
Minimal Disclosure in Hierarchical Hippocratic
Databases with Delegation?

Fabio Massacci1, John Mylopoulos1,2, and Nicola Zannone1

1 Department of Information and Communication Technology
University of Trento - Italy

{massacci,zannone}@dit.unitn.it
2 Department of Computer Science

University of Toronto - Canada
jm@cs.toronto.edu

Abstract. Hippocratic Databases have been proposed as a mechanism to guar-
antee the respect of privacy principles in data management. We argue that three
major principles are missing from the proposed mechanism: hierarchies of pur-
poses, delegation of tasks and authorizations (i.e. outsourcing), and the minimal
disclosure of private information.
In this paper, we propose a flexible framework for the negotiation of personal
information among customers and (possibly virtual) enterprises based on user
preferences when enterprises may adopt different processes to provide the same
service. We use a goal-oriented approach to analyze the purposes of a Hippocratic
system and derive a purpose and delegation hierarchy. Based on this hierarchy,
effective algorithms are given to determine the minimum set of authorizations
needed for a service. In this way, the minimal authorization table of a global
business process can be automatically constructed from the collection of privacy
policy tables associated with the collaborating enterprises. By using effective on-
line algorithms, the derivation of such minimal information can also be done
on-the-fly by the customer wishing to use the services of a virtual organization.

1 Introduction

Since the early works on privacy protection in statistical databases [1], privacy research
has gained momentum. Changes in the landscape of legislation around the world, and
growing consumer attention to the issue have changed attitudes towards security and
privacy concerns for database systems. This matches with a substantial body of research
on approaches for managing the negotiation of personal information among customers
and enterprises [2, 3, 18, 20].

At the basis of every solution for the exchange between enterprises and customers,
there is the principle of transparency. Transparency means that when enterprises store
data about customers they should disclose to customers which data is collected and
how it is used, i.e., for what purpose data is maintained. Starting from the landmark
? This work has been partially funded by the IST programme of the EU Commission, through

an FET under the IST-2001-37004 WASP project, by the FIRB programme of MIUR under
the RBNE0195K5 and RBAU01P5SS projects, by MOSTRO and SMTPPs projects of PAT.

proposals for Hippocratic databases [3], most privacy-aware technologies use purpose
as a central concept around which privacy protection is built. For the transparency re-
quirement, enterprises should declare in their privacy policies the purpose for which
data is collected, who can receive it, the length of time the data can be retained and the
authorized users who can access it. Looking at such policies customers would be able to
understand how their personal data will be used and, in case they agree, disclose them.

Transparency is not the only principle, and another important notion which goes
hand in hand with transparency is the notion of minimal disclosure, as defined in the US
Privacy Act of 1974 and the EU Directives on Privacy in 1995. This principle requires
enterprises to maintain only the information necessary to fulfill the purpose for which
it has been collected. The principle of minimal disclosure seems to be easily satisfiable.
A company must simply ask the necessary data and leave other useful but unnecessary
fields as optional. We all experience this business practice when filling in a web form.

However, enterprises are able to provide their services in different ways, and each
different method could require different data. For example, banks may deliver bank
statements by email and by regular post. Depending on the method, customers should
provide their shipping address or email to the bank. Asking for both addresses as com-
pulsory would clearly violate the principle of minimal disclosure.

If we consider these decisions, the burden of choice is on the human who must
decide what to do on the basis of his/her personal feeling of trust of the enterprises.
But this is very difficult for complex tasks, where there are many ways to deliver the
service. The situation is worse if we consider dynamic coalitions, such as those that
might be soon available with Web Services and Business Processes for Web Services.
On the server side, we might not have a single enterprise, but rather a host of partners
participating in a business process. Further, companies may outsource a large part of
data processing to external supplier which on their own may do a similar process.

In some cases, the client process may even no longer be a human deciding to fill
an email field with her business email or a freshly created Yahoo address but rather
a software client. A software process needs automatic procedures for making such a
judgment on the basis of some general criteria provided by the user.

Classical privacy-aware systems such as Hippocratic Databases do not consider
these issues of delegation, minimality and their automatic treatment. In this paper we
show how to address them.

1.1 The Contribution of this paper

This paper presents a flexible framework for automatically deriving the minimum set of
authorizations needed to achieve a service (i.e., the minimal privacy authorization table)
from the enterprise privacy policy (privacy policy table) by determining the minimum
set of data needed to fulfill required services based on users preferences and the partners
entitled to access the data.

Following goal-oriented security requirements engineering approaches [9], we pro-
pose to analyze the purposes behind the design of a Hippocratic system, and organize
them in hierarchal manner through AND- and OR-decompositions and delegation. Fur-
ther, we extend that hierarchy by associating to purposes the data needed to accomplish
them. Once customers have given a weight to each piece of data, one can determine the

2

minimum set of data for fulfilling the root purpose with respect to user preferences. Rea-
soning procedures for the fulfillment of users’ requirements by different solutions have
been already investigated in goal oriented requirements engineering [10, 19]. However,
their solution is not adequate for our purposes, as it is tailored to off-line analysis by
the system designer and not to on-the-fly selection by the system user.

In order to have more efficient algorithms, we represent purpose and delegation hi-
erarchies with hypergraphs [4, 5]. Based on this data structure, we provide algorithms
for finding a minimal decomposition path that represents the process that uses the min-
imum set of information to fulfill a purpose, and for efficiently updating it when users
change the cost of data items or choose among the alternatives that an enterprise offers
for achieving the required service. Then, this path is used to determine the minimum
set of authorizations needed to achieve a service.

The remainder of the paper is structured as follows. Next (§2) we introduce a sce-
nario used as running example throughout the paper. We then provide (§3) a brief de-
scription of Hippocratic databases. Then, we introduce purpose DAGs in order to rep-
resent purpose hierarchies (§4) and discuss how to build a purpose DAG from a Hippo-
cratic database system (§5). Next (§6) we present algorithms for finding and updating
the minimum cost path. Finally, we discuss related works and conclude the paper with
some directions for future work (§7).

2 A Running Example

Our scenario is a revised version of the case study proposed by Agrawal et al. [3].
Mississippi is an on-line bookseller who needs to obtain certain personal informa-

tion to perform purchase transactions. This information includes name, shipping ad-
dress, and credit card number. Mississippi views purchase (the root-level ”purpose” for
its service) as a three-step process: credit assessment, delivery, and notification. Deliv-
ery can be done by direct delivery or by post, while notification can be done by email
or by fax. Depending on the method of notification, Mississippi needs either email or
fax information.

Mississippi relies on Worldwide Express (WWEx) for shipping books. WWEx is a
delivery company that offers a global network of specialized services – transportation,
international trade support and supply chain services. WWEx also needs personal infor-
mation to delivery books for Mississippi. This information includes customer name and
shipping address. In turn, WWEx depends on local delivery companies for door-to-door
delivery. To this end, WWEx delegates customer information to them. In the remain-
der of the paper, we call LDC1, . . . ,LDCn the local delivery companies responsible to
deliver books in the zone where the customer lives.

Furthermore, Mississippi relies on the Credit Card Company (CCC) for credit as-
sessment. CCC needs to obtain some information for providing credit assessment. This
information includes customer’s name and credit card number, and the transaction be-
tween Mississippi and the customer. For making credit decisions, CCC wants a credit
rating3. For this, CCC depends on the Credit Rating Company (CRC). CRC uses sta-
tistics to summarize past experience so that predictive analysis can be used to generate

3 Credit rating is a method for interpreting the content of a credit report.

3

table attribute
customer purpose, customer-id, name, address, email, fax-number, credit-card-info
order purpose, customer-id, transaction, book-info, status

Table 1. Database Schema

table attributes
privacy-policies purpose, table, attribute, { external-recipients }, retention
privacy-authorizations purpose, table, attribute, { authorized-users }

Table 2. Privacy Metadata Schema

a rating for the customer. Based on the rating, CCC can decide to accept or not the
customer transaction.

3 A Primer on Hippocratic Databases

Hippocratic databases [2, 3] use purpose as a central concept and consider it as a “spe-
cial” attribute occurring in every tables forming the database and associated with each
piece of data stored in the database.

Example 1. Table 1 shows the schema of two tables, customer and order, that store the
personal information collected by Mississippi.

Then, for each purpose and for each data item stored in the database, we have:

– external-recipients: the actors to whom the data item is disclosed;
– retention-period: the period during which the data item should be maintained;
– authorized-users: the users entitled to access the data item.

Purpose, external recipients, authorized users, and retention period are stored in the
database with respect to the metadata schema defined in Table 2 [3]. Specifically, the
above information is split into separate tables: external-recipients and retention period
are in Privacy-Policies Table (PPT), while authorized-users in Privacy-Authorizations
Table (PAT). The purpose is stored in both of them. PPT contains the privacy policies
of the enterprise, while PAT contains the access controls policies that implement the
privacy policy and represents the actual disclosure of information. In particular, PAT is
created from PPT by instantiating each external recipient with the corresponding users.
Therefore, Hippocratic systems define a PAT for each PPT. These tables are equal for
every customer, and so they do not appreciate individual user preferences.

Example 2. According the PPT of Mississippi, it can access both email and fax number
for notifying the status of the order. WWEx, Post Office, and all LDCs can access cus-
tomer data for direct delivery, delivery by post and door-to-door delivery, respectively.
These authorizations match exactly the policies declared in the corresponding PPTs.

Further examples for the PPT of each partner involved in the business process and the
corresponding PATs in our running example can be found in [14].

4

Before users disclose their information, the Privacy Constraint Validator is used to
verify whether user preferences match the privacy policy of the enterprise. In this way,
Hippocratic DBs implement the consent principle. When queries are submitted to the
database, the system answers only queries for which the purpose is equal to that for
which data has been stored. Further, Hippocratic DBs do not disclose information for
purposes different from those for which the owner of the information have previously
give the consent. Thus, Hippocratic DBs implement, respectively, the limited use and
disclosure principles. To enforce the retention principle, Hippocratic DBs use the Data
Retention Manager which deletes data items when their retention period is expired.

The limited collection principle requires that enterprises collect the minimum set of
data needed to fulfill the purpose for which data is stored. Hippocratic DBs use three
components to implement such principle: Access Analysis, that identifies for each pur-
pose which data never occurs in query answers; Granularity Analysis, that determines
the granularity of the required information; Minimal Query Generation, that designs
queries that disclose the minimum set of data needed for fulfilling a certain purpose.

4 Hierarchy and Delegation of Purposes

Hippocratic systems are an elegant and simple solution but do not allow for dynamic
situations that could arise with web services and business process software. In such set-
tings, enterprises may provide services in many different ways and may delegate the
execution of parts of the service to third parties. This is indeed the case of a virtual or-
ganization based on business process for web service where different partners explicitly
integrate their efforts into one process. This affects mainly the creation of the PAT.

Agrawal et al. [3] propose to split a purpose into multiple purposes and then store
them in the database. In this way, we lose the relation among a purpose and its sub-
purposes. Karjoth et al. [11] use a directory-like notation to represent purpose hierar-
chies. However, this notation does not distinguish if a sub-purpose is derived by AND
or OR decomposition, and consequently cannot be used to reason about the fulfillment
of the root purpose. Additionally the same sub-purpose may be part of different pur-
poses. This distinction is important from the perspective of minimality of information.
For example, providing both an email address and a physical address might be needed
to provide the password for access to the tracking service and the actual shipping of
goods and those purposes may be both necessary (AND) to obtain a certain higher level
goal. However, in other cases only one of them could be necessary (OR). Therefore,
requiring both of them would be a violation of the minimality principle.

Our approach is based on traditional goal analysis [15], and consists of decom-
posing purposes into sub-purposes through an AND/OR refinement. If purpose p is
AND-decomposed (respectively, OR-decomposed) into sub-purposes p1, . . . , pn, then
all (at least one) of the sub-purposes must be satisfied for satisfying p. The idea is to
represent purpose hierarchies with hypergraphs [4, 5], and we will call them purpose
directed acyclic graphs (or purpose DAGs, for short).

Definition 1. A purpose DAG P is a pair 〈P,D〉 where P is a set of purposes and D is
a set of decomposition arcs. Each decomposition arc is an ordered pair 〈S, t〉 from an
arbitrary nonempty set S ⊆ P (source set) to a single node t ∈ P (target node).

5

Definition 2. Let P = 〈P,D〉 be a purpose DAG. A purpose DAG P ′ = 〈P ′, D′〉 such
that P ′ ⊆ P and D′ ⊆ D and, for each 〈S, t〉 ∈ D′, S ⊆ P ′, is called sub purpose
DAG of P . This is denoted by P ′ ⊆ P .

The enterprise-wide privacy policies is derived by looking at the Hippocratic data-
base of each partner involved in the business process and merging them into a single pur-
pose DAG. Therefore, purpose DAGs can be recognized as the outcome of a process of
refinements of goals and delegation of tasks in security requirements modeling method-
ologies [9]. Fig. 1 shows an example of purpose DAG. Each node is composed by two
parts: a purpose identifier and the list of data items needed to fulfill the purpose. Bro-
ken lines partition the purpose DAG in sub purpose DAG, and each of them represents
the policies of a single enterprise, and so purposes on the broken line can be seen as
services whose execution is delegated to other suppliers.

Definition 3. Let P = 〈P,D〉 be a purpose DAG, X ⊆ P be a non-empty subset of
purposes, and y be a purpose in P . A decomposition pathDX,y is a set of decomposition
arcs D′ ⊆ D such that either y ∈ X or there exists a decomposition arcs 〈Z, y〉 ∈ D′
and there are decomposition paths DX,z ∈ D′ for each z ∈ Z.

Essentially, a decomposition path represents a possible process through which an
enterprise can fulfill a root purpose. Our goal is to decide which is the process with
the “minimum privacy penalty” to fulfill the root purpose with respect to the user’s
preferences. This can be performed through a quantitative analysis. In order to support
quantitative analysis, we need to introduce the notion of weighted purpose DAG.

Definition 4. A weighted purpose DAG P = 〈P,D〉 is one where each decomposition
arc 〈X, y〉 ∈ D has associated with it a weight ω〈X,y〉.

Since decomposition paths have a complex structure, different ways can be used to
measure the cost of the same decomposition path. Depending on the weight measure,
the problem can be polynomially tractable [8] or NP-hard [6, 7, 17]. The problem of
finding a minimal cost hyperpath in a directed hypergraph is shown to be NP-hard when
the cost of a hyperpath is the sum of the weights of its hyperarcs [4, 5]. By making the
cost function additive, Martelli and Montanari [13] were able to formulate a polynomial
time algorithm for AND/OR graphs. For additive cost functions, the cost of one edge is
counted as many times as it is traversed. Additive cost functions are also considered in
hypergraph approaches that find optimal hyperpaths in polynomial time [4, 5].

For our purposes, we use an additive cost function. We believe that additive mea-
sures are the ones that capture best the intuitive way in which we might wish to protect
our privacy. In a nutshell, if the same datum is disclosed N times, then the cost of these
disclosures is N, rather than 1. After all, the more a datum is used, the more it is likely
that it might be compromised, or the more it is likely to end up in companies not so
privacy-aware. The more our data are tossed back and forth the less happy we are.

Definition 5. LetX be a source set, y be a purpose node, andDX,y be a decomposition
path from X to y. The disclosure penalty (or privacy penalty) to reach y starting from
X , dp(X, y), is inductively defined as follows:

6

1. if y ∈ X , then dp(X, y) = 0
2. if path DX,y has root 〈Z, y〉 with subpath DX,z1 , . . . ,DX,zk , then dp(X, y) =
ω〈Z,y〉 +

∑
zi∈Z dp(X, zi)

5 From Hippocratic DBs to Purpose DAG

We now have the machinery to construct a purpose DAG when orchestrating a business
process composed by many different partners (each with its own Hippocratic DB). The
construction is sketched below.

– For each supplier PPT, purposes are analyzed through a goal refinement process,
and so they are structured with respect to AND/OR decomposition. These purpose
DAGs are circumscribed by a broken line and labeled with the supplier’s name.

– Once we have a DAG for each supplier, we build the DAG representing the privacy
policy of the entire business process by merging them.

– Then each purpose is associated with the data items directly needed to achieve the
purpose itself (data items needed to achieves its sub-purposes are linked directly to
sub-purposes).

Merging is done by looking at the external-recipients field in every PPT: when the
external-recipients field is not empty, we connect that purpose with the corresponding
purpose (with the same name) occurring in the DAG associated with the supplier that
is an instance of some external recipient. If there is more than one instance for the
same external recipient, we create a fictitious node and OR decompose it into a number
of nodes equal to the number of possible instances. This is also what happens if we
have multiple external suppliers for the same purpose. This approach supports complex
enterprise strategies and, at the same time, allows customers to directly choose a certain
supplier whenever the choice is possible. To support this process, we assume a common
ontology among all the actors involved in the purpose DAG.4

The last step takes into account the data items we need to satisfy a purpose and the
privacy penalty assigned to each data item by users. The idea is to create a node for each
data item and link it to the purposes that directly requires it. So, we add to the purpose
DAG n+ 1 nodes where n is the number of data items. Then, if a purpose node has no
incoming decomposition arcs, we link to the purpose the data items needed to fulfill it
with decomposition arc 〈X, t〉 where X is the set of data items and t the purpose node.
Otherwise, if node t has already an incoming decomposition arc 〈X ′, t〉, this is replaced
by the decomposition arc 〈X ∪ X ′, t〉. We link to each data item nodes the last node,
source node, with arc 〈⊥, t〉, where ⊥ is the source node and t is a data item node.

Example 3. Fig. 1 shows the purpose DAG extended within data items corresponding
to the running example. Each purpose DAG on a broken line represents the hierarchical

4 This assumption is also necessary in Hippocratic database systems. If external recipients of
data could assign a semantics to a purpose that is different from the semantics assigned by the
Hippocratic database owner we could as well eliminate the entire tagging process and provide
all data with purpose “do-what-you-please”.

7

name

name

notification

notification
by email

notification
by fax

CCC

credit
assessment

delivery
by post

delivery
direct

delivery
door−to−door

purchase

Mississippi

fax−number

fax−number

status

status

booh−info

booh−info

email

email

credit
resolution

credit
rating

delivery (1)
door−to−door

transaction

transaction

credit−card−info

credit−card−info

address

address

delivery (2)
door−to−door

LDC2

Post
Office

LDC1

delivery

WWEx

CRC

Fig. 1. Purpose DAG

model of the privacy policies concerning a partner. In particular, Mississippi AND-
decomposes purchase into delivery, credit assessment whose execution is delegated to
CCC, and notification. Thus, all sub purposes have to be reached in order to reach the
root purpose. Then, the store OR-decomposes delivery into direct delivery for which it
depends on WWEx, and delivery by post for which it depends on Post Office. These
purposes are the root of the DAGs associated with WWEx and Post Office. Finally, the
store achieves notification either by fax or by email. These purposes are not further on
decomposed, and so are linked to the data items needed to fulfill them.

Every decomposition arc has disclosure penalty equal to 0, except the decomposi-
tion arcs joining source node and data item nodes, and delegation arcs. In the first case,
the disclosure penalty corresponds to the cost of perceived disclosure of data. The latter
represents the disclosure penalty to delegate information. Both these assignments are
given by data owners with respect to their own preferences. In particular, weight on
delegation edges from one supplier to the sub-suppliers can be defined by asking the
users to specify the level of trust they feel about sub-suppliers.

6 Minimum Cost Algorithms

Customers do not want to disclose more data than needed to get the desired service.
This corresponds to finding the minimal decomposition path from the source node to
the root purpose. This path can be used to build the minimal PAT that represents the
minimum set of authorizations for fulfilling the root purpose. A key observation is that
such computation cannot in general be done by the company providing the service

8

Data Structure Type Description
LAST [y] node Pointer to the last node in the minimal path from source node to simple node y.
DISCLOSE [y] integer Privacy penalty from the source node to node y.
NEEDED[y] data item list Data items needed to fulfill node y.
TODO[y] integer For simple nodes, it says if node y is reachable.

For compound nodes, it is the number of simple nodes (that compound y) which are not
reachable from the source.

Table 3. Data Structures

once and for all customers: customers may associate a different privacy penalty to the
provision of the same data item. Therefore, they are interested in finding the minimum
information cost for fulfilling the root purpose with respect to their own preferences.
The computation of minimal preferences is essentially a dynamic on-line process.

In order to design efficient algorithms for dynamic evaluation of privacy prefer-
ences, we use FD-graph [5] whose definition is given below.

Definition 6. Given a purpose DAG P = 〈P,D〉, let S be the set of source set, i.e.,
S = {Z| there exists a decomposition arc 〈Z, i〉 ∈ D and |Z| > 1}. The FD-graph of
P is a labeled graph G(P) = 〈Ps ∪ Pc, Aor ∪Aand〉, where:

1. Ps ≡ P is a set of simple nodes;
2. Pc is the set of compound nodes which is in bijective relationship with S. If Z ∈ S

is a source set then z will denote the corresponding compound node, and any simple
node zi in the source set Z will be called a component node of compound node z;

3. Aor ⊆ (Pc × Ps) ∪ (Ps × Ps) = {(z, x)|〈Z, x〉 ∈ D} is the set of edges referred
to as OR-edges, in bijective relationship with D;

4. Aand ⊆ Ps × Pc = {(zi, z)|z ∈ Nc and zi ∈ Z} is the set of edges referred to as
AND-edges, connecting any compound node to its components

Essentially, a decomposition arc is represented by a compound node with a leav-
ing OR-edge and one or more incoming AND-edges. The OR-edge corresponds to the
OR choice of selecting the decomposition arc. Once the decomposition arc is selected,
all purposes in its source set must be fulfilled. There is a one-to-one correspondence
between the decomposition arcs of a given purpose DAG P and OR-edges of the corre-
sponding FD-graphG(P). If a decomposition arc ofP has a weight, this is associated to
the corresponding OR-edge. FD-graphs can be implemented by maintaining adjacency
lists where all OR (AND) edges leaving a node y are organized in Lor(y) (Land(y)).

When we design a system we can distinguish two phases, namely Requirements
Capture phase and Privacy Assessment phase. Each of these phases involves some op-
erations: the Requirements Capture phase requires an initialization phase and support
for deleting arcs, adding arcs, increasing weights and decreasing weights, while the
Privacy Assessment phase requires support for deleting arcs and increasing weights.

Next, we present the data structures used in the algorithms. A summary of such data
structures is shown in Table 3. In order to retrieve the minimal decomposition path, the
idea is to store for each simple node y, the incoming decomposition arcs belonging
to the minimal decomposition path (backward pointers [5]) by using LAST [y]. This
points to the last node in the minimal decomposition path from source node⊥ to simple
node y, otherwise, if there is no path from ⊥ to y, it is equal to nil .

9

Phase Name Input Description
I MinimumCost Find the minimal decomposition path for a purpose DAG.
I ScanMC t: node

x: simple-node
Scan OR-edges and update priority queue. Called by MinimumCost.

U WeightIncrease 〈X, y〉: decomposition arc
ω: weight

Update the minimal decomposition path when arcs are delated or
weight is increased.

U ScanWI t: node
x: simple-node

Scan OR-edges and update priority queue. Called by Insert and
WeightIncrease.

Table 4. Algorithms for initializing and updating the minimal decomposition path

The privacy penalty of the minimal decomposition paths from⊥ to any other simple
or compound node y is stored in DISCLOSE [y]. For every node, the privacy penalty is
initialized to infinity (∞). The list of data item needed to fulfill a purpose y is stored in
the variable NEEDED [y]. At the beginning, for every node y, NEEDED [y] = ∅ except
for the nodes associated to a data item where the list contains the data item itself. The
symbol] is used to represent concatenation of lists. Finally, the variable TODO [y] is
used to store if there is a path from ⊥ to y. A node y is visited if the value of TODO [y]
is equal to 0. For any simple node x, TODO [x] is initialized to 1, and for any compound
node z (with components z1, . . . , zq), TODO [z] is initialized to

∑q
k=1 TODO [zk].

In the remainder of the section, we present some algorithms for finding and updat-
ing the minimum cost decomposition path. A summary of such algorithms is given in
Table 4 where I and U are respectively used for initialization and update.

6.1 Initialization

Initialization refers to find the minimum cost decomposition path for a new purpose
DAG. The following algorithms are based on [5] and are essentially a variant of Dijk-
stra classical minimum spanning tree algorithm. The algorithms are described in the
following, while the pseudocode is given in Fig. 2 and 3.

Algorithm MinimumCost uses a priority5 queue PQ whose elements have the form
(Ct, It, 〈s, t〉) where 〈s, t〉 is an OR-edge, and Ct and It are, respectively, the privacy
penalty and the list of data items associated with the node t. The algorithm inserts
as a first element in the priority queue the item (0, ∅, 〈⊥,⊥〉). Then, repeatedly, the
algorithm extracts from the queue PQ the node t with minimum priority Ct which is
assumed to be the privacy penalty of the minimal decomposition path from ⊥ to t.
Thereby, all OR-edges outgoing from t are scanned by procedure ScanMC, all AND-
edges 〈t, z〉 are analyzed. For each compound node z, TODO [z] is decreased, and if
it is equal to 0 the privacy penalty of the minimal decomposition path from ⊥ to z is
computed. Then, all OR-edges outgoing from z are scanned by procedure ScanMC.
Procedure ScanMC aims at analyzing OR-edges 〈t, x〉: if the ingoing node x is not
already visited, the procedure inserts it in the priority queue; otherwise, the penalty of
x is updated if and only if edge 〈t, x〉 improves the old penalty associated with x.

Example 4. Defining default preferences, Mississippi gives a value on data items and
delegation steps (Table 5). It prefers to deliver books by using a delivery company
because this method is more secure and faster. Further, it prefers to notify by fax. Fig. 4

5 Lowest data required in, first out.

10

Algorithm MinimumCost
Output:

DISCLOSE [y] : integer;
NEEDED[y] : data item list;
TODO[y] : integer;
LAST [y] : node;

begin
make-PQ-empty;
PQ-insert(0, ∅, 〈⊥,⊥〉);
TODO[⊥] := 0;
while PQ-nonempty do begin

PQ-extract(Ct, It, 〈s, t〉); {extract from the queue PQ the node t with minimum priority Ct}
DISCLOSE [t] := Ct;
NEEDED[t] := It;
LAST [t] := s;
for each {OR-edge} 〈t, x〉 ∈ Lor(t) do ScanMC(t, x);
for each {AND-edge} 〈t, z〉 ∈ Land(t) do begin

decrement(TODO[z]);
if TODO[z] = 0 {If node z is reached the privacy penalty of the path from⊥ to z is computed}

then begin
DISCLOSE [z] :=

∑
zi∈z

DISCLOSE [zi]

NEEDED[z] :=
⊎
zi∈z

NEEDED[zi]

for each {OR-edge} 〈z, x〉 ∈ Lor(z) do ScanMC(z, x);
end

end
end

end

Fig. 2. Algorithm MinimumCost

Procedure ScanMC(t: node; x: simple-node);
begin
Ct,x := ω〈t,x〉 + DISCLOSE [t];
It,x := NEEDED[t];
if TODO[t] = 1 {check if node t has been previously visited}

then begin
decrement(TODO[t]); {if not, node t is marked as reached
PQ-insert(Ct,x, It,x, 〈t, x〉); and arc 〈t, x〉 is inserted in PQ}

end
else if Ct,x < Cx {otherwise, PQ is update only if arc 〈t, x〉 improves minimal path}

then PQ-decrease(Ct,x, It,x, 〈t, x〉);
end

Fig. 3. Procedure ScanMC

shows the minimum cost path. Comparing it with Fig. 1, we can see that email does
not occur anymore since fax has a lower penalty. Also the DAGs labeled with Post
Office and LDC2 are no longer considered since the sum of the penalties associated
with WWEx and LDC1 is lower than those associated with Post Office and LDC2.6

It is possible to prove, as done in [5] that

1. a node y is marked (i.e., TODO [y] = 0) if it is reachable from the source node;
2. the algorithm computes correctly the minimal privacy penalty from ⊥ to any other

node in the purpose DAG;
3. the algorithm terminates in linear time in the size of the purpose DAG.
6 The penalty for delegating data to LDC2 includes the trust level associated with WWEx.

11

Data Item Cost Delegation Cost
name 1 CCC 2
address 5 CRC 4
email 4 WWEx 2
fax-number 2 LDC1 2
credit-card-info 10 LDC2 3
transaction 5 Post Office 5
book-info 2
status 3

Table 5. User Preferences

name

name

notification

credit
assessment

credit
resolution

credit
rating

transaction

transaction

fax−number

fax−number

status

status

booh−info

booh−info

CCC

credit−card−info

credit−card−info

address

address

delivery (1)
door−to−door

LDC1

delivery
delivery
direct

purchase

Mississippi

WWEx

notification
by fax

delivery
door−to−door

CRC

Fig. 4. Minimum Decomposition Path

Every purpose can be seen as a business process. Business processes can be com-
bined, and the “new” process can be seen as an atomic process. Atomic processes follow
the ACID properties [16] that guarantee that all participants will see the same outcome:
in case of success all services make the results of their operation permanent by com-
mitment, otherwise all services undo all operations they have requested and data is not
disclosed. Thus, to guarantee consistent and reliable execution, we should check if the
minimal path exists. This path is then used to build the PAT where external recipients
are instantiated by the corresponding authorized users. This ensures that a user discloses
all information needed to fulfill the service only if a path exists and that disclosed in-
formation is the minimum cost set of data necessary to fulfill the service.

Example 5. Mississippi is authorized to notify the status of the order only by fax, and
so it can collect only data related to that purpose for notification. LDC1 can access
only data needed for door-to-door delivery, and so WWEx for direct delivery. In turn,
Mississippi is entitled to access those data for achieving delivery. Moreover, CRC is au-
thorized to access only data need for credit rating and CCC for credit resolution. Then,
CCC can access only those data for performing credit assessment. Finally, Mississippi
is entitled to collect data for achieving purchase in accordance with those allowed for
its sub purposes. As shown in Fig. 4, Mississippi cannot access customer email.

12

A comparison among the PATs derived by two approaches is given in [14].

6.2 On-the-fly Update of Customer Privacy Preferences

Both requirements capture and privacy assessment phases require to update the solution
when weights are modified. In particular, the privacy assessment phase requires that
data structures are maintained and that operations are performed on-line. The idea is to
reuse the valid part of the old solution as much as possible.

The problem of dynamically updating the purpose DAG can be essentially divided
in two distinct classes depending on the update operations that are possible:

– adding new arcs or decreasing the privacy penalty of an existing arc;
– deleting an existing arc or increasing the privacy penalty of an existing arc.

For sake of generality both possibilities must be considered when devising the the-
ory but we argue that most practical implementations will only have to cope with the
second type of updates. Indeed the presence of a decomposition arc corresponds to
a business choice done by the enterprise (such as using a supplier). A customer may
surely decide not to use a particular supplier, without further ado than ticking a check-
box on the web. However, adding a supplier or a partner to a business process is a pro-
cedure that can be conceived for very dynamic virtual business coalitions, and requires
to solve problems (system integration, commercial agreement, legal liabilities etc.) that
go well beyond the comparatively simple issue of privacy preferences. So we leave to
the technical report [14] the details of the procedure that maintains the minimum cost
path when new arcs are inserted or the cost of an existing arc is decreased.

In the case the customer increases the privacy penalty of decomposition arcs, we
use algorithm WeightIncrease to build the new minimum cost decomposition path.
The pseudocode is given in Fig. 5 and 6. The idea is that if the decomposition arc does
not belong to the minimum cost decomposition path, this path does not change since we
are analyzing only weight increase and arc deletion. If the decomposition arc belongs
to the minimal path, we examine the other decomposition arcs having node t as head.
To this end, we use the function backward Bor where, given a node x, Bor(x) = {h ∈
D|x = head(h)}. Essentially, Bor(x) is the set of incoming decomposition arcs of x.
Any time a decomposition arc that does not belong to the minimum cost path is found,
it is pruned. The procedure WeightIncrease can be simply re-used for the case of arc
deletion by defining the weight equal to infinity (∞).

Example 6. Alice, a Mississippi’s customer, does not agree with default user prefer-
ences given by Mississippi. In particular, she prefers to receive books by post because
she does not trust to give her address to delivery companies after a bad experience with
a local delivery company. To this end, she defines the cost of delegation information to
WWEx equal to infinity (∞). Further, she does not have a personal fax and must use her
company’s fax where faxes are first given to the program manager’s secretary for dis-
tribution to the staff. Thus, she defines the cost of fax number equal to 20. Fig. 7 shows
the minimal path computed with respect to her user preferences. The corresponding
PAT [14] shows that Mississippi cannot access her fax number for notification and that
WWEx and local delivery companies cannot access any of her data; only Post Office is
entitled to access her data for delivering the purchased books.

13

Procedure WeightIncrease(〈X, y〉: decomposition arc, ω: weight);
begin

if |X| = 1
then x := the single element of X;
else x := Compound(X);

if LAST [y] = x then begin {arc 〈x, y〉 is considered only if it belongs to minimal path}
DISCLOSE [y] := ω + DISCLOSE [x];
for each {OR-edge} 〈s, y〉 ∈ Bor(y) do ScanWI(s, y);
while PQ-nonempty do begin

PQ-extract(Ct, It, 〈s, t〉); {extract from the queue PQ the node t with minimum priority Ct}
DISCLOSE [t] := Ct;
NEEDED[t] := It;
LAST [t] := s;
for each {OR-edge} 〈t, x〉 ∈ Lor(t) do

if LAST [x] = t then {arc 〈t, x〉 is considered only if it belongs to minimal path}
for each {OR-edge} 〈s, x〉 ∈ Bor(x) do ScanWI(s, x);

for each {AND-edge} 〈t, z〉 ∈ Land(t) do begin
c :=

∑
zi∈z

DISCLOSE [zi]

d :=
⊎
zi∈z

NEEDED[zi]

if c < DISCLOSE [z] then begin {arc 〈t, z〉 is considered only if it improves minimal path}
DISCLOSE [z] := c
NEEDED[z] := d
for each {OR-edge} 〈z, x〉 ∈ Lor(z) do

if LAST [x] = z then {arc 〈z, x〉 is considered only if it belongs to minimal path}
for each {OR-edge} 〈s, x〉 ∈ Bor(x) do ScanWI(s, x);

end
end

end
end

Fig. 5. Procedure WeightIncrease

Procedure ScanWI(t: node; x : simple-node);
begin
Ct,x := ω〈t,x〉 + DISCLOSE [t];
It,x := NEEDED[t];
if Ct,x < DISCLOSE [x] {arc 〈t, x〉 is considered only if it improves minimal path}

then if 〈t, x〉 /∈ PQ
then PQ-insert(Ct,x, It,x, 〈t, x〉);
else PQ-decrease(Ct,x, It,x, 〈t, x〉);

end

Fig. 6. Procedure ScanWI

7 Related Work and Conclusion

Last years have seen an increasing attention to privacy-protection technologies and the
negotiation of private information between customers and companies. Tumer et al. [20]
present a framework for Web Services that allows users and enterprises to automatically
negotiate personal information. Each data item is defined as Mandatory or Optional by
an enterprise, while users define for each part of their personal information the kind
of access, namely Free, Limited, or NotGiven. Then, the framework matches enterprise
policies with user preferences. If a mandatory input is not given by a user, enterprises
can find alternative strategies in order to reach an agreement with the user.

14

name

name

CCC

credit
resolution

credit
assessment

credit
rating

Post
Office

delivery
by post

delivery

notification

purchase

Mississippi

email

email

status

status

booh−info

booh−info

notification
by email

transaction

transaction

credit−card−info

credit−card−info

address

address

CRC

Fig. 7. Minimum Decomposition Path

A policy itself may be sensitive since analyzing the disclosed policies an unautho-
rized user may infer sensitive information. Therefore, some approaches aim not only to
protect personal information, but also policies themselves. LeFevre et al. [12] provide
an approach for forcing queries to respect privacy policies stated by an enterprise and
users preferences. Their idea is to specify additional conditions to regulate the disclo-
sure of information. Another approach to avoid unauthorized disclosure of sensitive in-
formation is Automated Trust Negotiation [18]. It aims to regulate iterative disclosures
of credentials and requests between requesters and provider. These approaches are dif-
ferent from ours since we assume that information are committed only after checking
that enterprise policies comply with user preferences. We argue that, if policies are not
known at priori, users cannot know which data they have to provide. It may be possible
that users discover that an enterprise requires more information than they (the users)
consider reasonably sufficient to provide the service only when they have already dis-
closed part of their information.

The main contribution of this paper is a framework for deriving the minimum set of
authorizations needed to provide a service by determining the minimum set of informa-
tion a customer has to give. In particular, our approach provides support to Hippocratic
systems for enforcing the limited collection principle when a complex business process
is analyzed and user preferences are considered. Indeed Hippocratic systems create a
privacy authorization table shared by all customers. This does not allow to distinguish
which particular method is used for delivering a service, and so to customize the mini-
mum set of information. Therefore, access analysis is only able to determine which data
items are never used for a purpose and, consequently, minimal query generation works
on a set of information that is not minimum. Finally, our framework ensures that a user
discloses all (and only) the information required by the process that uses the minimum
set of information to delivery the service.

There are some issues left as future work. One of these is to introduce an actor
hierarchy to model the hierarchical nature of organizations (e.g., company-division-

15

department-individual worker). Further, customers must be assured that they are getting
a complete and correct answer to their queries before delegating privacy information.
To this end, we are investigating the usage of Merkle Trees to build a global certificate
to be provided to the client by composing the individual certificates from the various
business partners.

References

1. N. R. Adam and J. C. Worthmann. Security-control methods for statistical databases: a
comparative study. CSUR, 21(4):515–556, 1989.

2. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private databases.
In Proc. of the 2003 ACM SIGMOD Int. Conf. on Management of Data. ACM Press, 2003.

3. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases. In Proc. of VLDB’02,
pp. 143–154. Morgan Kaufmann, 2002.

4. G. Ausiello, P. G. Franciosa, and D. Frigioni. Directed Hypergraphs: Problems, Algorithmic
Results, and a Novel Decremental Approach. In Proc. of ICTCS’01, LNCS 2202, pp. 312–
327. Springer-Verlag, 2001.

5. G. Ausiello, R. Giaccio, G. F. Italiano, and U. Nanni. Optimal Traversal of Directed Hyper-
graphs. Technical Report TR-92-073, ICSI, September 1992.

6. C. L. Chang and J. R. Slage. An admissible and optimal algorithm for searching AND/OR
graphs. Artif. Intell., 2:117–128, 1971.

7. Y. Desmedt and Y. Wang. Maximum flows and critical vertices in and/or graphs. In Proc. of
COCOON’02, pp. 238–248. Springer-Verlag, 2002.

8. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42(2-3):177–201, 1993.

9. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineering meets
Trust Management: Model, Methodology, and Reasoning. In Proc. of iTrust’04, LNCS 2995,
pp. 176–190. Springer-Verlag, 2004.

10. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning with Goal Models.
In Proc. of ER’02, pp. 167–181, 2002.

11. G. Karjoth, M. Schunter, and M. Waidner. Platform for Enterprise Privacy Practices: Privacy-
enabled Management of Customer Data. In Proc. of PET’02. Springer-Verlag, 2002.

12. K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. J. DeWitt. Limiting
Disclosure in Hippocratic Databases. In Proc. of VLDB’04, 2004.

13. A. Martelli and U. Montanari. Additive AND/OR Graphs. In Proc. of IJCAI’73, pp. 1–11.
Morgan Kaufmann Publisher, INC., 1973.

14. F. Massacci, J. Mylopoulos, N. Zannone, Minimal Disclosure in Hierarchical Hippocratic
Databases with Delegation, Technical Report DIT-05-051, Univ. di Trento 2005. Available
on the web at http://eprints.biblio.unitn.it.

15. N. J. Nilsson. Problem solving methods in AI. McGraw-Hill, 1971.
16. M. P. Papazoglou. Web Services and Business Transactions. World Wide Web: Internet and

Web Inform. Sys., 6:49–91, 2003.
17. S. Sahni. Computationally related problems. SIAM J. on Comp., 3(4):262–279, 1974.
18. K. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure of Access Control Policies

during Automated Trust Negotiation. In Proc. of NDSS’01, pp. 109–125. IEEE Press, 2001.
19. R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and minimum-cost satisfiability for

goal models. In Proc. of CAiSE’04, LNCS 3084, pp. 20–35. Springer-Verlag, 2004.
20. A. Tumer, A. Dogac, and H. Toroslu. A Semantic based Privacy Framework for Web Ser-

vices. In Proc. of ESSW’03, 2003.

16

