
Noname manuscript No.
(will be inserted by the editor)

Gabriel Kuper E-mail: kuper@acm.org ·

Fabio Massacci E-mail: fabio.massacci@unitn.it ·

Nataliya Rassadko E-mail: rassadko@dit.unitn.it

Generalized XML Security Views

Abstract We investigate a generalization of the notion of XML security view introduced by Stoica and

Farkas [45] and later refined by Fan et al. [23]. The model consists of access control policies specified

over DTDs with XPath expressions for data-dependent access control. We provide the notion of security

views characterizing information accessible to authorized users. This is a transformed DTD schema

that can be used by users for query formulation. We develop an algorithm to materialize an authorized

version of the document from the view and an algorithm to construct the view from an access control

specification. We show that our view construction combined with materialization produces the same

result as the direct application of the DTD access specification on the document. We also propose

a number of generalizations of possible security policies and show how they affect view construction

algorithm. Finally, we provide an evaluation of our system.

Keywords XML, security view, XPath, materialization, authorized view

1 Introduction

XML [12] has become the prime standard for data representation and exchange on the Web. In light of

the sensitive nature of many business data applications, this also raises the important issue of security

The University of Trento

via Sommarive, 14

Povo (Trento), 38050

Italy

2

in XML and the selective exposure of information to different classes of users based on their access

privileges.

To address such security issues, there is a need for a generic, flexible security model that can effec-

tively support multiple policies for controlling access to XML content at various levels of granularity.

Perhaps even more importantly, enforcing such access-control policies should not imply any drastic

degradation in either performance or functionality for the underlying XML query-execution engine.

In addition, access-control enforcement should not complicate the maintenance of the consistency and

integrity of the data when either the XML data or the access policies are updated.

An XML security model must support:

1. a simple and powerful fine grained authorization mechanism that can control access to both content

and structure (e.g., restricting access to entire subtrees or specific elements in the document tree

based on their content or location);

2. efficient mechanisms for the enforcement of security policy without fully annotating the underlying

document to decouple data management from policy management;

3. schema information, characterizing all and only those elements accessible to each authorized user,

in the same way that a relational database offers security views to their users.

An access control should not inhibit schema availability, i.e., the availability of necessary schema

information (e.g., DTD [12] or an XML Schema [22]) specifying the structure of the accessible data.

Furthermore, XML documents are typically accompanied by a schema that specifies the internal struc-

ture of the data. For the same reasons that a database schema is needed for query formulation and

processing for traditional databases, XML schemas are also important for XML query formulation and

optimization; and schemas are critical for XML data exchange and integration [4].

While specifications and enforcement of access control are well understood for traditional databases [21],

[36], [42], [44], the study of security for XML is less established. Early security models that have been

proposed for XML do not meet criteria 3 above and, to a lesser extent, criterion 1 and 2. In particular,

cryptographically enforced access control to XML documents [38], [10] considers only protection of

XML data but not a schema; different parts of the XML tree are encrypted by different keys (typically

one key for a particular combination of access control rules applicable to an XML element); finally,

3

these kinds of protection make querying difficult since a large amount of decryption is needed. Run-

time policy evaluation scenarios [33], [10], requires policy propagation from the root to the requested

node. This may result in calculation of accessibility decisions for every node test of the user query.

Such a time consuming query answering can be improved only partly in the presence of DTD [40],

[14], but it happens not for all queries. Other optimization techniques rely on compressed accessibility

map [52], [31], [53], or combining access control policy with user queries [37]. However, the user still

does not have the schema of accessible data. This problem was slightly resolved in [9], [17], where a

“loosened” variant (i.e., DTD where every forbidden element is “optional”) of the schema is delivered.

The problem with the loosened version is that it still reveals all element names, including sensitive

ones, of the initial DTD. Moreover, the overall security policy enforcement is performed at the doc-

ument level by fully annotating the entire XML document/database; this requires possibly expensive

view materialization (see Sec. 10), and complicates consistency and integrity maintenance.

In addition, fixing the access control policies at the instance level without providing or computing a

schema makes it difficult for the security officer to understand how the authorized view of a document

for a user or a class of users actually looks like. Hence, such a solution is hardly practical for large

and complex documents. Revelation of excessive schema information might lead to security breaches:

an unauthorized user can deduce or infer confidential information via multiple queries (essentially if

the authorization specifications are not closed under intersection) and analyze the schema even if only

accessible nodes are queried.

To overcome the limitations outlined above, the notion of an XML security views was initially

proposed by Stoica and Farkas [45] and later refined by Fan et al. [23]. The basic idea is to provide

a schema that describes the data that can be seen by the user, as well as a (hidden) set of XPath

expressions that describes how to compute the data in the view from the original data.

1.1 Our Contribution

This paper is an extension of our previous work [34]. In this section, we list our contribution not only

w.r.t. the existing proposals of an XML access control research, but also w.r.t. [34].

4

Our first contribution is an investigation of different alternatives for policy definition and enforce-

ment at the level of an XML tree (Sec. 4). Our analysis shows that not all combinations of policy

options satisfy the properties of completeness and consistency, i.e. some policy settings do not result in

a single fully annotated tree. We provide a classification of policies using different options of security

label propagation and conflict resolution. The comparison of our policy framework with those of the

existing proposals is done in Sec. 11.

Second, we generalize the notion of XML security views from [23], [45] to arbitrary DAG DTDs

and to conditional constraints defined in a very expressive XPath fragment. For each view, a security

specification is a simple extension of the DTD document D with security annotations and security

policies exploited to automatically obtain a full annotation from a partial one. The security views

proposed in [45] in some sense are smarter than ours since they can preserve semantic associations

among some XML tags. For this purpose, corresponding cover stories are selected by a security officer,

but they need a human intervence. However, neither full DTD labelling derivation nor querying is

discussed in [45].

Our third contribution is related to view derivation algorithm. Namely, we show a generic algorithm

that constructs a fully annotated DTD DF (from the partial security specification) for different policies

so that DF reflects a full annotation of a corresponding XML document. From this full specification,

we derive a security view S consisting of a view DTD Dv and a function σ defined via XPath queries.

The view DTD Dv shows only the data that is accessible according to the specification. The view is

provided to the users so that they can formulate their queries over the view. The function σ is withheld

from the users, and is used to extract accessible data from the actual XML documents to populate a

structure conforming to Dv. The formal proof of correctness of view derivation algorithm is also given.

In contrast to [23], we consider general XML DTDs defined in terms of regular expressions rather

than normalized DTDs. Furthermore, we do not allow dummy element types in the definition of

security views. The latter are equivalent of optional elements in a loosened DTD of [17]. In addition,

algorithm presented in [23] is only top-down with a different semantics for qualifier, while our solution

can compute views both for top-down and for bottom-up policies. Next, Fan et al. did not show how to

construct fully annotated DTD DF . The latter can be extensively exploited, for example, in run-time

5

PARTIALLY

ANNOTATED
 DTD

(
DTD
,
 ann
)

CONFORMING

XML

(
T
)

FULLY

ANNOTATED
 DTD

ANNOTATE

VIEW

SCHEMA OF

ACCESSIBLE

DATA

(
D
v
)

BUILD VIEW

Hidden data

(
s
-
function)

M
A

TER
IA

LIZE

V

IEW

ACCESSIBLE
 XML

DATA

(
T
M
)

Fig. 1 Schema of materialization of accessible data

policy evaluation scenarios when DF is calculated for a requesting user once for session and all further

accessibility checks are done on DF .

Finally, in [23], it was claimed that view materialization is not needed since it is time-consuming

and can be avoided by means of query rewriting technique. However, in many applications, views

can remain unchanged for a long period of time and, hence, can be queried directly without query

rewriting. Moreover, query rewriting may introduce complicated qualifiers, and thus evaluation of

them may lead to exponential response time. Guided by these observations, we provide an algorithm

for view materialization. Our approach is depicted summarily in Fig. 1. We also show that materialized

XML views conform to Dv and are isomorphic to authorized ones. This is our fourth contribution.

Finally, as the fifth contribution, we provide an experimental evaluation of our system.

1.2 Plan of the paper

The paper is organized as follows. First we present preliminary notions on XML and XPath in Sec. 3.

In Sec. 2 we provide a motivating example. After classification of security policies with respect to

consistency and completeness properties in Sec. 4, we provide a formalization of the motivating example

for top-down policy in Sec. 5, followed by the algorithm of view materialization in Sec. 6, and DTD view

derivation in Sec. 7. An extension of view construction algorithm is given in Sec. 8. Next, investigation

6

on theoretical aspects of our algorithms are provided in Sec. 9 and evaluation of the system is done in

Sec. 10. Related work is reviewed in Sec. 11. Finally, we conclude the paper in Sec. 12.

2 A Motivating Example

We start with a running example assuming an intuitive understanding of XML documents as trees and

DTDs as DAGs.

Example 1 We describe a DTD database containing the information on applications for PhD/MS

program. Each application is initiated by a student described via student-data with an element id

uniquely identifying the student and representing the student’s login name. Student-data is composed

of name, desired degree (PhD or MS) department, and waiver. The latter field may take values “true”

or “false”1 and means that student does (does not) waive his/her right to inspect the content of the

recommendation letters. The application is supported by several letters of recommendation (recomm-

letter); some of them can be classified as for letter body and is provided by a separate evaluator

having name, title and institution attributes. The evaluator places comments on the applicant’s skills

in free-text field, which is either a PDF or a TXT file, and rates applicant’s English proficiency,

and possible contributions to PhD or MS program. Letters of recommendation are reviewed by the

admission committee and are assigned to a category favorable or unfavorable depending on the context.

The corresponding DTD graph is depicted on Fig. 2, where solid lines represent concatenation (i.e.,

AND-relation between a node and its children), dashed lines represent disjunction (i.e., OR-relation),

and combined line, called nesting represent mix of relations between a node and its child nodes (in

Fig. 2, rating has child English and either MS or PhD). Stars on lines represent zero-to-many cardinality

between a node and its child of a certain type. Fig. 3(a) shows an XML document conforming to this

DTD, where boxed leaves of the tree represent text values. Gray labels on some edges of this XML

will be explained later.

The need to provide users with a schema-level security view is illustrated by the access control

requirements in Example 2.
1 A domain of some value, like waiver, may be restricted by means of ENTITY declaration of DTD and is not

considered in the current thesis.

7

application

student-data

letter

name

department degree waiver evaluator

rating free-texttitle institution

MS PhD
English

applications

*

recomm-letter

*

reason

unreliable

PDF TXT

*

favorable unfavorable

id

concatenation (α,α)
disjunction (α+α)
nesting (α,(β+β))

Fig. 2 The graph representation of the DTD document D

applications

application application

student-data student-data

recomm-letter

department namedegree idwaiver department namedegree idwaiver

C
S

M
S

false

D
m

itry
K

onovalov

dkonovalov

C
S

P
hD

true

V
ladim

ir R
om

anov

vrom
anovunreliable

unreliable

recomm-letter

recomm-letter

evaluator

institutiontitlename

letter

evaluator
letter

reason

evaluator letter

reason

T
he recom

m
ender

does not exist

T
he institution

does not exist

institutiontitlename institutiontitlename

A
lbert W

asserm
an

F
ull P

rofessor

U
niversity of S

uncity

M
aria S

haker

R
esearcher

M
agnificent Labs

M
aria S

haker

R
esearcher

M
agnificent Labs

unfavorable

favorable
favorable

MS English free-text

Not recommended

Below average http://...recom.txt

MS English free-text

Highly recommended

Excellent

http://...recom.pdf

MS English free-text

Recommended

Excellent

http://...recom.pdf

q1 q2

N

N
N

N

q3

N
q4

q5 q6 q7

q8 q9

q10

q11 q12

q13

Y Y

(a) Initial XML document

q1, q2
.
= student-data/id = $login

q3, q4
.
= ../../student-data/id = $login;

q5, . . . , q13
.
= ancestor::application/student-data[id = $login]/waiver =“false”;

(b) The meaning of qualifiers

Fig. 3 Partial annotation of the XML document conforming to the DTD from Example 1

8

Example 2 An applicant can access his/her personal record located under the field student-data.

Access to fields favorable and unfavorable is forbidden, while the visibility of rating and free-text

is possible if the waiver is false (data-dependent access). Moreover, the applicant should not be aware

of the reliability of the recommendation letters as the leakage of this information to recommenders

might lead to diplomatic incidents. Finally, we require the field department to be visible in any case:

either from a proper student’s application or from external one. Thus, the student will be able to see

how many applications are submitted to different departments of the university. Hence, a ranking of

departments can be inferred.

Corresponding qualifiers are shown in Fig. 3(a) as gray labels on edges. The meaning of the labels

is the following: Y means always accessible, N means always forbidden, while q1, . . . , q13 are encoded

in XPath and presented in Fig. 3(b). In these qualifiers, $login is a variable that is instantiated

dynamically during the login into the system. So, if $login is “dkonovalov” then q1, q3, q5 − q10 are

evaluated to true, q2, q4, q11 − q13 are evaluated to false. If the value of $login is “vromanov” the

situation is reverse.

Existing cryptographical proposals like [38], [9] as well as run-time policy evaluation scenarios [33],

[10], [40], [14], [37] and view-based approaches [9], [17] enforce such security constraints directly on the

XML document. The DTD is usually used only for typing of the XML document with security labels

which are then propagated over the entire document through corresponding document portions. These

systems specify how to restrict access at the data level and how to obtain authorized view of data.

Example 3 Let us construct an authorized view for Vladimir Romanov using some other well-known

access control models.

– Author-X by Bertino et al. [7] does not support qualifiers, so we assume that a preprocessing

step of their algorithm evaluating qualifier with the following semantics: if q is evaluated to true, the

label is Y (i.e. permitted for access), otherwise N (i.e. forbidden for access). In the case of Vladimir

Romanov, q1, q3, q5, . . . , q10 are evaluated to false, and q2, q4, q11, . . . , q13 are evaluated to true.

Next, we assume that the propagation option is CASCADE [7] (i.e., top-down to all subelements)

and deny takes precedence in the case of conflicts. The approach also relies on denial downward

consistency rule that deletes everything that is below Nlabeled node. The view for Vladimir Ro-

9

applications

application

student-data

department
namedegree idwaiver

C
S

P
hD

true

V
ladim

ir R
om

anov

vrom
anov

(a) Bertino et al. [7]

applications

application
application

student-data student-data

department department namedegree idwaiver

C
S C
S

P
hD

true

V
ladim

ir R
om

anov

vrom
anov

unreliable

recomm-letter

evaluator

letter

institutiontitlename

M
aria S

haker

R
esearcher

M
agnificent Labs

favorable

MS English free-text

Recommended

Excellent

http://...recom.pdf

(b) Damiani et al. [17]

applications

application

student-data

department namedegree idwaiver

C
S

P
hD

true

V
ladim

ir R
om

anov

vrom
anov

recomm-letter

evaluator

institutiontitlename

M
aria S

haker

R
esearcher

M
agnificent Labs

MS English free-text

Recommended

Excellent

http://...recom.pdf

dummy

(c) Fan et al. [23]

Fig. 4 Authorized XML view for student Vladimir Romanov

manov is shown in Fig. 4(a). It contains only the student’s personal information and looks fine.

However, if Vladimir Romanov didn’t wave his right to see the content of recommendation letters,

he would’t have an access to this information anyway, because ann(recomm − letter, letter)=N.

Selective dissemination [9] is a crypto-version of the Author-X which promotes a push archi-

tecture. The difference is that negative authorizations are not supported. However, everything that

is not permitted is forbidden which is, basically, local closed policy. This means that if some XML

subtree rooted at node n cannot be decrypted by a set of keys owned by the user, neither can any

of its subtrees. Hence, the same view can be extracted as in the previous case. Ranking among

departments is missing because of denial downward consistency rule as well.

– Access control processor by Damiani et al. [17]. The preprocessing step mentioned previ-

ously is already included in the algorithm. The rule most specific takes precedence (which simply

10

applications

application

student-data

recomm-letter
department namedegree idwaiver

C
S

M
S

false

D
m

itry
K

onovalov

dkonovalov

recomm-letter

evaluator

institutiontitlename

evaluator

institutiontitlename

A
lbert W

asserm
an

F
ull P

rofessor

U
niversity of S

uncity

M
aria S

haker

R
esearcher

M
agnificent Labs

MS English free-text

N
ot recom

m
ended

B
elow

 average

http://...recom
.txt

MS English free-text

H
ighly recom

m
ended

E
xcellent

http://...recom
.pdf

department

C
S

(a) Authorized XML view for student Dmitry Konovalov

applications

application

student-data

department namedegree idwaiver

C
S

P
hD

trueV
ladim

ir R
om

anov

vrom
anov

department

C
S

(b) and for student Vladimir Romanov

Fig. 5 Security annotation for competing student

says that an unlabelled node takes the security label of its first labelled ancestor/descendant) is

used for resolving conflicts. Finally, forbidden nodes are deleted if they do not have permitted chil-

dren, otherwise only their attributes are cleaned. Such a policy enforcement results in Vladimir’s

view depicted in Fig. 4(b). Sensitive field unreliableis visible because it has the permitted child

recomm-letter. If the waiver had value true, sensitive fields favorable and unfavorable would

be revealed as well.

– Security views by Fan et al. [23]. Although [23] does not discuss XML view materialization,

we tried to emulate their schema-level enforcement at the XML instance. The view for Vladimir

Romanov is the same as in the first case. If we imagine that Vladimir Romanov does not waive

his right to see the content of recommendation letters, the XML view presented in Fig. 4(c) has

the element dummy that may suggest to the user an idea that something is hidden. Ranking among

departments is still missing.

As we have seen above, none of these methods produces a correct XML view. Author-X hides

too much information that should have been available for the user and sometimes reveals sensitive

information in a meaningless way. The access control processor by Damiani et al., on the contrary,

reveals too much information. The last methods is better, but some information is still missing due to

inappropriate qualifier semantics that deletes a subtree rooted at a node where the qualifier does not

hold.

11

Example 4 Fig. 5(a) and Fig. 5(b) are the authorized views retrieved from the document in Fig. 3(a). In

particular, Dmitry Konovalov has login dkonovalov and does not waive his right to see recommendation

letters supporting his application (i.e., waiver=false), while Vladimir Romanov has login vromanov and

waiver=true in his case. Both users also may infer the ranking among departments of the university

since their views include department elements of all the other applications.

An important question remains unanswered: what schema information should be provided to the

user? To formulate and process queries, the user needs a schema describing the accessible data. One

solution, suggested by Damiani et al. [17], is to loosen the original DTD (make forbidden nodes op-

tional). In some cases, it is unacceptable to expose even the loosened DTD to final user. To illustrate

this, consider two permissible XPath queries about a letter of recommendation:

Q1 : /applications/application//evaluator

Q2 : /applications/application/recomm-letter/evaluator

The query Q1 finds all elements of type evaluator that are associated with recommendation letter

(including unreliable ones), while Q2 returns only evaluators of reliable recomm-letters. Although

most of the unreliable data is hidden, a look at the DTD document allows one to infer which letters are

considered as unreliable: the evaluators in Q1 that are not returned by Q2; thus, we have a security

breach. This is because all evaluators are visible, but in different ways.

3 A Primer on DTD, XML and XPath

We first review DTDs (Document Type Definitions [12]) and XPath [15] queries. It is well-known, that

non-recursive DTDs may be modelled as a DAG.

Definition 1 A DTD D is a triple (Ele, P, root), where Ele is a finite set of element types; root is a

distinguished type in Ele called “root”, and P is a function defining element types such that for each

A in Ele, P (A) = α, where α is a regular expression, defined as follows:

α := str | Ele | ε | α + α | α, α | α∗

where str is a special type denoting PCDATA, ε is the empty word, and “+”, “,”, and “∗” denote

disjunction (or choice container), concatenation (or sequence container), and the Kleene star, respec-

12

tively. We call A → P (A) as the DTD production rule of A. For all element types B occurring in

P (A), we refer to B as a child type of A and to A as a parent type of B.

In the spirit of [45], our DTD definition allows mixed containers (e.g., choice container may include

sequence subcontainer, etc) and do not require any normal form as in [23], where it was claimed

that any DTD may be normalized. However, no algorithm on normalization/unnormalization were

provided 2.

Example 5 According to Def. 1, the formal representation of the database from Example 1 is the

following. The DTD D is defined as (Ele, P, db), where

db = applications

Ele = {applications, application, student-data, department, degree,

waiver, name, recomm-letter, evaluator, title, institution, id,

letter, rating, English, MS, PhD, free-text, PDF, TXT,

unreliable, reason, favorable, unfavorable};

and the function P is the following (we omit the definition of elements whose type is str):

P(applications) = (application*)

P(application) = (student-data, recomm-letter*, unreliable*)

P(student-data) = (department, degree, waver, name, id)

P(recomm-letter) = (evaluator, letter)

P(evaluator) = (name, title, institution)

P(letter) = (favorable+unfavorable)

P(favorable) = (rating, free-text)

P(unfavorable) = (rating, free-text)

P(rating) = (English, MS+PhD)

P(free-text) = (PDF+TXT)

P(unreliable) = (recomm-letter, reason)

An XML document is typically modelled as a node-labelled tree.

2 Although we may assume that normalization can be carried via additional intermediate nodes (e.g., rating

has two children: English and a normalization node normalizing node with two children PhD and MS), the

role of these nodes during policy enforcement, DTD view querying and query rewriting presented in [23] is not

clear.

13

Definition 2 [23] An XML tree T conforms to a DTD D iff

1. the root of T is the unique node labelled with root;

2. each node in T is labelled either with an Ele type A, called an A element , or with a value of type

str, called a text node;

3. each A element has a list of children of elements and text nodes such that their labels form a word

in the regular language defined by P (A);

4. each text node carries a str value and is a leaf of the tree.

We call T an instance of D if T conforms to D.

Next, we consider a class of XPath queries that corresponds to the CoreXPath of Gottlob et al. [27]

augmented with the union operator and atomic tests and which is denoted by Benedict et al. [5] as X .

The XPath axes we consider as primitive are child, parent, ancestor-or-self, descendant-or-self,

self. Gottlob et al. [27] show how the semantics of such axes can be computed in polynomial time.

In the sequel we denote by θ one of the primitive axes and by θ−1 its inverse. Notice that each prim-

itive axis has its inverse within the same set of primitives. For instance, descendant-or-self−1 =

ancestor-or-self.

Definition 3 An XPath expression in X is defined by the following grammar:

〈xpath〉 ::= ‘/‘? 〈path〉 | 〈path〉 (‘ ∪ ‘ 〈path〉) ∗

〈path〉 ::= 〈step〉 (‘/‘ 〈step〉) ∗

〈step〉 ::= 〈test〉 | 〈test〉 (‘[‘ 〈qual〉 ‘]‘) ∗

〈test〉 ::= θ‘ :: ‘A | θ‘ :: ∗‘

〈qual〉 ::= 〈path〉 op c | 〈qual〉 and 〈qual〉 |

〈qual〉 or 〈qual〉 | not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘

where θ stands for an axis, c is a str constant, A is a label, op stands for one of =, <, >, ≤, ≥. The

result of the qual filtering is called qualifier and is denoted by q. We denote by XNoTest the fragment

built without the 〈path〉 op c test.

For the sake of readability, we ignore the difference between xpath and path; we denote both with

p. We also abbreviate self by ε, child :: A/p with A/p, descendant-or-self :: A/p by //A/p, and

p = p1/p2 with p2 = //p′2 is written p as p1//p′2. The parent axis is also abbreviated as ../.

14

The semantics of XPath is obtained by adapting to our fragment the S→, S←, E operators proposed

by Gottlob et al. [27] and is identical to the proposal of Benedickt et al. [5]. Intuitively S→ [|p|] (N)

gives all nodes that are reachable from a node in N using the path p. The S← [|p|] functions gives all

nodes from which a path p starts to arrive at the queried node. The E [|q|] function evaluates qualifiers

and returns all nodes that satisfy q.

For the sake of readability we overload the θ-symbol to stand for both the semantics and the syntax

of axes. So, given a set of nodes N of a document T we have θ(N) = {m | n θ m for n ∈ N}. In other

words, θ(N) returns the nodes that are reachable according to the axis from a node in N . By T (A)

we denote the set of nodes that have element type A. By T (∗) we denote all nodes of a document. By

O [|c|] (N) we denote the function that returns all nodes of a set T (N) whose str value is op c.

The semantics of the other operators are shown in Fig. 6.

4 Document Access Control

Definition 4 Let (T, ann) be an authorization specification, where T is an XML tree, ann is an anno-

tation of T with Y, N, and Q[q] expressed in XPath fragment from Def. 3. The authorized version TA

of T according the authorization specification is obtained from T as follows:

1. Evaluate qualifiers top down starting from the root and replace annotations by Y or N depending

on the result;

2. For each unlabelled node, label it with

– the annotation of its nearest labelled ancestor; or

– the annotation of its nearest labelled descendants applying value conflict resolution policy; or

– the local propagation value;

3. Delete all nodes labelled with N from the result, making all children of a deleted node v into children

of v’s parent.

The annotation of the document, before deleting nodes in the last step, is called the full annotation of

T .

We present different policies to extend a partial annotation of the XML document to a full one.

There are a number of alternatives. Although top-down propagation is considered to be the most

15

S→ [|θ :: λ|] (N) = θ(N) ∩ T (λ)

S→ [|/θ :: λ|] (N) = θ(root) ∩ T (λ)

S→ [|p/θ :: λ|] (N) = θ(S→ [|p|] (N)) ∩ T (λ)

S→ [|/p|] (N) = S→ [|p|] ({root})

S→ [|p[q]|] (N) = S→ [|p|] (N) ∩ E [|q|]

S→ [|p1 ∪ p2|] (N) = S→ [|p1|] (N) ∪ S→ [|p2|] (N)

S→ [|(p1 ∪ p2)/p|] (N) = S→ [|p1/p|] (N) ∪ S→ [|p2/p|] (N)

S← [|θ :: λ|] = θ
−1

(T (λ))

S← [|θ :: λ[q]|] = θ
−1

(T (λ) ∩ E [|q|])

S← [|θ :: λ/p|] = θ
−1

(S← [|p|] ∩ T (λ))

S← [|θ :: λ[q]/p|] = θ
−1

(S← [|p|] ∩ T (λ) ∩ E [|q|])

S← [|/p|] =




{n ∈ T} if root ∈ S← [|/p|]

∅ otherwise

S← [|p|] = {x | S→ [|p|] ({x}) 6= ∅}

S← [|p1 ∪ p2|] = S← [|p1|] ∪ S← [|p2|]

S← [|(p1 ∪ p2)/p|] = S← [|p1/p|] ∪ S← [|p2/p|]

E [|A|] = T (A)

E [|q1 and q2|] = E [|q1|] ∩ E [|q2|]

E [|q1 or q2|] = E [|q1|] ∪ E [|q2|]

E [|not q|] = {n ∈ T} \ E [|q|]

E [|p|] = S← [|p|]

O [|c|] (N) = {n ∈ T (N)} if str of n is op c

E [|p op c|] = O [|c|] (E [|p|])

Fig. 6 The semantics of operators

natural in many applications [7], [17], [20], [37], there are other proposals that consider also bottom-up

propagation of security labels [33], [32].

Our security model is based on a specific policy, used for determining a complete authorization

specification of a document based on a partial specification. This is the most-specific-takes-precedence

16

(MSTP) policy [21]. Different applications may have different requirements, and we now look at alter-

native approaches.

We can classify security policies using two orthogonal classifications that focus on completeness

and consistency [21]. The first classification is based on how one handles unassigned values, while the

second is based on the handling of conflicting assignments and how one restores consistency.

We are interested only in policies that are complete and consistent:

Definition 5 A policy is complete and consistent if every partially annotated tree can be extended

to a fully annotated tree.

To capture the variety of policy propagation and conflict resolution options we have identified the

following framework:

Local Propagation Policy (LP): “open”, “closed”, or “none”;

Hierarchy Propagation Policy (HP): “topDown” (td), “bottomUp” (bu), or “none”;

Structural Conflict Resolution (SC): “localFirst” (lf), “hierarchyFirst” (hf), or “none”;

Value Conflict Resolution (VC): “denialTakesPrecedence” (dtp), “permissionTakesPrecedence” (ptp),

or “none”.

The LP option is similar to traditional policies for access control: in the case of “open”, if a node

is not labelled N then it is labelled by Y; in the case of “closed”, a node not labelled Y is labelled by

N; finally, the “none” option says that a node is not labelled.

The HP option specifies node annotation inheritance. In the case of “td”, an unlabelled node with

a labelled parent inherits the label of its parent. In the case of “bu” an unlabelled node inherits the

label from labelled children. The “none” option says that no hierarchy propagation is applied. Note

that the “bu” case can result in conflicts, and they should be addressed by the VC Resolution Policy.

The SC option specifies whether the local or the hierarchy rule takes precedence (“lf” or “hf”

respectively); while “none” means that the choice depends on the values and on the VC option. The

latter specifies how to resolve conflicts for unlabelled nodes that are assigned different labels by the

preceding rules: N always has precedence over Y (“dtp”); Y always has precedence over N (“ptp”), and

no choice (“none”).

17

Table 1 Policy alternatives

HP LP SC VC additional condition

1 td 6=none hf ∗ none

2 td none ∗ ∗ root is annotated

3 bu 6=none hf 6=none none

4 bu none ∗ 6=none all leaves are annotated

5 ∗ 6=none lf ∗ none

6 none 6=none ∗ ∗ none

7 6=none 6=none none 6=none none

8 none none ∗ ∗ none

9 6=none 6=none none none none

10 bu ∗ hf none none

11 bu none 6=hf none none

We list here several possible policies. These are variations of classical security policies that are used

in other settings ([21]):

– either permission-takes-precedence or denial-takes-precedence together with either the closed or

open policy;

– most-specific-takes-precedence with top-down policy and root node labelled either Y or N by default.

– most-specific-takes-precedence with top-down policy and either the closed or open policy.

In the sequel, we show some sufficient conditions for complete and consistent policy combinations.

We represent all the possible policy options in Table 1, where symbol “∗” means “any”, i.e. any

possible value from a related domain (see column headers of Table 1). Note that Table 1 reflects all

81 possible combination of security options, since symbols ∗ and 6= in columns HP, LP, SC, and VC

means, respectively, three and two possible values for the corresponding policy option.

Definition 6 A policy is called top-down/bottom-up/local policy if it satisfies the conditions in lines 1-

2/3-4/5-6 respectively of Table 1.

Proposition 1 The top-down, bottom-up and local policies are complete and consistent.

18

Algorithm Policy Class

Input: Policy combinations: {HP, LP, SC, VC}
Output: Policy class

1: if (HP 6= none ∧ LP 6= none ∧ SC = hierarchyF irst) ∨ (HP 6= none ∧ LP = none) then

2: if HP = topDown then

3: return topDown policy;

4: else

5: if V C 6= none then

6: return bottomUp policy;

7: else

8: return unresolvable policy;

9: else if (HP 6= none ∧ LP 6= none ∧ SC = localF irst) ∨ (HP = none ∧ LP 6= none) then

10: return local policy;

11: else if HP 6= none ∧ LP 6= none ∧ SC = none then

12: if V C 6= none then

13: return multilabel policy

14: else

15: return unresolvable policy

16: else if HP = none ∧ LP = none then

17: return unresolvable policy;

Fig. 7 Algorithm Policy Class

In some cases both HP and LP policies are defined, but SC policy is “none”. Hence, we apply both

HP and LP thus obtaining for each node more than one security annotation. The result is defined by

means of VC policy which should defined, i.e. the conditions in line 7 of Table 1 should be satisfied.

Definition 7 A policy is called a multilabel policy if it satisfies the conditions in line 7 of Table 1.

Proposition 2 The multilabel policy is complete and consistent.

Proof The proof follows from the completeness and consistency of the hierarchical and local policies

along with value conflict resolution option defined.

All the other policies are classified as unresolvable. Indeed, policies following the condition 8 are

incomplete because neither HP nor LP is applied which results in the fact that unlabelled nodes are

not assigned any label; policies in lines 9 and 10 are inconsistent because either the “winning” label

19

in multilabel case is not provided (line 9) or value conflict which arises in the case of “bu” policy

propagation is not resolved (line 10); policy in line 11 may be either inconsistent (some XML leaves

are not defined; therefore, “bu” propagation is inconsistent) or incomplete (all leaves are defined but

have different labels; therefore, value conflict arises and cannot be resolved).

So far, we have defined five classes of policies: local policy, top-down policy, bottom-up policy, mul-

tilabel policy, and unresolvable policy class. These classes were identified based on particular combi-

nations of policy options for value propagation (hierarchy or local) and conflict resolution (structural

and value).

The algorithm of policy class identification is presented in Fig. 7).

In the next sections, we will develop a method that enforces access control on DTD schema emu-

lating XML-based propagation.

5 Schema Access Control for Top-Down Policies

For each user group, an access specification is defined to be a partial mapping ann such that for each

production A → α in D and each element type B in α, ann(A,B) is either Y or N or an XPath qualifier

[q], denoting that the B child of an A element is accessible, inaccessible, or conditionally accessible

depending on [q], respectively.

Example 6 In Fig. 8, we show an example of security specification described in Example 2: paths to

unconditionally allowed (forbidden) element types from their corresponding parents are marked with

Y(N), and conditionally accessible element types are marked by qualifiers q1, q2 and q3 (Fig. 8(b)). In

particular, elements unreliable and letter are forbidden to everybody, while information on depart-

ment is unconditionally allowed in spite of conditional accessibility (q1) of its ancestor application

that is permitted if the students’s login is the same as the id field of the underlying student node. Next,

q2 permits access to recomm-letter element if it is a descendant of a permitted application, q3 reveals

subtrees rooted at rating and free-text if the latter are descendants of a permitted application

having waiver=“true”. In all three qualifiers, $login is a dynamic variable that is assigned at run

time and equals the student’s login name.

20

application

student-data

letter

name

department degree waiver evaluator

rating free-texttitle institution

MS PhD
English

applications

*

recomm-letter

*

reason

unreliable

PDF TXT

*

favorable unfavorable

id

concatenation (α,α)
disjunction (α+α)
nesting (α,(β+β))

Q[q1]

N

Q[q2]

N

Y

Q[q3]

Q[q3]Q[q3]

Q[q3]

(a) Security annotation defined at DTD level

q1
.
= student-data/id = $login

q2
.
= ../../student-data/id = $login;

q3
.
= ancestor::application/student-data[id = $login]/waiver =“false”;

(b) Meaning of security annotation qualifiers

Fig. 8 Security annotation for the applicant

Definition 8 An authorization specification S is a pair (D, ann), where D is a DTD, ann is a partial

mapping such that, for each top-down edge (A, B), ann(A,B), if defined, is an annotation of the form:

ann(A,B) ::= Q[q] | Y | N

where [q] is a qualifier in our fragment X of XPath. A special case is the root of D, for which we define

ann(root) = Y by default.

Every ann(A,B) defines a source element type A denoted as s, a destination element type B denoted

as d, and a generator of a security label for B (or simply generator) (A,B) denoted g. Thus, we can

write ann(A,B) as ann(s, d) or ann(g).

Example 7 In Fig. 8, ann(application, unreliable)=N defines a source application, destination unreliable

and a generator (application, unreliable) of a security label N for unreliable.

Intuitively, labelling an edge (A,B) with an unconditional annotation is a security constraint ex-

pressed at the schema level: Y or N indicates that, in the case of top-down propagation, the correspond-

ing B child of an A element in an XML document is always accessible (Y) or always inaccessible (N),

21

application

student-data

name

department degree waiver evaluator

ratingtitle institution

English

applications

recomm-letterid

XP2 XP3

XP4

*

*

XP1

free-text

MS PhD
PDF TXT

XP5

(a) Security DTD view

XP1 = application[q1]

XP2 = letter/(favorable ∪ unfavorable)/rating[q3]

XP3 = letter/(favorable ∪ unfavorable)/free-text[q3]

XP4 = ./(ε ∪ unreliable)/recomm-letter[q2]

XP5 = application[¬q1]/student-data/department

(b) Meaning of XPath expressions

Fig. 9 Security view for the applicant

no matter what the actual values of these elements in the document are. If ann(A,B) is not explicitly

defined, then B inherits the accessibility of A or obtains a label from the default policy. On the other

hand, if ann(A,B) is explicitly defined it overrides the accessibility of B obtained via propagation.

6 Security Views for Top-Down Policies

From a specification as presented in the previous subsection, we would like to infer a DTD view Dv

which represents a schema of available data for the user. We use a set of XPath queries showing how

to construct Dv from the initial DTD D. We call this set of XPath expressions σ- function.

At this point, it would be interesting to continue the comparison of our vision of view with those

of proposals in [7], [18], and [23]. Namely, the first one does not consider any schema information and

reveals the intial DTD to the user as it is. Obviously, this strategy will leak too much sensitive informa-

tion and hence is not reliable. Damiani’s loosened version of the DTD is the original DTD with optional

22

application

student-data

name

department degree waiver evaluator

ratingtitle institution

English

applications

recomm-letter
id

* XP1

free-text

MS PhD
PDF TXT

letter

dummy1 dummy1

XP’2

Fig. 10 Authorized DTD view for student Vladimir Romanov

cardinality “?” on every edge that was not of cardinality zero-or-many “∗”. It slightly alleviates the

problem of the previous approach but not enough. Finally, the DTD view constructed according to the

algorithm in [23] is shown in Fig. 10. Namely, edge (applications, department) is missing, two dummy

elements are introduced instead of favorable and unfavorable. Finally, recomm-letter is added to

the view with XP ′2 = (unreliable∪ ε)/recomm− letter. However, if ann(application, recomm− letter)

were N then recomm-letter would have been missing from the DTD view at all although q4 allowed

an access to it. This is because, in DFS traversal of the DTD graph in [23], the negative authoriza-

tion would have arrived to recomm-letter before q4 from unreliable. It means that recomm-letter

would have been immediately substituted with its children.

In the following, the view is provided to the users so that they can formulate their queries over

the view. This means that the users can only access data via Dv. At the same time, the function σ is

withheld from the users, and is used by the system to extract accessible data from the actual XML

document.

Example 8 Fig. 6 shows the view DTD Dv which represents accessible data according to Exam-

ple 2, and σ-function expressed by means of XPath expressions XP1-XP5. In particular, XP1 says

that only nodes of type application with student’s id equal to student’s login are included in the

view. XP2 and XP3 skip all forbidden elements on the path from recomm-letter to, respectively,

23

rating and free-text that are the children of accessible application (condition q3), XP4 extracts

all recomm-letter, including unreliable ones. Finally, XP5 collects all departments, even those that

are located in forbidden parts of the tree.

Definition 9 Let D be a DTD. A security view for D is a pair (Dv, σ) where Dv is a DTD schema

of accessible information and σ is a function from pairs of adjacent element types such that for each

element type A in Dv and its child element type B, σ(A,B) is an expression in X defining accessibility

of B from A.

Drawing an analogy between relational databases and XML, we elaborate a method of XML view

materialization using the σ-function so that the XML view conforms to the DTD view Dv.

Example 9 It is easy to see that the views for Dmitry Konovalov and Vladimir Romanov, presented

in Example 2 conform to the DTD view of Example 8.

The derivation of a materialized XML view is explained in the next definition:

Definition 10 Let S = (Dv, σ) be a security view. The semantics of S is a mapping from documents

T conforming to D to documents TS such that:

1. TS conforms to Dv

2. The nodes of TS are a subset of the nodes of T , and their element type is unchanged.

3. For any node n of T which is in TS , let A be the element type of n, and let B1, . . . , Bm be the list

of element types that occur in P (A). Then the children of n in TS are

⋃

1≤i≤m

S→ [|σ(A,Bi)|] ({n}) .

and the order of nodes of type Bi for each i = 1, . . . , m is the same as in T .

TS is called the materialized version of T w.r.t. the view S.

A classical question for relational database research, namely whether a view produced by the

Materialize algorithm is actually populated by some instances is true. Since the root of the document

is always labelled Y, the materialized view always has at least one node. We can show that for XPath

fragment, the algorithm is efficient. Let f(n, d) be the complexity of evaluating an XPath expression

24

of size n on a document of size d. Gottlob et al. [27] have shown that for CoreXPath (i.e., X without

union and test) it is f(|σ| , |T |) = O(|σ| × |T |). We extend their result to X without test and with a

factor of T to the full X fragment. Let |σ| be the size of the largest XPath expression in the range of

σ. Then:

Lemma 1 Every XPath query p ∈ XNoTest over a document T can be evaluated in time O(|p| × |T |).

Proof The proof follows the line of Gottlob, Koch and Pichler [27] for the CoreXPath fragment (that

is without union of paths): we use the functions S→, S←, and E to compute a query tree which is then

evaluated bottom-up to yield the desired complexity result.

For the full fragment considered here, the naive implementation of union would lead to an exponen-

tial blow up because the processing of p1 is duplicated in S→ [|p1/(p2 ∪ p3)|] (N) = S→ [|p1/p2|] (N) ∪

S→ [|p1/p3|] (N) .

To avoid this blow-up we use a query DAG instead of a query tree. Each path of the form

S→ [|p1/(p2 ∪ p3)|] (N) is mapped into a (single source) rooted DAG in which the root is labelled

∪ with two children, one corresponding to the root of S→ [|p2|] (X) and one corresponding to the root

of S→ [|p3|] (X). The shared X leaf node is the root of the S→ [|p1|] (N) node.

Formally, this is equivalent to say that S→ [|p1/(p2 ∪ p3)|] (N) is evaluated using the symbolic

rightmost lazy evaluation. In other words,

let X1 = S→ [|p1|] (N);

let X21 = S→ [|p2|] (X1);

let X31 = S→ [|p3|] (X1);

then S→ [|p1/(p2 ∪ p3)|] (N) = (X21 ∪X31).

For the evaluation of the S← [|(p1 ∪ p2)/p|] function, a similar strategy can be applied:

let X1 = {x | S→ [|p1|] (x) 6= ∅};

let X2 = {x | S→ [|p2|] (x) 6= ∅};

let X = S→ [|p1|] (X1) ∪ S→ [|p2|] (X2);

then S← [|(p1 ∪ p2)/p|] = S→ [|p|] (X).

25

With this construction each XPath expression can be transformed in time O(|p|) into a query DAG

of size O(|p|) in which each operation is a set operation that can be computed in time O(|T |) thus

yielding the desired upper bound.

The addition of the test operation increases slightly the complexity because the computation of the

O [|c|] (N) operator requires the comparison of the str value c with the str value at every node of a set

T (N) which may include all nodes of the tree. This yields a quadratic increase in data complexity. Once

the O [|c|] (N) has been computed at the appropriate leaves of the query DAG, all other operations

can be done in time linear in the size of the document. Hence, the following takes place:

Lemma 2 Every XPath query p ∈ X over a document T can be evaluated in time O(|p| × |T |2).

Corollary 1 Every valid DTD view whose annotations are in X , respectively in XNoTest , can be ma-

terialized in O(|σ| × |T |3), resp. O(|σ| × |T |2), by Algorithm Materialize.

Proof The first step of the algorithm takes up only O(|σ| × |T |3), resp. O(|σ| × |T |2), by using the

construction in Lemma 1, resp. Lemma 2, for the evaluation of XPath queries. For the subsequent

processing the number of iteration is bounded by the number of nodes in T and each step can be

performed in O(|σ| × |T |) steps.

From Lemmas 1, 2 and Corollary 1, we immediately prove the next theorem:

Theorem 1 Algorithm Materialize computes a materialized view in time O(f(|σ|, |T |)× |T |).

Definition 11 A valid security view is one for which the semantics are always well-defined, i.e., if for

every document T , its materialized version conforms to the security view DTD.

Not all views are valid: wrong typing, violated cardinality constraints, and other problems could be

all causes of a view to be invalid. For example, in the case of loosened DTD, authorized XML view is

not valid since the loosened DTD may contain (optional) element types that in XML document should

be deleted and their children should be attached to permitted parents. However, the semantics of an

optional element assumes that the absence of the element means the absence of the subtree rooted

at that element. Consequently, the authorized XML view does not conform to the loosened DTD. To

resolve this problem, Damiani et al. [17] proposed to delete only those forbidden nodes that do not

26

have permitted descendants. This means that, sometimes, the user is allowed to see the information

that is not permitted. The views that we construct from an annotated DTD are valid (see Sec. 7) and

reveal all and only permitted information.

Security specification and views are related as follows.

Definition 12 Let (D, ann) be an authorization specification, and let S = (Dv, σ) be a security view

for D. S is data equivalent to (D, ann) iff for every document T conforming to D, the materialized

version TS is isomorphic to the authorized version TA.

Two weaker characterizations are based on the notion of data secrecy and data availability 3.

Definition 13 Let (D, ann) be an authorization specification, and S = (Dv, σ) a security view for D.

1. S guarantees data secrecy iff for every T conforming to D, and for every node n of T , if n occurs

in TS then n must also occur in the authorized tree TA.

2. S guarantees data availability iff for every T conforming to D, and every node n of T , if n occurs

in the authorized tree TA then n occurs in the materialized version TS .

Intuitively a secrecy-preserving view insures that no forbidden node is leaked, whereas an availability-

preserving view is a guarantee that no permitted node is withheld from legitimate users. Obviously,

data equivalence implies secrecy and availability, but the converse does not hold, since a data equivalent

view also “preserves the structure” of the original document.

Given a security view S = (Dv, σ) and document T conforming to a DTD D, we give an algorithm

constructing TS in Fig. 11.

Proposition 3 If S = (Dv, σ) is a valid view for D, then the result of Algorithm Materialize is a

document TS that is the materialized version of T .

Proof To proof the proposition, we must show that all three conditions of Def. 10.

In lines 7-12 algorithm evaluates σ(A,Bi), i = 1, . . . ,m at any non-visited node n of type A in

TSṪhe result of this evaluation is a set of nodes of types B1, . . . , Bm that become children of node n.

3 Sometimes these notions are also termed “consistency” and “completeness” in the literature [21] but that

terminology can be misleading in our context.

27

Algorithm Materialize

Input: a document T conforming to DTD D, a DTD View (Dv, σ)

Output: a materialized view TS of T or ⊥ (there is no such view)

1: Set the root of TS to be the root of T ;

2: for all nodes n of type A in T do

3: let A → P (A) the corresponding rule in Dv

4: for all B occurring in P (A) do

5: precompute S→ [|σ(A, B)|] ({n})
6: assign to TS the root of T and mark it as unprocessed

7: while there are unprocessed nodes in TS do

8: select an unprocessed node n of type A with rule A → P (A) in Dv

9: mark the nodes in
⋃

B occurs in P (A)

S→ [|σ(A, B)|] ({n})

in T as unprocessed children of n in TS

10: if a child of n already occurs as a processed node in TS then

11: return ⊥ (invalid view)

12: mark n as processed

Fig. 11 Algorithm Materialize

The order of children of type Bi is the same as in T for every i = 1, . . . , m. This is exactly what the

third condition of Def. 10 says.

The second condition holds obviously, because the algorithm constructs TS from T . Consequently,

the nodes of TS are a subset of T . In addition, the algorithm neither changes the names of element

types nor adds new ones.

Finally, since we assume that Dv is valid, and any node n of type A in TS has children of types

P (A), it is clear that TS conforms to Dv. Thus, the first condition holds.

7 View Construction for Top-Down Policies

We now show how to construct a security view, given a DTD document and an authorization specifica-

tion. The derivation of Dv has two parts: (i) computing DF such that Y/N labels are assigned to every

element type, and (ii) restructuring DF so that N-labelled elements are deleted and their permitted

28

children are attached to their nearest permitted ancestors. In this manner, the view DTD Dv shows

all, and only, the accessible data. The first part may use various propagation techniques (top-down,

bottom-up, among siblings, etc.) and conflict resolution rules (denial or permission takes precedence,

qualifier over Y takes precedence and vice versa, explicitly defined label takes precedence over propa-

gated one, priorities among access control rules applicable to the element, etc.) or may impose some

default value on unlabelled elements.

Since we put annotations on DTD edges (generators), the idea behind our algorithm is to “push”

security labels from generators to destination types.

Definition 14 If ann(s, d), is defined and equals a, we say that s transmits (or propagates) annotation

a to d via g.

Having obtained an annotation, a destination type, in its turn, becomes a source type and may

transmit its annotation to its children (new destination types) via corresponding generators that were

initially unlabelled (thus preserving most specific takes precedence condition).

Example 10 In Fig. 8, there is an annotation ann(recomm−letter, letter)=N. It means that recomm-letter

is a source transmitting N to a destination letter. The type letter obtains annotation N , becomes

a source for favorable and unfavorable, and transmits N to them.

Since an annotation can be presented as a qualifier, the algorithm, first of all, eliminates qualifiers.

For this purpose, it expands each of them into a union of two element types: one is the original element

type, which is annotated Y, and the other is a new type, which is annotated N. Since the tag of an

element uniquely determines the type, it follows that new type names cannot match any nodes in a

document that conforms to the original DTD. This is not a serious problem, as all these new type

names will be deleted in the final security view.

Definition 15 The semantics of ann(A,B) = Q[q] is to split of node type B in the DTD into two

nodes having the following meanings: visible node instance of type B is a child of a node instance of

type A if B[q] holds, and invisible otherwise.

29

application

student-data

letter

name

department degree waiver evaluator

rating free-texttitle institution

MS PhD
English

applications

*

recomm-letter

*

reason

unreliable

PDF TXT

*

favorable unfavorable

id

σ=application[student-data/@id=$login]

N

Q[q2]

N

Y

Q[q3]

Q[q3]Q[q3]

Q[q3]

applicationN

σ=application[¬student-data/@id=$login]

N

Fig. 12 Removing qualifier ann(applications, application) = Q[student-data/id = $login]

Basically, Def. 15 is an emulation of security policy enforcement at XML instance: if B[q] holds at

the current concrete node of type B, this node is visible in authorized view; otherwise, it is deleted

from the final view. Obviously, the expression B[q] cannot be evaluated at the DTD level.

We must emphasize that the semantics of qualifiers in [23] is different from ours. In particular,

qualifiers in [23] have precedence over Y labels. This means that it is impossible to express “global”

accessibility of a DTD element (like the accessibility of department fields in the current motivating

example). In other words, every Y label guarantees accessibility if positive result of evaluating existing

qualifiers for ancestors takes place. The advantage of such semantics is a succinctness of policy repre-

sentation, it is enough to assign Y to (unreliable, recomm-letter) instead of Q[q2] as in motivating

example. However, we allow true overriding of qualifiers while authors of [23] don’t. Another issue is

related to the emulation of security policy in the XML document: the method of [23] simply prunes

XML at the node where qualifier does not hold. This is somewhat similar to denial downward consis-

tency of [24], [41]. On the other hand, unconditional Y may still override unconditional N in [23]. We

believe that our interpretation of qualifiers and the notion of visible/invisible nodes we emulate is a

step beyond of this confusion.

Example 11 In Fig. 12, we demonstrate what happens to the edge (applications, application)

with an annotation Q[student-data/id = $login]. Namely, we split application into a visible

30

applicationY , which is a normal application, and invisible applicationN , which should be deleted

afterwards. Both newly created elements have the same set of parents and the same set of children. For

any child, the newly created element transmits the same annotation as the old one. For each parent,

we construct a σ-function describing the situation when qualifier holds for the visible node, and the

situation when qualifier does not hold for the invisible. The latter is equivalent to the situation when

a negation of the initial qualifier holds.

To avoid an overloading of Fig. 12, we don’t show the elimination of qualifiers Q[q2] and Q[q3].

Regarding the last one, elements rating and free-text should be split twice because of the sources

favorable and unfavorable transmitting qualifier. However, there will be always two kinds of newly

created nodes, visible and invisible. Hence, we can either reuse elements created previously, or merge

multiple elements of the same visibility into a unique element.

After removing qualifiers, the next step expands the annotation to a “full annotation” by prop-

agating the remaining Y and N labels. The idea is simple: if all incoming edges of some destination

element have the same annotation Y or N this element becomes visible or invisible respectively and

transmits this annotation to its children. It is easy to see that every XML document has a unique full

annotation [23]. At the schema level, however, this is not the case, as there may be several “paths”

in the DTD that reach the same element type, each of which results in a different annotation. We

use a similar technique when we handle qualifiers, i.e., we introduce new element types, and label the

original one with Y (emulation of a visible node), which is connected with parents transmitting to it

Y, and the “copy” with N (emulation of an invisible node), which is connected to parents transmitting

to it N. The function σ between parents and newly created nodes are simply the name of the split

element. This is because invisible copy will be deleted, while the visible one will be considered as the

original one. The newly created nodes transmit their visibility to their children.

Example 12 Elements applicationY and applicationN transmit, respectively, Y and N to student-data.

The latter should be split to visible and invisible copies, i.e. student dataY and student dataN, children

of annotationY and annotationN respectively. The σ-function in both cases is equal to student−data.

The newly created elements are connected to all children of student-data and transmit to them cor-

31

Algorithm Annotate View

Input: A authorization specification (D, ann)

Output: Fully annotated DTD D

1: Initialize Dv := D where ann is defined on Dv as on D;

2: for all production rules A → P (A) in Dv and all B ∈ P (A) do

3: initialize σ(A, B) := B

4: for all A → P (A) and all B ∈ P (A) with ann(A, B) = Q[q] do

5: add to Dv a new element type B′ and a production rule B′ → P (B)

6: replace B by B + B′ in P (A)

7: set σ(A, B) := B[q]; σ(A, B′) := B[¬q];

8: set anndata(B) = Y and anndata(B
′) = N;

9: for all element types C occurring in P (B) do

10: set σ(B′, C) := σ(B, C);

11: set ann(B′, C):=ann(B, C);

12: while anndata(B) of some element types B is undefined do

13: if all generators A of B have defined ann(A, B) then

14: if all anndata(A) = Y then

15: set anndata(B) := Y;

16: else if all anndata(A) = N then

17: set anndata(B) := N;

18: else

19: add to Dv a new element type B′ and a production rule B′ → P (B)

20: set σ(A, B′) := B;

21: set anndata(B) = Y, anndata(B
′) = N;

22: for all element types C occurring in P (B) do

23: set σ(B′, C) := σ(B, C);

24: set ann(B′, C):=ann(B, C);

25: for all generators A of B do

26: if ann(A) = N then

27: replace B with B′ in P (A)

Fig. 13 Algorithm Annotate View

responding visibility. However, since ann(student − data, department)=Y, which is more specific, Y

overrides negative visibility transmitted by student− dataN .

32

Algorithm Build View

Input: Fully annotated DTD D

Output: A security view (Dv, σ)

1: for all element types B with ann(B) = N do

2: for all production rules A → P (A) do

3: if B occurs in P (A) then

4: for all C that occurs in P (B) do

5: set σ(A, C) := σ(A, B)/σ(B, C) ∪ σ(A, C)

6: replace B by P (B) in P (A) if B → P (B) exists and by ε otherwise

7: each element BY rename to B;

Fig. 14 Algorithm Build View

An overall algorithm for top-down policy propagation is shown in Fig. 13. In particular, lines 4–11

of Annotate View algorithm perform splitting nodes when removing qualifier (Def. 15). Steps 12–27

perform a top-down propagation with splitting (lines 18–27). The result of Annotate View execution

is a fully annotated DTD.

Definition 16 DTD is called fully annotated if for every DTD node A, there is a defined function

anndata(A) ::= Y | N. The function anndata is called full annotation of the DTD document.

Having obtained a fully annotated DTD, we delete all the element types that are labelled N,

modifying the regular expressions and the σ functions accordingly. This is shown in the Build View

algorithm in Fig. 14.

Example 13 In Example 12, department is reachable via two paths:

p1 = applications/applicationY [student-data/id = $login]/student− dataY /department

p2 = applications/applicationN [¬(student-data/id = $login)]/student− dataN/department

In the path p2, there are two elements that should be deleted: applicationN and student− dataN .

Since all permitted children should be connected to all permitted parents, an additional edge between

applications and department is created and

σ(applications, department) = application[¬(student-data/id = $login)]/student-data/department

that is exactly XP5 from Example 8.

33

8 Schema-Level Access for Bottom-Up Policies

In the previous section, we showed how to construct the view for the top-down policy. In the case of

local policy, we suppose that ann(A,B) is an annotation between parent A and its child B. Therefore,

pushing of security labels is performed in a top-down manner. This approach assures that there will

not be any conflicts at XML tree since every node B will have only one parent A, i.e. only one

generator. Hence, we can consider local policy to be subsumed by top-down policy. Note that we can

push annotation bottom-up from children to a parent. However, in this case, the VC option must be

defined. Consequently, local policy class will be subsumed by bottom-up policy. Finally, the multilabel

policy requires application of both local and hierarchical (top-down or bottom-up) policies. Therefore,

we say that multilabel policy is also subsumed by top-down and bottom-up policies and in this section,

we can restrict the attention to bottom-up policy only.

First, the definition of authorization specification is extended as follows: all generators of the au-

thorization specification are of one type: either top-down or bottom-up edges.

Definition 17 Element types A and B of DTD D are called adjacent if one of the following statements

is true: (i) B ∈ P (A) of a production rule A → P (A), or (ii) A ∈ P (B) of a production rule B → P (B).

In the case (i), a DTD edge (A, B) is a top-down edge; otherwise, it is a bottom-up edge.

We then can generalize the semantics of qualifiers at the DTD level as follows:

Definition 18 The semantics of ann(s, d) = Q[q] is a splitting of node type d into two ones having

the following meaning: visible node instance of type d is visible if child(s, d)[q] holds, and invisible

otherwise, where child(s, d) is a function that for generator (s, d) that returns a child element type

ch = s ∨ d with respect to a DTD structure, i.e., for some element type U 6= ch, U ∈ {s, d}, DTD

should have a production rule U → P (U) such that ch ∈ P (U) 4.

From the top-down view point, the destination d is visible if d[q] (d is a child) holds. On the other

hand, from the bottom-up view point, d is visible if s[q] (s is a child) holds. The last interpretation

of qualifier seems strange but it is required in such a form because σ-function evaluation and view

4 In symmetric way we may introduce function parent(s, d) that returns parent element type w.r.t. DTD

structure for a pair (s, d)

34

materialization is held in a top-down manner. Namely, σ(A,B) = Q means that Q should be evaluated

at B; in the XML view, B children of A are extracted according to Q.

As in the top-down approach we push security annotations along edges, but from children to

parents. In this case, we must take into account, that an analogous operation in the XML tree for any

destination may have multiple sources.

Example 14 Consider the DTD from Example 1. Generators (student-data, name)and (evaluator, name)

differently transmit annotation to name in the sense that a node of type name may have a parent of

type student−data or evaluator. Hence, these generators cannot influence on anndata(name) simultane-

ously. If we consider a bottom-up case, generators (title, evaluator) and (institution, evaluator)

influence on anndata(evaluator) simultaneously because any node of type evaluator has both children of

types institution and title in any XML instance. However, this is not a case for generators (MS, rating)

and (PhD, rating) influencing on anndata(rating) non-simultaneously as long as a node of type rating

has either a child of type MS or a child of type PhD.

Suppose, we are given an authorization specification (D, ann). We denote the set of all generators

of d as G(d).

Definition 19 We say that a subset of G(d) denoted as G(d) has a simultaneous influence on anndata(d)

if there exists T conforming to D such that every instance of type d has a set of either outgoing or

incoming edges corresponding to the set G(d). We call G(d) a set of simultaneous influence (SSI).

As we have seen above, a node may have several SSIs. This means that different nodes of the same

element type in the same XML document may have different full annotation anndata. Hence, we split

an element w.r.t. a set of sources rather than a single source.

Definition 20 We say that d obtains a preliminary full annotation (PFA) from SSI G(d), denoted

anndata(d)G(d), if for every g ∈ G(d), ann(g) it is the same for every g ∈ G(d), ann(g) 6= ∅, and

ann(g) 6= Q[q].

The notion of PFA is introduced (i) to reflect the possibility of a node obtaining either a positive

or a negative full annotation, and (ii) to take into account the fact that any node may have multiple

35

application

student-data

letter

name

department degree waiver evaluator

rating free-texttitle institution

MS PhD
English

applications

*

recomm-letter

*

reason

unreliableY

PDF TXT

favorable unfavorable

id

Q[q1]

N

N

Y

Q[q3]

Q[q3]Q[q3]

Q[q3]

unreliableNN

σ(unreliableY, recomm-letter)=recomm-letter[q2]
σ(unreliableN, recomm-letter)=recomm-letter[¬q2]

Fig. 15 Removing qualifier ann(recomm− letter, unreliable) = Q[q2]

sources. Obviously, if ann(g) is the same for all g ∈ G(d) then anndata(d)G(d) = ann(g). Otherwise, to

resolve a conflict within an SSI, we use VC resolution option if it is defined 5. Value conflict may arise

only in the case of bottom-up policy class because every XML instance usually contains a node having

more than one child.

In the definition of PFA, we required that ann(g) 6= Q[q]. This is because the first step of the

algorithm should be removing qualifier according to Def. 18.

Let us consider an example of removing qualifiers while propagating security annotations bottom-

up. First of all, as in top-down case, dY and dN transmit, respectively, Y and N to destinations d′

of d if ann(d, d′) = ∅; otherwise, they transmit ann(d, d′) to d′. As Fig. 15 shows, unreliable is split

into unreliableY and unreliableN both transmitting N to application because of the original element

unreliable transmitting N. Otherwise, ann(unreliableN , application) and ann(unreliableY , application)

should have been N and Y respectively.

Next, if policy is bottom-up, d is substituted with dY + dN in production rule of every d’s parent,

because d is split conditionally under all its parents. On the other hand, this substitution is done in

only one production rule s → P (s) if the policy is top-down. This is because only s has a child d

for which d[q] either holds or does not. Regarding the other sources s′ different from a considered s,

5 If VC option is not defined, the view does not exist

36

there is a common rule for top-down and bottom-up propagations: dN should be connected with the

sources transmitting N while dY with all the others. After refining generators transmitting qualifiers

or nothing, we may need to split dY again.

Example 15 In Fig. 15, unreliableY is connected to both its sources, since recomm− letter transmits

Y due to qualifier evaluation, reason transmits nothing. On the other hand, unreliableN is connected

only to recomm− letter that transmits N.

The σ-function between dY and dN and their source transmitting the qualifier should be d[q] and

d[¬q] respectively. For the other sources s′, σ = child(s′, d). The σ-function for (d, d′) is child(d, d′).

Example 16 In Fig. 15, we show in boxes a σ between the newly created nodes and their sources that are

children. Note that now ann(recomm−letter, unreliableY)=Y and ann(recomm−letter, unreliableN)=N

as in top-down case.

The procedure for removing qualifier is depicted in Fig. 16. Cycle FOR starting in line 3 implements

the attachment of dY and dN to parents of d. In lines 8 and 5, the choice dY + dN substitutes d in the

case of top-down and bottom-up policy respectively. Lines 10 and 11 are the beginning of subroutines

to connect dY and dN with source s and other sources p 6= s respectively.

Having removed qualifiers, we can define SSIs. For top-down propagation, SSIs contain only one

generator (parent-child DTD edge), and the number of SSIs is equal to the number of parents in DTD

graph. The situation is more complicated in bottom-up propagation. First of all, every destination

element type d may have several children in the DTD graph transmitting their security labels to d.

Secondly, the number of SSIs and their components depend on the presence of choices (α+α) in P (A).

More precisely, if we present every sequence (α, α) of P (A) as an arithmetic product (α × α), and

every choice (α+α) of P (A) as an arithmetic sum in parenthesis, then the precise number of SSIs and

their configuration is, respectively, the number of components and multipliers in every component in

the resulting arithmetic expression after removal of parenthesis.

Example 17 Arithmetic representation of production rule rating → (English, (MS + PhD)) is

rating = (English × (MS + PhD)) which is equal to English × MS + English × PhD after re-

37

Algorithm Qualifier Removing

Input: Partially annotated DTD with qualifiers, policy class PC

Output: Partially annotated DTD without qualifiers

1: for every generator (s, d) such that ann(s, d) = Q[q] do

2: Create element types dY and dN;

3: for all destinations d′ of d do

4: Connect dY and dN with d′:

σ(parent(d′, dY), child(d′, dY)) = σ(parent(d′, d), child(d′, d));

σ(parent(d′, dN), child(d′, dN)) = σ(parent(d′, d), child(d′, d));

ann(dY, d′) = ann(d, d′) = ann(d, d′), if ann(d, d′) 6= ∅;
ann(dY, d′) = Y; ann(dN, d′) = N, if ann(d, d′) = ∅;

5: if policy is bottom-up then

6: for every parent d′ of d do

7: substitute d with dY + dN in production rule d′ → P (d′);

8: if policy is top-down then

9: Substitute d for dY + dN in production rule s → P (s);

10: Connect dY and dN with s:

σ(parent(s, dY), child(s, dY)) = child(s, d)[q];

σ(parent(s, dN), child(s, dN)) = child(s, d)[¬q];

ann(s, dY) = Y; ann(s, dN) = N;

11: Connect dY (dN respectively) with other sources s′ 6= s transmitting Y|Q[]|nothing (N respectively)

σ(parent(s′, dY), child(s′, dY)) = σ(parent(s′, d), child(s′, d))

(σ(parent(p, dN), child(p, dN)) = σ(parent(p, d), child(p, d)) respectively);

ann(s′, dY) = ann(s′, d); (ann(s′, dN) = ann(s′, d)respectively);

Fig. 16 Algorithm Qualifier Removing

moval of parenthesis. Therefore, in the case of bottom-up propagation, rating has two SSIs: S1 =

{English,MS} and S2 = {English, PhD}.

Next, for every SSI, we calculate a preliminary full annotation using the VC option if necessary

(e.g., in the case of bottom-up policy class). If different SSIs deliver to d different annotations, we

perform the same splitting operation as in the case of qualifier removed.

38

Algorithm Split

Input: DTD element type d having generators with different annotations

1: Create element types dY and dN;

2: for every SSI Gk(d)(k = 1, n) having sources {s1, . . . , smk} and resulting in a preliminary full annotation

Y or N of d do

3: Connect source si of every generator gi ∈ Gk(d), i = 1, mk, respectively, with dY or dN setting:

σ(parent(si, dY), child(si, dY)) = child(si, d) = σ(parent(si, dN), child(si, dN))

ann(si, dY) = ann(si, d)(= Y); ann(si, dN) = ann(si, d)(= N);

4: for every generator g′ = (d, d′) where d is a source do

5: Connect dY and dN with d′ setting:

σ(parent(d′, dY), child(d′, dY)) = child(d′, d) = σ(parent(d′, dN), child(d′, dN))

ann(dY, d′) = ann(d, d′) = ann(dN, d′);

Fig. 17 Algorithm Split

Example 18 Suppose ann(English, rating)=ann(MS, rating)=Y, ann(PhD, rating)=N. Then, follow-

ing the previous example, S1 results in a positive PFA (i.e., Y), while PFA of S2 is conflicting (both Y

and N are transmitted to rating) and depends on VC.

Finally, if all PFAs are the same, then anndata of the destination node is clearly defined. Otherwise,

as we said above, we perform a splitting operation w.r.t. SSIs transmitting different PFAs.

Example 19 If in the previous example VC=denialTakesPrecedence, we have different PFAs: Y from

S1 and N from S2. Consequently, we split rating into a visible and an invisible version. Otherwise, we

assign Y as anndata(rating).

The generic splitting algorithm (valid for top-down and bottom-up polices) is shown in Fig. 17.

We assume that every DTD element type e that is required to be initially annotated (like root

or all leaves for bottom-up propagation) automatically retransmits its annotation to all generators

g = (e, d′) such that ann(g) = ∅.

The generic algorithm Annotate View is shown in Fig 18. It starts with a preprocessing procedure

which is needed only for the local policy. After preprocessing and qualifier removal steps, we use a queue:

if the next considered element type d has a full annotation anndata(d), there is no need to process it;

39

Algorithm Annotate View

Input: Partially annotated DTD D

Output: Fully annotated DTD

1: Preprocessing;

2: Qualifier Removing;

3: Create empty queue, initialize it with all DTD element types;

4: while queue is not empty do

5: d :=Dequeue(queue);

6: if anndata(d) = ∅ then

7: if d belongs to all generators with defined ann then

8: Calculate SSIs
{
G1(d), G2(d), . . . , Gn(d)

}
;

9: for every Gi(d) do

10: Calculate anndata(d)Gi(d) (applying value conflict resolution policy option if not for all g ∈ Gi(d)

ann(g) is the same);

11: if all PFAs of d are the same (Y or N) then

12: Assign any anndata(d)Gi(d) to anndata(d);

13: else

14: Split(d);

15: For every d′ ∈ Pann(d) such that ann(d, d′) = ∅, set ann(d, d′) = anndata(d);

16: else

17: Enqueue(queue, d);

Fig. 18 Algorithm Annotate View

otherwise, the algorithm returns to line 2. If all generators of d are annotated, then we decide anndata(d).

Otherwise, we place d back to queue (step 17).

9 Theoretical Results

Theorem 2 Let (D, ann) be a security specification where D is non-recursive. Algorithms terminate

and produce valid security views.

Proof First, we prove that the algorithms. Indeed, in Annotate View, there are two sources of

iteration: the first is step 2 which terminates because the number of qualifiers is finite, the second one

is the cycle while starting in line 4 that extends the annotation to a “full” one where anndata is defined as

either Y or N for every element type. Suppose that the algorithm never reaches the state when queue is

40

empty (i.e., does not terminate). It may happen if every element of queue is expecting a full annotation 6.

Consider one such an element type e having a source sk+1 such that anndata(sk+1) = ∅ which is also

expecting. Inductively, we suppose that sk+1 has an expecting source sk+2, etc. Therefore, in the DTD

graph, there exists either an infinite path or a cycle sk+n, . . . , sk+2, sk+1, e, sk+n of expecting element

types that is a contradiction. Therefore, this while terminates.

The algorithm Build View always terminates because a fully annotated DTD contains a finite set

of N-labelled nodes. Hence, the first step in Build View always reduces the number of element types

in the DTD by one.

Secondly, we show that Dv is a DTD. Dv would fail to be a DTD only if, for some element type

A ∈ Dv, there exists B ∈ P (A) such that B was deleted in step 6 of Build View. Since B is deleted

by Build View anndata(B) in a fully annotated DTD DF must be equal to N, and therefore B is

replaced by P (B) in step 6 of Build View. Hence, B cannot occur in P (A), a contradiction. As we

are considering only non-recursive DTDs, we must also show that the new DTD is non-recursive. But

this follows immediately, as any cycle Dv can be traced back to a cycle in D.

Finally, we prove that the resulting security view is valid. For this purpose, we must show that TS

conforms to Dv. To do this, we first examine TF which is the fully annotated version of T , and DF

which is the fully annotated DTD. At this point, we would like to show that TF conforms to DF , but

there is a problem, namely that some of the nodes in TF should be typed by element types in DF

because of removing qualifier and splitting. To have them typed appropriately, we extend the notion of

typing so that the new types will also match the corresponding old type from which they are generated.

Namely, we allow each new element type BY or BN to type the same nodes that were typed by B.

With this modified definition of typing, a node in TF that is annotated N (resp. Y) will be typed by

a type in DF that is annotated N (resp. Y). Since all the new nodes are deleted at step 6 of Build

View the new definition of typing reduces to the standard definition, completing the proof.

Now we need a technical lemma that will be used to proove Theorem 3.

6 Without the loss of generality, we may consider the state of queue when all nodes having anndata are deleted

at step 5

41

Lemma 3 Let (D, ann) be a security specification where D is a not-recursive DTD and (Dv, σ) is the

security view that is constructed by Algorithms Annotate View and Build View, for any sequence of

element types B0. . .Bn in the fully annotated D such that (i) Bi+1 is a child type of Bi for i = 0 . . . n−1,

and (ii) each Bi for i = 1 . . . n − 1 is annotated N, there exists an XPath expression p and q1 . . . qn

XPath qualifiers such that the following equation holds for all set of nodes N :

S→ [|σ(B0, Bn)|] (N) = S→ [|p|] (N) ∪ S→ [|B1[q1]/ · · · /Bn[qn]|] (N) .

Proof The proof is by a nested induction on n and the number of iterations of step 5 of algorithm Build

View.

Base case: n = 1, then B1 is a child of B0. There are two cases: (1) ann(B0, B1)=N, and (2)

ann(B0, B1)=Q[q]. In the first case, σ(B0, B1)=B1 because of initialization step of Annotate View

algorithm. In the second case, before step 5 of Build View is executed, algorithm Annotate View

would set σ(B0, B1) = B1[q1] for a suitable qualifier q1. Therefore, up to this point, the theorem holds

by setting p = B, q1 = ∅ in the first case and p = ∅ in the second case. During step 6 of algorithm Build

View it is possible that the elimination of some N-children of B0 would modify σ(B0, B1). Namely, it

may happen if B has a child C which, in its turn has a child B1. In this case, we get

S→ [|σ(B0, B1)|] (N) = S→ [|σ(B0, C)/σ(C,B1) ∪ σ(B0, B1)|] (N) =

S→ [|σ(B0, C)/σ(C, B1)|] (N) ∪ S→ [|σ(B0, B1)|] (N) =

S→ [|σ(B0, C)/σ(C, B1)|] (N) ∪ S→ [|B1[q1]|] (N) =

S→ [|p1|] (N) ∪ S→ [|B1[q1]|] (N)

where q1 may be ∅. If B1 itself is eliminated from P (B0) this would not change the selection function

constructed so far for B1.

For the inductive case, let B0 . . . Bn be the sequence of nodes and let Bi for i ∈ {1 . . . n− 1}

be the last node that is eliminated by step 5 of the algorithm Build View. Since the DTD is not

recursive neither σ(B0, Bi), nor σ(Bi, Bn) can be changed by this step. Without the loss of generality,

let ann(Bi, Bi+1)=Q[q] for some 0 ≤ i < n. We put qi+1 = ∅ if needed. Then, by evaluating the S→

42

operator and by induction hypothesis we get:

S→ [|σ(B0, Bn)|] (N) =

S→ [|σ(B0, Bi)/σ(Bi, Bn) ∪ σ(B0, Bn)|] (N) =

S→ [|σ(B0, Bi)/σ(Bi, Bn)|] (N) ∪ S→ [|σ(B0, Bn)|] (N) =

S→ [|σ(Bi, Bn)|] (S→ [|σ(B0, Bi)|] (N)) ∪ S→ [|p0|] (N) =

S→ [|σ(Bi, Bn)|] (S→ [|p1,i|] (N) ∪ S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) ∪ S→ [|p0|] (N) =

S→ [|σ(Bi, Bn)|] (S→ [|p1,i|] (N))∪

S→ [|σ(Bi, Bn)|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) ∪ S→ [|p0|] (N) =

S→ [|p1|] (N) ∪ S→ [|σ(Bi, Bn)|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) ∪ S→ [|p0|] (N) =

S→ [|p2|] (N) ∪ S→ [|σ(Bi, Bn)|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) =

S→ [|p2|] (N) ∪ S→ [|pi+1,n|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N))∪

S→ [|Bi+1[qi+1]/ · · · /Bn[qn]|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) =

S→ [|p2|] (N) ∪ S→ [|p3|] (N) ∪ S→ [|B1[q1]/ · · · /Bi[qi]/Bi+1[qi+1]/ · · · /Bn[qn]|] (N) =

S→ [|p|] (N) ∪ S→ [|B1[q1]/ · · · /Bn[qn]|] (N)

The case i = n is similar to the above one by combining the reasoning for the base case and the

intermediate case above.

Remark 1 In this lemma, there is no condition on the labelling of either B0 or Bn as this would make

the induction hypothesis needed for the proof not strong enough. Equally we need to quantify over all

sets N or the composition of two intermediate sequences during the induction step would not have an

inductive hypothesis strong enough.

Theorem 3 Let (D, ann) be an authorization specification, where D is non-recursive, and (Dv, σ) is

the security view constructed by algorithms Annotate View and Build View. Let T be a document,

TA the authorized version of T and TS the materialized version of T with respect to (Dv, σ). Then TA

is isomorphic to TS .

Proof The proof is by top-down induction on T . The root of T is clearly in both TA and TS . By

induction, assume that n is of element type A, and is in both TA and TS . We must show that each

child n in TA is also a child of n in TS , and vice versa.

43

=⇒ Let m, of type B, be a child of n in TA. Assume, first, that m is a child of n in the original

document T . Consider the fully annotated DTD (DF , anndata). Since n is in TA, anndata(A) = Y. Since

m is in TA, it follows that anndata(B) = Y as well, and so element type B is in Dv; hence it is in TS .

Note, that in the case of top-down propagation if ann(A,B) = Q[q], then q must hold at m.

We must show that m is in S→ [|σ(A,B)|] ({n}). Let p be a path between n and m in T . At the step

of initialization, the algorithm Annotate View sets p = B. At the step of removing qualifier, p = B

may be replaced p = B[q]. Finally, step 5 of algorithm Build View may add additional disjuncts to

p. In all cases m is clearly in the result.

Now consider the case where m is not a child, but a descendant, of n in T . Let n, n1, . . . , nk, m

(k ≥ 1) be the sequence of nodes in T from n to m, of element types B1, . . . , Bk. (Next, we suppose

that B0 = A,Bk+1 = B.) Since these nodes are not present in TA, each ann(Bi−1, Bi), 1 ≤ i ≤ k

must be either undefined, N or Q[qi], with the qualifier in the latter case evaluated to false at ni.

Furthermore, anndata(B) must be either Y or a qualifier Q[q] that is evaluated to true at m, which

implies that B is in Dv.

To show that m is accessible from n in T via path σ(A,B), observe first that DF contains artificial

element types that were obtained from Bj by splitting whenever. For this part of the proof, we shall

write B′
j and Bj in the case when anndata(Bj) = N and anndata(Bj) = Y respectively. Whenever Bi

inherits qualifier Q[qi] via its sources, the step of qualifier removing of algorithm Annotate View

initially sets σ(B′
i−1, B

′
i) to Bi[¬q]; when Bi has a generator with ann N or undefined, σ(B′

i−1, B
′
i)

is initially set equal to B′
i in initialization step of Annotate View. Finally, step 6 of Build View

deletes elements types B′
1, . . . , B′

k, replacing σ(A,B) by a disjunction of paths, and by Lemma 3 we

get:

S→ [|σ(A,B)|] ({n}) = S→ [|p ∪B1[¬q1]/B2[¬q2]/ · · · /Bk[¬qk]/B|] ({n})

with some of the qi’s absent, when ann(Bi−1, Bi) is N or undefined. It follows that m ∈ S→ [|σ(A,B)|] ({n})

(i.e., m is accessible from n in T via path σ(A,B)), as desired.

⇐= For the converse, let m be a child of n in TS . We must show that m is a child of n in TA.

From the definition of TS , m must be in the result of evaluating σ(A, B) at n. Let n = n0, n1,

. . . , nk, m = nk+1 (k ≥ 0) be the shortest path from n to m that is used in the evaluation of the σ

44

function. We claim that ni+1 is accessible from ni in T via the path σ(Bi, Bi+1) (0 ≤ i ≤ k, B0 = A,

Bk+1 = B). Indeed, Bi is deleted in step 6 of Build View so that σ(Bi−1, Bi+1) is replaced by

σ(Bi−1, Bi)/σ(Bi, Bi+1) + σ(Bi−1, Bi+1) .

By our induction hypothesis, ni+1 ∈ S→ [|σ(Bi−1, Bi+1)|] ({ni−1}). If ni+1 were in the second disjunct

above, we would have a contradiction with the assumption that our path was the shortest. Therefore

ni+1 must be accessible from ni in T by the path σ(Bi, Bi+1). Therefore for 0 < i < k +1, σ(Bi−1, Bi)

is

1. Bi when ann(Bi−1, Bi) (ann(Bi+1, Bi) respectively) is either N or undefined. The case ann(Bi−1, Bi) =

Y (ann(Bi, Bi−1) = Y respectively) is impossible except when i = k + 1, as the element type Bi is

absent in TS and, consequently, is deleted in step 6 of Build View.

2. Bi[¬q] when ann(Bi−1, Bi) is Q[q].

In both case, it follows that n, n1, . . . , nk, m is a path in T . It remains to show that n1, . . . , nk are

deleted in TA. For nodes inheriting a qualifier via some source, this is immediate; for the other nodes

it follows from the fact that the algorithm used to define a complete annotation is the same in the

definition of TA and in Algorithm Annotate View.

10 Experimental Results

The overall experimentation schema consists of two parts. The first part is to measure scalability an

degradation of performance of DTD view construction. The second part shows advantages of schema-

based policy enforcement over instance-based one.

All experiments were held on a working station with 4 CPU Intel Xeon CPUs of 3.20GHz, 4GB of

RAM, and RedHat Linux ES 3 as an operating system.

10.1 Scalability

We selected 5 DTDs from http://www.xml.org/xml/schema/ of different size: 24, 79, 211, 802, 2303

edges. For every DTD, we generated 100 times a file containing 1, 2, ..., {24, 79, 211, 802, 2303} Y

45

(a) (b)

(c) (d)

(e)

Fig. 19 DTD view construction degradation for Y/N labels

and N labels assigned randomly. For every generated annotation file, we constructed a corresponding

DTD view and measured wall-time required for the construction. Scatter-plot diagrams are shown

in Fig. 19. Most of scatter plots demonstrate the same behavior: increasing at the beginning and

stabilization (constant time required for view construction) to the end. Increasing is expected: more

security labels we have, more splitting and deleting operations may be required. In particular, there

may be an effect of “cascading” splitting, when a subgraph of the DTD should be split at every node

that goes below the node that was split first. For example, if element type recomm-letter in the

DTD from our motivating example is split and no other security label goes below that node, the whole

subgraph rooted at recomm-letter will be split in a cascading manner because both original element

46

Fig. 20 Scalability of DTD view construction algorithm

type and its copy are connected to the children of the original element type while transmitting different

security annotations (Y and N respectively).

However, at some point, DTD view construction time obtains a constant nature, i.e., it does not

increase with the growth of the number of security labels. Moreover, the time variation becomes smaller.

It may be explained by the fact that the number of splitting operations reduces in spite of possible

conflicts between annotations that require splitting. If we imagine again recomm-letter that should

be split, but there are other security labels assigned to edges below that element type, it becomes clear

that cascading splittings take place not for all underlying element types.

To this point, we have to mention a particular scatter plot on Fig. 19(d). At the beginning there are

two branches. The lower branch has the same behavior as in the other scatter plots. The upper branch

corresponds to, at least, two times bigger values than the lower one. However, the upper branch tends

to descend to the level when there are no difference between two branches. Such a strange scatter plot is

explained by a complicated structure of a DTD, i.e., with multiple destinations having many sources.

In this case, the lower branch corresponds to cascading splittings in a subgraph that has a smaller

number of multi-source element types, while the upper branch represents label propagation in more

complicated parts of DTD which require extremely time consuming cascading splits in the presence

of a small number of security labels. However, as we have seen above, cascading splits diminish if we

47

(a) View-based materialization (1-79 annotations)

(b) Näıve materialization (1 annotation)

Fig. 21 Schema-based vs instance-based materialization

have more security labels. As the scatter plot on Fig. 19(d), this also holds for graphs with complicated

structure.

Finally, the scalability scatter plot is shown in Fig. 20. As it can be seen, if the number of DTD

edges increases 1000 times, DTD view construction time increases only 10-15 times. Thus, we may

conclude that our method is scalable. Moreover, the degradation of performance is not significant with

respect to the number of either DTD edges or security labels.

10.2 Policy enforcement performance: schema-based vs. instance-based

The next step was to measure a performance of a view-based XML materialization and its comparison

with a näıve one (corresponds to Def. 4). For this purpose, we used XMark benchmark [1] to generate

20 different XML documents of size from 1MB to 9.5MB. For all these XML documents, we applied

48

Materialize algorithm that was invoked for every DTD view constructed for auctions.dtd above

(total: 7900 views with a different number of security labels in the initial annotation). The scatter-plot

of such a materialization is shown in Fig. 21(a). Here we have to note that, in order to make experi-

ments repeatable, we used a standard Xalan XPath evaluator by Apache which leads to exponential

blow up. Although there have been provided polynomial algorithms of XPath evaluation [28], their

implementation is done as a C++ tool 7 rather than a Java library.

We tried to run the same set of experiments for a näıve materialization, when annotations are

propagated directly on XML document. However, around 30 hours were taken to run 100 experiments

only for the case of a single security label in the initial DTD annotation. The result is shown in

Fig. 21(b). It can be noticed a significant difference between two approaches from the view point of

“compactness” of materialization time. In other words, the view-based materialization time for the

same XML document does not vary much from experiment to experiment. On the other hand, näıve

materialization time has an enormous variation. This variation is caused by the presence of qualifiers

of the form [parent::parentName] that are inevitable in the presence of destinations with multiple

sources (which is true for auctions.dtd).

There is a big gap between performance of näıve materialization experiments and view-based mate-

rialization experiments due to the fact about qualifiers described above. However, in rare cases, näıve

materialization is faster than view-based one. It happens in the cases when XML tree has (one) Y label,

or (one) N label assigned to a leaf. In other words, these fast results take place because of easy annota-

tions. However, we must note that, in the case of faster näıve rather than view-based materialization,

the difference between results is not more than 3-5 seconds which can be considered as negligible from

the view point of the overall performance comparison.

10.3 Query answering issues

We started this paper with an argument that DTD view is required for the user in order to alleviate

query formulation over accessible data. In this section, we briefly provide different options of query

7 http://www.dbai.tuwien.ac.at/research/xmltaskforce/

49

answering over materialized view from the view point of materialization performance and space required

for a storage of materialized views.

Option 0: Materialize XML views on the fly by a näıve method. In this option, we store

only DTD and security annotations corresponding to different classes of users. Security labels are

expressed usually as 〈xpath, Y|N〉 (see [7], [10], [17], [24], [26], [33], [37]) where xpath is an XPath

expression (possibly with qualifiers) that after evaluation returns all the nodes to which Y or N label

should be assigned. It means that simple XML labelling can be extremely time consuming operation

because of (i) multiple XPath evaluations, and (ii) the presence of qualifiers in XPaths.

Option 1: Store materialized XML views. This option is very attractive for query evaluation

performance: the user simply submits a query which is evaluated over a related XML view. The big

disadvantages of this approach are (i) integrity maintenance of all views in the case of updates in the

original XML document is error-prone and unfeasible; (ii) XML view is usually 20-40 % smaller than

the original XML document. In the presence of a large number of user classes, there will be required

a very large disk space to store all those views. The situation can be aggravated in the case of views

that contain personal data. It means that in such a situation, we cannot even define classes of views:

every user will require a personal view.

Option 2: Store DTD views and materialize XML views on the fly. As we have seen above,

there are not so many cases when view-based materialization is slower than a näıve one. Moreover,

even such a case takes place, the difference in results is negligible. On the other hand, the overall time

for view-based materialization is not more than 20 seconds in all our experiments. Certainly, this result

will grow exponentially with an increase of XML size. However, if we apply polynomial algorithms of

XPath evaluation, this measure will be decreased significantly. And thus, we can consider this option

as acceptable even in the case of interactive web-applications. To this end, we have to remember about

space consumption which is reduced drastically because (i) DTD view is much smaller than XML view

(while Dv+σ is more or less of the same size as the initial DTD document), (ii) the same DTD view

can express conditions that allows to extract different personal data for each single user.

Option 3: Construct DTD view and materialize XML view on the fly. At this point, we

recall that DTD view construction can be considered as of constant time. Hence as in Option 0, we

50

store a DTD with a set of security annotations which requires small space. On the other hand, DTD

view construction plus XML materialization by Materialize algorithm on the fly has an acceptable

performance.

Finally, the overall query answering can be improved by introducing a cache that stores frequently

asked views. Another approach may exploit query rewriting technique when a user query over the DTD

view is rewritten into an equivalent query over the initial XML document [23]. Both these issues are

under investigation.

11 Related Work

A typical approach to specifying and enforcing access control for traditional databases is to define

views on which security permissions should be applied (e.g., multi-level security view for a relational

database [36], [42], [44], [49], discretionary access control over relational databases [6] and object-

oriented databases [11]). For instance, Lunt et al. [35] showed how to use standard SQL queries to

implement the SeaView multi-level secure database. It is simple to define a relational view via an SQL

query, and derive the relational schema of the view. In contrast, the hierarchical structure and the

dependency (e.g., ancestor and descendants) of XML data as well as the presence of disjunction and

recursion in DTDs make it impossible to define a security view via a single query, and moreover, they

introduce new challenges in how to generate a view that conforms to a view DTD. The challenges were

observed in [4], which showed that even for XML views of relational data, it is highly nontrivial to

ensure that the views typecheck. This observation has been further confirmed in [2] which showed that

type checking of XML views of relational data, even for simple DTDs, is computationally intractable:

co-NEXPTIME for extremely restricted view definitions, and undecidable for realistic views.

The insight to construct XML security views was found in [42] where it was demonstrated how

to compute a full database labelling from a partial one implied by security views. From the XML

viewpoint, a partial assignment of security labels to XML document nodes can be also extended to a

full assignment. From the latter, it is easy to compute an XML analogue of relational view by means

of “sanitization” operation which hides (e.g., deletes or encrypts) nodes with negative authorizations,

but reveals (e.g., moves up to a permitted ancestor in the case of deletion of a forbidden parent) their

51

permitted children [7], [17], [24], [33]. In the following sections, we will give an overview of these and

other security models of access control to XML documents.

11.1 Runtime policy evaluation

The general scenario of the current category of proposals is the following: The systems defines a set

of access control rules of the form 〈subject, object, action, sign〉 where subject is self-explaining, object

is an XML element/attribute expressed by XPath, action is typically read/write, sign∈ {+,−}.

Different conflict resolution rules and default policy are established as well. With respect to user’s

request 〈req subject, req object, req action〉, access control rules applicable to req subject is selected,

their signs for req action are propagated to req object. Hence, permission is granted to the user if the

resulting sign on req object is +; otherwise, the access is denied.

In particular, [33] introduces the notion of provisional authorization, when some provisional action

(e.g., logging, transcoding) is performed according to the user’s request.

The proposal of [10] considers the case when the access control is moved to clients, e.g, secure

tokens and smart cards that are used as trust components in different mobile devices (e.g., PC, PDA,

cellular phone) participating in applications dealing with sensitive information (e.g., certification, au-

thentication, electronic voting, e-payment, health care, digital right management, etc.).

Several papers consider the case of evolving access control policies expressed in XQuery [26] and by

means of RDF [3], [29]. Such policies can be used for a derivation of new access control rules including

content-based constraints of requested and other documents, environmental information like time and

place of request initiator, information about possessed privileges. As a result, hardcoding rules for

each document and its parts is no more necessary. This feature is especially valuable for systems with

dynamic XML documents and requesters’ population.

Run-time policy evaluation can be accelerated by efficient lookup of compressed accessibility map

where compression is performed on objects [52], on objects and actions [31], on objects, subjects and

actions [53].

Another direction for improving runtime policy evaluation concerns static analysis of user queries [40],

integration of policy into user query [37], matching user query against efficient policy representation as

52

a tree [41]. In the case when mandatory access control is considered, recursive checks can be reduced

by adding special predicates to node tests in the user query [14].

An association between XML nodes can be hidden either at the stage of policy definition [29] or

after detecting the possibility of information leakage in security view [50].

An optimization for efficient twig query evaluation in the presence of mandatory access control

security annotation is proposed in [14].

Finally, access control for XML documents can be strengthened with a role-based concepts [48].

11.2 Security views for XML

The scenario for this group of proposals is to extract an authorized XML view which includes data

relevant to the user’s clearance: access control rules applicable to the user are used to partially type the

XML tree with Y (+) and N (-) labels. After that, partial annotation is extended to full one. Finally,

fully annotated label is sanitized, i.e., N labelled elements are either deleted completely [7], [24] or

modified [17].

A different approach to XML security views was shown in [46] where there was an attempt to

define a security view by a single XPath expression. In a nutshell, XML elements matching non-

asterisk location steps of XPath are added to a view, while asterisks represent forbidden parts of the

XML.

11.3 Cryptographically enforced access control

Cryptographically enforced access control is exploited in so-called push architecture, when all users

have the same document but each user extracts own view according to a set of possessed keys.

XML encryption pool is presented in [25]. Namely, the method of [19] is used to define permitted

and forbidden nodes and the approach of [8] to associate keys with nodes. The nodes with a restricted

access are then excluded from the view and are attached to the document in encrypted form as a

pool. The pool also stores the information about the original location of a hidden node and a set of

associated keys.

53

The approach in [9] is based on [7]. It avoids generation of multiple physical views for each use

by means of different keys for encrypting different portions of the same document. One and only

one key is responsible for encryption of each portion of the source XML document. To minimize the

number of encryption keys, the portions of the document protected with the same set of policies are

encrypted with the same keys. The consequent scenario is key distribution and periodical broadcast of

the encrypted document.

Miklau and Suciu extend the Bertino’s idea of secure and selective dissemination of XML documents

with the notion of conditional access control rules [38], which generalizes the term “subject”, i.e.

authorization is based not on network identifier or user name, but on knowledge presented by the user.

The ideas of [9] and [38] are refined and extended with RBAC in [16].

Nowadays, push architecture is investigated from the view point of secure outsourcing when not

only users but also document holder is untrusted [13], [30], [43], [47], [51].

11.4 Schema-based security views

Stoica and Farkas [45] proposed to produce single-level views of XML when conforming DTD is an-

notated by labels of different confidentiality levels. The key idea lies in analyzing semantic correlation

between element types, modification of initial structure of DTD and using cover stories. Altered DTD

then undergoes “filtering” when only element types of the confidentiality lever no higher that the re-

quester’s one are extracted. However, the proposal requires expert’s analysis of semantic meaning of

production rules, and this can be unacceptable if database contains a large amount of schemas which

are changed occasionally.

Another view-based approach is proposed by Fan et al in [23]. In this paper, we underlined the

similarities and the differences with our approach. Here we summarize the proposal of [23]. The process

of an access control policies enforcement can be described as follows: (1) define access specification

for each class of users, (2) derive a sound and complete DTD security view for a particular access

specification, (3) supply the user with a corresponding security DTD view, (4) user issues a query in

terms of kept DTD view, (5) a query over the view schema is rewritten to a query over the initial

54

schema and optimized, (6) the optimized query is evaluated over the XML and the result is returned

to the requester.

The latest approach to schema-based security views was presented in [39]. The solution allows a

complete restructuring of a DTD and relies on a command-like specification language. However, it

was mentioned in [39] that many operations are not commutative and have restrictions that means a

possibility of errors while designing access control policies.

11.5 Discussion

Two main drawbacks can be easily observed in the first group of run-time policy evaluation scenarios.

The first one is that for every user request, accessibility of an XML node is calculated via a propagation

of security annotations which may involve the whole tree. The second drawback is that the user is

supplied with neither a schema of available data nor an XML view.

The second group of proposals slightly alleviates the problems mentioned above: an XML view is

calculated only one and may be queried by the user locally. However, a meaningful DTD schema is

still missing. The same is related to crypto-proposals, the difference is that the user may extract the

view locally as well if he has a set of corresponding keys.

The group of schema-based view proposals seems to provide the most promising solutions. Namely,

the proposal by Stoica and Farkas [45] can construct views that preserve semantic meaning among

element types of the original DTD which is missing in more recent proposals [23], [34]. However, this

proposal still needs to be evolved in the sense that it is not clear how the constructed view can be used

for XML querying. Some intuiting on a possible evolution can be seen in [23] (query rewriting) and

[34] (view materialization). Finally, the latest proposal in schema-based views was published in [39].

Their querying language is based on XQuery rather than on XPath. However, we have some doubts

about a practical applicability of the method due to its error-prone nature while policy designing and

modification.

55

12 Conclusions

This paper elaborates on certain issues left open in [23]. In particular, we studied access control and

security specifications defined over general DTDs in terms of regular expressions rather than normalized

DTDs of [23]. Furthermore, we developed a new algorithm for deriving a security view definition from

more intuitive access control specification (w.r.t. a non-recursive DTD) without introducing dummy

element types, and thus preventing inference of sensitive information from the XML structure revealed

by dummies. In addition, we provided an extension of a view derivation algorithm in a bottom-up

direction. Other our contributions include the study of different access control policies and experimental

evaluation of DTD view construction for Y|N labels and view-based vs. näıve materialization. The

former shows that our method is scalable and has an unessential degradation tending to become

constant with the growth of the number of annotations. The latter demonstrates advantages of view-

based approach over a näıve one from the view point of both performance and space consumption.

Several extensions to the security model are targeted for the future work. First, we plan to extend

the definitions of security views and authorization specifications by supporting more complex XML

Schema [22] instead of DTDs. Second, we are also studying extensions of our algorithm for deriving

security-view definitions with respect to recursive DTDs/schemas. In addition, our next step toward

enforcing inference control will be to investigate reasoning techniques in the presence of integrity

constraints and ID/IDREF attributes. The observation concerning leakage of information in the case

where the security specifications are not closed under intersection is left for the future work as well.

Finally, we are studying a query evaluation in the presence of a query rewriting use case.

References

1. XMark – An XML Benchmark Project. http://monetdb.cwi.nl/xml/index.html.

2. Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. Typechecking xml views of relational

databases. ACM Trans. Comput. Logic, 4(3):315–354, 2003.

3. Chutiporn Anutariya, Somchai Chatvichienchai, Mizuho Iwaihara, Vilas Wuwongse, and Yahiko Kam-

bayashi. A rule-based XML access control model. In RuleML, pages 35–48, 2003.

4. M. Benedikt, C. Chan, W. Fan, R. Rastogi, S. Zheng, and A. Zhou. DTD-directed publishing with attribute

translation grammars. In Proceedings of the 28th Conference on Very Large Data Bases (VLDB’02), 2002.

56

5. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments. In Proceedings of the

13th International Conference on Database Theory (ICDT’03), 2003.

6. E. Bertino, S. Jajodia, and P. Samarati. A flexible authorization mechanism for relational data management

systems. ACM Transactions on Information Systems (TOIS), 17(2):101–140, 1999.

7. Elisa Bertino, M. Braun, Silvana Castano, Elena Ferrari, and Marco Mesiti. Author-X: A Java-based

system for XML data protection. In Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual Working

Conference on Database Security, pages 15–26. Kluwer, B.V., 2001.

8. Elisa Bertino, Barbara Carminati, Elena Ferrari, Bhavani Thuraisingham, and Amar Gupta. Selective

and authentic third-party distribution of XML documents. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 16(10):1263–1278, oct 2004.

9. Elisa Bertino and Elena Ferrari. Secure and selective dissemination of XML documents. ACM Transactions

on Information and System Security (TISSEC), 5(3):290–331, 2002.

10. Luc Bouganim, François Dang Ngoc, and Philippe Pucheral. Client-based access control management for

xml documents. In Proceedings of the 30th Conference on Very Large Data Bases (VLDB’04), pages 84–95,

2004.

11. N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, and K. Yazdanian. Multiview model for object-oriented

database. In Proceedings of the Annual Computer Security Applications Conference, pages 222–231, 1993.

12. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. W3C, February

1998.

13. Barbara Carminati, Elena Ferrari, and Elisa Bertino. Securing XML data in third-party distribution sys-

tems. In Proceedings of the fourteenth international conference on Information and knowledge management

(CIKM’05), pages 99–106, Bremen, Germany, 2005. ACM Press.

14. SungRan Cho, Sihem Amer-Yahia, Laks V.S. Lakshmanan, and Divesh Srivastava. Optimizing the secure

evaluation of twig queries. In Proceedings of the 28th Conference on Very Large Data Bases (VLDB’02),

pages 490–501, 2002.

15. J. Clark and S. DeRose. XML path language (XPath) version 1.0. w3c recommendation, november 1999.

http://www.w3.org/TR/xpath.

16. Jason Crampton. Applying hierarchical and role-based access control to XML documents. In Proceedings

of ACM Workshop on Secure Web Services (SWS’04), Fairfax, VA, USA, 2004. ACM Press.

17. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained access control

system for XML documents. ACM Transactions on Information and System Security (TISSEC), 5(2):169–

202, 2002.

18. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained access control

system for XML documents. ACM Transactions on Information and System Security (TISSEC), 5(2):169–

202, 2002.

57

19. Ernesto Damiani, Sabrina de Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. Design

and implementation of an access control processor for XML documents. In Proceedings of the 9th Inter-

national Conference on World Wide Web (WWW’00), pages 59–75, Amsterdam, The Netherlands, 2000.

North-Holland Publishing Co.

20. Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. Fine

grained access control for SOAP e-services. In Proceedings of the 10th International Conference on World

Wide Web (WWW’01), pages 504–513. ACM Press, 2001.

21. Sabrina De Capitani di Vimercati and Pirangela Samarati. Access control: Policies, models, and mechanism.

In R. Focardi and F. Gorrieri, editors, Foundations of Security Analysis and Design - Tutorial Lectures,

volume 2171 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

22. David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second Edition. W3C Recommen-

dation. http://www.w3.org/TR/xmlschema-0/, 2004.

23. Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. Secure XML querying with security views. In

Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (SIGMOD’04),

pages 587–598. ACM Press, 2004.

24. Alban Gabillon and Emmanuel Bruno. Regulating access to XML documents. In Proceedings of the IFIP

TC11/WG11.3 fifteenth annual working conference on Database and application security, pages 299–314,

Niagara, Ontario, Canada, 2001. Kluwer Academic Publishers.

25. Christian Geuer-Pollmann. XML pool encryption. In Proceedings of the 1st ACM Workshop On XML

Security (XMLSEC’02), pages 1–9, Fairfax, VA, 2002. ACM Press.

26. Siddhartha K. Goel, Chris Clifton, and Arnon Rosenthal. Derived access control specification for XML. In

Proceedings of the 2nd ACM Workshop On XML Security (XMLSEC’03), pages 1–14. ACM Press, 2003.

27. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithm for processing XPath queries. In Proceedings of

the 28th Conference on Very Large Data Bases (VLDB’02), 2002.

28. Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms for processing XPath queries.

ACM Trans. Database Syst., 30(2):444–491, 2005.

29. Vaibhav Gowadia and Csilla Farkas. RDF metadata for XML access control. In Proceedings of the 2nd

ACM Workshop On XML Security (XMLSEC’03), pages 39–48, Fairfax, Virginia, 2003. ACM Press.

30. Ravi Chandra Jammalamadaka and Sharad Mehrotra. Querying encrypted XML documents. In Proceedings

of the 10th International Database Engineering and Applications Symposium (IDEAS’06), pages 129–136,

Washington, DC, USA, 2006. IEEE Computer Society.

31. Mingfei Jiang and Ada Wai-Chee Fu. Integration and efficient lookup of compressed XML accessibility

maps. IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(7):939–953, July 2005.

32. Michiharu Kudo and Satoshi Hada. XML access control language: Provisional authorization for XML

documents. http://www.trl.ibm.com/projects/xml/xacl/xacl-spec.html, 2000.

58

33. Michiharu Kudo and Satoshi Hada. XML document security based on provisional authorization. In

Proceedings of the 7th ACM Conference on Computer and Communications Security (CCS’00), pages 87–

96, New York, NY, USA, 2000. ACM Press.

34. Gabriel Kuper, Fabio Massacci, and Nataliya Rassadko. Generalized XML security views. In Proceedings

of the tenth ACM symposium on Access control models and technologies (SACMAT’05), pages 77–84. ACM

Press, June 2005.

35. T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren. A near-term design for the SeaView

multilevel database system. In Proceedings of IEEE Symposium on Security and Privacy (SSP-88), pages

234–244. IEEE Computer Society Press, 1988.

36. Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Heckman, Mark, and William R. Shockley. The

SeaView security model. IEEE Transactions on Software Engineering (TOSE), 16(6):593–607, 1990.

37. Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. QFilter: Fine-grained run-time XML access

control via NFA-based query rewriting. In Proceedings of the thirteenth ACM international conference on

Information and knowledge management (CIKM’04), pages 543–552, New York, NY, USA, 2004. ACM

Press.

38. Gerome Miklau and Dan Suciu. Controlling access to published data using cryptography. In Proceedings

of the 29th Conference on Very Large Data Bases (VLDB’03), pages 898–909, September 2003.

39. Sriram Mohan, Arijit Sengupta, Yuqing Wu, and Jonathan Klinginsmith. Access control for XML - a

dynamic query rewriting approach. In Proceedings of the 32th Conference on Very Large Data Bases

(VLDB’06), pages 1–12, Seoul, Korea, 2006. VLDB Endowment.

40. Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. XML access control using static

analysis. In Proceedings of the 10th ACM Conference on Computer and Communication Security (CCS’03),

pages 73–84. ACM Press, 2003.

41. Naizhen Qi and Michiharu Kudo. XML access control with policy matching tree. In Proceedings of the 10th

European Symposium on Research in Computer Security (ESORICS’05), volume 3679 of Lecture Notes in

Computer Science, pages 3–23. Springer-Verlag, 2005.

42. Xiaolei Qian. View-based access control with high assurance. In Proceedings of the 1996 IEEE Symposium

on Security and Privacy (SSP’96), page 85, Washington, DC, USA, 1996. IEEE Computer Society.

43. Michael Schrefl, Katharina Grun, and Jurgen Dorn. Semcrypt - ensuring privacy of electronic documents

through semantic-based encrypted query processing. In Proceedings of the 21st International Conference

on Data Engineering Workshops (ICDEW’05), page 1191, Washington, DC, USA, 2005. IEEE Computer

Society.

44. P. D. Stachour and B. Thuraisingham. Design of LDV: A multilevel secure relational database management

system. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2(2):190–209, 1990.

59

45. Andrei G. Stoica and Csilla Farkas. Secure XML views. In Proceedings of the 16th International Conference

on Data and Applications Security (IFIP’02), volume 256 of IFIP Conference Proceedings, pages 133–146.

Kluwer, July 2002.

46. Roel Vercammen, Jan Hidders, and Jan Paredaens. Query translation for XPath-based security views.

2006.

47. Hui (Wendy) Wang and Laks V.S. Lakshmanan. Efficient secure query evaluation over encrypted XML

databases. In Proceedings of the 32th Conference on Very Large Data Bases (VLDB’06), pages 127–138,

Seoul, Korea, 2006. VLDB Endowment.

48. Jingzhu Wang and Sylvia L. Osborn. A role-based approach to access control for XML databases. In

Proceedings of the 9th ACM symposium on Access control models and technologies (SACMAT’04), pages

70–77. ACM Press, 2004.

49. J. Wilson. Views as the security objects in a multilevel secure relational database management system.

pages 70–84. IEEE Computer Society Press, 1988.

50. Xiaochun Yang and Chen Li. Secure XML publishing without information leakage in the presence of data

inference. In Proceedings of the 30th Conference on Very Large Data Bases (VLDB’04), pages 96–107,

2004.

51. Yin Yang, Wilfred Ng, Ho Lam Lau, and James Cheng. An efficient approach to support querying secure

outsourced XML information. volume 4001/2006 of Lecture Notes in Computer Science, pages 157–171.

Springer Berlin/Heidelberg, 2006.

52. Ting Yu, Divesh Srivastava, Laks V. S. Lakshmanan, and H. V. Jagadish. A compressed accessibility map

for XML. ACM Transactions on Database Systems (TODS), 29(2):363–402, 2004.

53. Huaxin Zhang, Ning Zhang, Kenneth Salem, and Donghui Zhuo. Compact access control labeling for

efficient secure XML query evaluation. In Proceedings of the 21st International Conference on Data Engi-

neering Workshops (ICDEW’05), page 1275, 2005.

