation. However, they do not support
policy writers in the analysis of organizational requirements and leave them to
manually define privacy policies. Our objective is to bridge the gap between the
requirements analysis and policy specification by deriving privacy policies directly
from the requirements model.

Acknowledgments

We thank Nicola Guarino and ISTC-CNR Laboratory for Applied Ontology in Trento
for many useful discussions. This work was partly supported by the projects FIRB-
TOCAI, IST-FP6-FET-IP-SENSORIA, IST-FP6-IP-SERENITY, and PAT-
MOSTRO.

References

AMICE Consortium (1993). Open System Architecture for CIM. Springer-Verlag.

Anderson, R. (1994). Why cryptosystems fail. Communications of the ACM,
37(11):32–40.

Ashley, P., Hada, S., Karjoth, G., Powers, C., and Schunter, M. (2003). Enterprise
Privacy Authorization Language (EPAL 1.2). W3C Recommendation. Available
at http://www.w3.org/Submission/EPAL/.

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

Basin, D., Doser, J., and Lodderstedt, T. (2006). Model Driven Security: from UML
Models to Access Control Infrastructures. TOSEM, 15(1):39–91.

Bernus, P. and Nemes, L. (1996). A Framework to Define a Generic Enterprise
Reference Architecture and Methodology. Computer Integrated Manufacturing
Systems, 9(3):179–191.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A. (2004).
TROPOS: An Agent-Oriented Software Development Methodology. JAAMAS,
8(3):203–236.

Bryce, M. and Associates (2006). PRIDE-EEM Enterprise Engineering Methodology.
http://www.phmainstreet.com/mba/pride/eemeth.htm.

Castelfranchi, C. and Falcone, R. (1998). Principles of trust for MAS: Cognitive
anatomy, social importance and quantification. In Proceedings of 3rd
International Conference on Multi-Agent Systems, pages 72–79. IEEE Computer
Society Press.

Chung, L. K., Nixon, B. A., Yu, E., and Mylopoulos, J. (2000). Non-Functional
Requirements in Software Engineering. Kluwer Publishing.

Cranor, L., Langheinrich, M., Marchiori, M., and Reagle, J. (2002). The Platform for
Privacy Preferences 1.0 (P3P1.0) Specification. W3C Recommendation.

Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993). Goal-directed
Requirements Acquisition. Science of Computer Programming, 20:3–50.

Dignum, V. (2004). A model for organizational interaction: based on agents, founded
in logic. PhD thesis, Universiteit Utrecht.

Emery, F. E. and Trist E. L. (1960). Socio-technical systems. In Management
Sciences: Models and Techniques, volume 2, pages 83–97. Pergamon Press

Fuxman, A., Giorgini, P., Kolp, M., and Mylopoulos, J. (2001). Information systems
as social structures. In Proceedings of the 2nd International Conference on
Formal Ontology in Information Systems, pages 10–21. ACM Press.

Giorgini, P., Massacci, F., Mylopoulos, J., and Zannone, N. (2006). Requirements
Engineering for Trust Management: Model, Methodology, and Reasoning. IJIS,
5(4):257–274.

Giorgini, P., Massacci, F., and Zannone, N. (2005). Security and Trust Requirements
Engineering. In Foundations of Security Analysis and Design III - Tutorial
Lectures, LNCS 3655, pages 237–272. Springer.

House of Lords (1999). Prince Jefri Bolkiah vs KPMG. 1 All ER 517. Available on
www.parliament.the-stationeryoffice.co.uk.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002). A Model for the Structural,
Functional, and Deontic Specification of Organizations in Multiagent Systems.
In Proceedings of the 16th Brazilian Symposium on Artificial Intelligence, pages
118–128. Springer.

Jürjens, J. (2004). Secure Systems Development with UML. Springer-Verlag.

Lampson, B. W. (2004). Computer Security in the Real World. Computer, 37(6):37–
46.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello, F.
(2006). The DLV System for Knowledge Representation and Reasoning. TOCL,
7(3):499–562.

Li, N., Grosof, B. N., and Feigenbaum, J. (2003). Delegation logic: A logic-based
approach to distributed authorization. TISSEC, 6(1):128–171.

Liu, L., Yu, E. S. K., and Mylopoulos, J. (2003). Security and Privacy Requirements
Analysis within a Social Setting. In Proceedings of the 11th IEEE International
Requirements Engineering Conference, pages 151–161. IEEE Computer Society
Press.

Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., , and
Guarino, N. (2004). Social roles and their descriptions. In Proceedings of the 9th
International Conference on the Principles of Knowledge Representation and
Reasoning, pages 267–277. AAAI Press.

Massacci, F., Prest, M., and Zannone, N. (2005). Using a Security Requirements
Engineering Methodology in Practice: The compliance with the Italian Data
Protection Legislation. Computer Standards & Interfaces, 27(5):445–455.

Massacci, F. and Zannone, N. (2006). Detecting Conflicts between Functional and
Security Requirements with Secure Tropos: John Rusnak and the Allied Irish
Bank. Technical Report DIT-06-002, University of Trento.

Mayer, R. C., J. H. Davis, F. D. Schoorman. 1995. An integrative model of
organizational trust. Acad. Management Rev, 20(3):709-734.

 McDermott, J. and Fox, C. (1999). Using Abuse Case Models for Security
Requirements Analysis. In Proceedings of ACSAC’99, pages 55–66. IEEE
Press.

McKnight, D. H. and Chervany, N. L. (1996). The meanings of trust. Technical
Report 96-04, MIS Research Center.

Michaely, R. and Womack, K. L. (1999). Conflict of interest and the credibility of
underwriter analyst recommendations. Review of Financial Studies, 12(4):653–
686.

Moffett, J. D. (1998). Control principles and role hierarchies. In Proceedings of the
3rd ACM Workshop on Role-Based Access Control, pages 63–69. ACM Press.

OASIS (2005). eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS Standard. Available at http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

Ponemon L. (2003). What Keeps Security Professionals Up At Night? Available at
http://www.darwinmag.com/read/040103/threats.html.

Rousseau, D. M., S. B. Sitkin, R. S. Burt, C. Camerer. 1998. Not so different after all:
A cross-discipline view of trust. Acad. Management Rev. 23(3) 393-404.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based
access control models. IEEE Computer, 29(2):38–47.

Sindre, G. and Opdahl, A. L. (2005). Eliciting security requirements with misuse
cases. REJ, 10(1):34–44.

Sommerville, I. (2001). Software Engineering. Addison-Wesley.

Stader, J. (1996). Results of the Enterprise Project. Technical Report AIAI-TR-209,
University of Edinburgh.

Strens, R. and Dobson, J. (1993). How responsibility modelling leads to security
requirements. In Proceedings of the 1993 New Security Paradigms Workshop,
pages 143–149. ACM Press.

Tryfonas, T., Kiountouzis, E., and Poulymenakou, A. (2001). Embedding security
practices in contemporary information systems development approaches.
Information Management and Computer Security, 9:183–197.

Uschold, M., King, M., Moralee, S., and Zorgios, Y. (1998). The Enterprise
Ontology. The Knowledge Engineering Review, 13(1):31–89.

Yu, E. (1996). Modelling strategic relationships for process reengineering. PhD
thesis, University of Toronto.

