
 �

Chapter VII
Interactive Access Control and

Trust Negotiation for
Autonomic Communication

Hristo Koshutanski
University of Trento, Italy

Fabio Massacci
University of Trento, Italy

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Recent advances of Internet technologies and
globalization of peer-to-peer communications
offer for organizations and individuals an open

environment for rapid and dynamic resource in-
tegration. In such an environment, federations of
heterogeneous systems are formed with no central
authority and no unified security infrastructure.
Considering this level of openness, each server is

Abstract

Autonomic communication and computing is the new paradigm for dynamic service integration over a
network. In an autonomic network, clients may have the right credentials to access a service but may not
know it; equally, it is unrealistic to assume that service providers would publish their policies on the Web
so that clients can do policy evaluation themselves. To solve this problem, the chapter proposes a novel
interactive access control model: Servers should be able to interact with clients asking for missing or
excessing credentials, whereas clients my decided to comply or not with the requested credentials. The
process iterates until a final agreement is reached or denied. Further, the chapter shows how to model a
trust negotiation protocol that allows two entities in a network to automatically negotiate requirements
needed to access a service. A practical implementation of the access control model is given using X.509
and SAML standards.

�

Interactive Access Control and Trust Negotiation for Autonomic Communication

responsible for the management and enforcement
of its own security policies with a high degree of
autonomy.

Controlling access to services is a key aspect
of networking and the last few years have seen the
domination of policy-based access control. Indeed,
the paradigm is broader than simple access control,
and one may speak of policy-based self-manage-
ment networks (see, e.g., IEEE Policy Workshop
series; Lymberopoulos, Lupu & Sloman, 2003;
Sloman & Lupu, 1999). The intuition is that ac-
tions of nodes controlling access to services are
automatically derived from policies. The nodes
look at events, requested actions and credentials
presented to them, evaluate the policy rules ac-
cording to those new facts and derive the actions
(Sloman & Lupu, 1999; Smirnov, 2003). Policies
can be “simple” iptables configuration rules for
Linux firewalls (see http://www.netfilter.org) or
complex logical policies expressed in languages
such as Ponder (Damianou, Dulay, Lupu, & Slo-
man, 2001) or a combination of policies across
heterogeneous systems as in OASIS XACML
framework (XACML).

Dynamic coalitions and autonomic commu-
nication add new challenges: A truly autonomic
network is born when nodes are no longer within
the boundary of a single enterprise, which could
deploy its policies on each and every node and
guarantee interoperability. An autonomic network
is characterized by properties of self-awareness,
self-management and self-configuration of its
constituent nodes. In an autonomic network
nodes are like partners that offer services and
lightly integrate their efforts into one (hopefully
coherent) network. This cross enterprise scenario
poses novel security challenges with aspects of
both trust management and workflow security.

From trust management systems (Ellison
et al., 1999; Li, Grosof, & Feigenbaum, 2003;
Weeks, 2001) it takes the credential-based view.
Since access to network services is offered by
autonomic nodes and to potentially unknown
clients, the decision of grant or deny access can

only be made on the basis of credentials sent by
a client.

From workflow access control systems (Atluri,
Chun, & Mazzoleni, 2001; Bertino, Ferrari, &
Atluri, 1999; Georgakopoulos, Hornick, & Sheth,
1995; Kang, Park, & Froscher, 2001) we borrow all
classical problems such as dynamic assignment of
roles to users, dynamic separation of duties, and
assignment of permissions to users according to
the least privilege principles.

In an autonomic communication scenario a
client might have all the necessary credentials
to access a service but may simply not know it.
Equally, it is unrealistic to assume that servers
will publish their security policies on the Web
so that clients can do a policy combination and
evaluation themselves. So, it should be possible
for a server to ask a client on-the-fly for additional
credentials whereas the client may disclose or
decline to provide them. Next, the server reeva-
luates the client’s request, considering the newly
submitted credentials and computes an access
decision. The process iterates between the server
and the client until a final decision of grant or
deny is taken. We call this modality “interactive
access control.”

Part of these challenges can be solved by using
policy-based self-management of networks, but
not all of them. Indeed, if we abstract away the
details on the policy implementation, one can
observe that the only reasoning service actually
used by nowadays policy-based approaches is
deduction: given a policy and a set of additional
facts, find out all consequences (actions or obli-
gations) from the policy according to the facts.
We simply look whether granting the request
can be deduced from the policy and the current
facts. Policies could be different (Bertino et al.,
2001; Bertino, Ferrari, & Atluri, 1999; Bonatti &
Samarati, 2002; Li, Grosof & Feigenbaum, 2003),
but the kernel reasoning service is the same.

Access control for autonomic communication
needs another less-known reasoning service,
taken from AI domain, called “abduction” (Sha-

 �

Interactive Access Control and Trust Negotiation for Autonomic Communication

nahan, 1989). Loosely speaking, we could say
that abduction is deduction in reverse: Given a
policy and a request to access a network service,
we want to know what are the credentials (facts)
that would grant access. Logically, we want to
know whether there is a (possibly minimal) set
of facts that added to the policy would entail
(deduce) the request.

If we look again at our intuitive description of
the interactive access control it is immediate to
realize that abduction is the core service needed
by the policy-based autonomic servers to reason
for missing credentials.

We can also use abduction on a client side so
that whenever a client is requested for missing
credentials it can perform evaluation on its policy
and counter-request the server for some evidences
in order to establish confidence (trust) to disclose
the originally requested credentials.

Chapter Scope

This chapter targets readers who want to put into
a practical framework security policies for access
control. As a chapter outcome, the readers will be
able to understand the logical reasoning services
of deduction and abduction, and how to use them
to model a practical access control framework.
Furthermore, the readers will be able to model
interactive access control between two entities,
each of them running its own deduction and

abduction algorithms, thus allowing a bilateral
exchange of access requirements until an agree-
ment is reached or denied.

For those readers with practical background,
the chapter presents how to implement and inte-
grate the interactive access control model with
the security standards such as X.509 and SAML.
Readers should be familiar with either logic pro-
gramming or answer set programming or datalog,
as a prerequisite to the chapter’s content.

A PRIMER ON INTERACTIVE
ACCESS CONTROL

Motivation by Example

Let us consider a shared overlay network Planet-
Lab between the University of Trento and
Fraunhofer institute in Berlin in the context of
the E-NEXT project. For the sake of simplicity
assume that there are three main access types to
resources: disk – read access to data residing on
the Planet-Lab machines; run – execute access to
data and possibility to run processes on the ma-
chines; and configure – including the previous two
types of access plus the possibility of configuring
network services on the machines.

Members of the two labs are classified in a
hierarchy that is shown in Figure 1. The figure
shows the joint hierarchy model of the roles at both
institutions. The partial order of roles is indicated
by arcs where higher the role in the hierarchy is
more powerful it is. A role dominates another
role if it is higher in the hierarchy and there is a
direct path between them.

The access policy of the Planet-Lab network
specifies that:

•	 Disk access is allowed for any request com-
ing from the two institutions.

•	 Run access is allowed for any request com-
ing either from specific machines at the two
institutions or from the two institutions ac-

Figure 1. Joint hierarchy model

�

Interactive Access Control and Trust Negotiation for Autonomic Communication

companied with a membership certificate.
•	 Configure access is allowed to anybody that

has run access to the network resources
and is at least researcher at University of
Trento or junior researcher at Fraunhofer
institute. Configure access is also granted
to associate professors or senior research-
ers with the requirement of accessing the
Planet-Lab network from the respective
country domains of Italy or Germany. The
least restrictive access is granted to full
professors or members of board of directors
obliging them to provide the appropriate
credential attesting their positions.

Let us have the scenario where Alice is a senior
researcher at Fraunhofer and daily she needs to
get run access to resources at Planet-Lab network.
So, whenever she is at her office and she wants
to execute some services she sends her employee
certificate to the system. According to the access
policy, run access is granted to Alice because as
an employee she is a member of the Planet-Lab
hierarchy model (see Figure 1).

Now, examine the case in which Alice wants
to have access to the system from his home place
(deciding to work at home) presenting her em-
ployee certificate assuming that it is potentially
enough to get run access to certain services. But,
according to the policy rules the system should
deny the request because run access requests
coming from domains different than University
of Trento or Fraunhofer institute are allowed only
to associate professors or senior researchers or
higher role positions.

So, the natural question is, “is it the behavior
we want from the system?” Shall we leave Alice
with only “access denied” decision and being idle
for the whole day simply because she did not know
or just has forgotten that access to the system
outside Fraunhofer needs another certificate?

An answer like “sorry, we also need a creden-
tial for being at least a senior researcher” would

be more than welcomed by most employees. At
the same time, the server wants to be sure to ask
this additional credential only to employees.

Protecting Sensitive Policies

Practical access control policies like those pro-
tecting companies’ resources, EU project sensi-
tive documents etc, may leak valuable business
information when exposed to public. Furthermore,
an access control policy sometimes may disclose
the entire business strategy of a company or an
institution. Consider the following examples:

Example 1 (Seamons, Winslett, & Yu, 2001)
Suppose a Web page’s access control policy states
that in order to access documents of a project in
the site, a requester should present an employee
ID issued either by Microsoft or by IBM. If such
a policy can be shown to any requester, then one
can infer with high confidence that this project is
a cooperative effort of the two companies.

Example 2 (Yu & Winslett, 2003) [Access
Policy] McKinley clinic makes its patient records
available for online access. Let r be Alice’s record.
To gain access to r a requester must either present
Alice’s patient ID for McKinley clinic (CAliceID),
or present a California social worker license
(CCSW L) and a release-of-information credential
(CRoI) issued to the requester by Alice.

[Sensitive Policy Protection] Knowing that
Alice’s record specifically allows access by
social workers will help people infer that Alice
may have a mental or emotional problem. Alice
will probably want to keep the latter constraint
inaccessible to strangers. However, employees of
McKinley clinic (CMcKinleyEmployee) should be
allowed to see the contents of the policy.

To conclude so far, we have identified the fol-
lowing two issues:

 �

Interactive Access Control and Trust Negotiation for Autonomic Communication

•	 Provide additional information on missing
credentials back to clients in case they do
not have enough access rights.

•	 Protect access policies and their require-
ments from unnecessary disclosure.

How we approach the above cases is the subject
of the next section.

Interactive Access Control vs
Current Approaches

In this section we introduce step-by-step the
novel contribution of interactive access control
model by “evolving” the existing access control
frameworks.

Let us start with the traditional access control.
A server has a security policy for access control
PA that is used when taking access decisions about
usage of services offered by a service provider. A
user submits a set of credentials Cp and a service
request r in order to execute a service. We say
that policy PA and credentials Cp entail r (infor-
mally for the moment, PA∪Cp= r) meaning that
request r should be granted by the policy PA and
the presented credentials Cp.

Figure 2 shows the “traditional” access control
decision process. Whether the decision process

uses RBAC (Sandhu et al, 1996), SDSI/SPKI
(SPKI), RT (Li & Mitchell, 2003) or any other
trust management framework it is immaterial
at this stage: they can be captured by suitably
defining PA, Cp and the entailment operator (|=).
This approach is the cornerstone of most logical
formalizations (De Capitani di Vimercati & Sa-
marati, 2001): If the request r is a consequence
of the policy and the credentials, then access is
granted; otherwise it is denied.

A number of works has deemed such blunt de-
nials unsatisfactory. Bonatti and Samarati (2002)
and Yu, Winslett and Seamons (2003) proposed
to send back to clients some of the rules that are
necessary to gain additional access. Figure 3
shows the essence of the approaches.

Both works have limitations because they im-
pose several syntactical restrictions on the format
of the policy and essentially merge two different
security issues: the policy for governing access to
server’s own resources and the policy for govern-
ing the disclosure of foreign credentials.

The first and foremost limitation is that both
approaches require policies to be flat: A policy
protecting a resource must contain all credentials
needed to allow access to that resource. As a re-
sult, it calls for structuring of policy rules that is
counter-intuitive from the access control point of
view. For instance, a policy rule may say that for
access to the full text of an online journal article
a requester must satisfy the requirements for
browsing the journal’s table of contents plus some
additional credentials. A rule detailing access to
the table of contents could then specify another 1.	 check whether PA and Cp entail r,

2.	 if the check succeeds then grant access
3.	 else deny access.

Figure 2. Traditional access control

Figure 3. Disclosable access control

1.	 check whether PA and Cp entail r,
2.	 if the check succeeds then grant access
3.	 else

(a)	 find a rule r ← p ∈ PartialEvaluation(PA∪Cp), where p is a (partial) policy protecting r,
(b)	 if such a rule exists then send it back to the client else deny access.

�

Interactive Access Control and Trust Negotiation for Autonomic Communication

set of credentials. Even this simple scenario is not
allowed in either formalisms.

Constraints that would make policy reason-
ing non-monotone (such as separation of duties)
are also ruled out as they require to look at more
than one rule at a time. So, if the policy is not flat
and it has constraints on the credentials that can
be presented at the same time (e.g., separation of
duties) or a more complex role structure is used,
these systems would not be complete.

Bonatti and Samarati’s (2002) approach has
further limitations on the granularity level of
disclosure of information. In their work governing
access to a service is composed in two parts: a
prerequisite rule and a requisite rule. Prerequisite
rules specify the requirements that a client should
satisfy before being considered for the require-
ments stated by the requisite rules, which in turn
grant access to services. Thus, prerequisite rules
play the role of controlling the disclosure of the
service requisite rules. In this way their approach
does not decouple policy disclosure from policy
satisfaction, as already noted by Yu and Winslett
(2003), which becomes a limitation when informa-
tion disclosure plays crucial role.

The work by Yu and Winslett (2003) over-
comes this latter limitation and proposes to treat
policies as fist class resources, i.e., each policy
protecting a resource is considered as a sensitive
resource itself whose disclosure is recursively
protected by another policy. Still they have the
same flatness, unicity and monotonicity limita-
tions. These limitations are due to a traditional

viewpoint: the only reasoning service one needs
for access viewpoint is deduction, i.e., check
that the request follows from the policy and the
presented credentials.

Intuition 1: We claim that we need another
less-known reasoning service, called abduction:
check which missing credentials are necessary so
that the request can follow from the policy and
the presented credentials. Thereupon, we pres-
ent the basic idea of interactive access control
in Figure 4.

The “compute a set CM such that ...” (step 3a)
is exactly the operation of abduction. This solu-
tion raises a new challenge: how do we decide the
potential set of missing credentials? It is clearly
undesirable to disclose all credentials occurring
in PA and, therefore, we need a way to define how
to control the disclosure of such a set.

As we have already noted, Yu and Winslett
(2003) addressed partly this issue by protecting
policies within the access policy itself. However,
this is not really satisfactory as it does not decouple
the decision about access from the decision about
disclosure.

So, from a standpoint of a good engineering
practice a structured approach of separate access
and disclosure policies is better than a flat (merged
policy) approach because the criteria behind and
the administrator of each policy are different.
Resource access is decided by the business logic
whereas credential access is due to security and
privacy considerations.

Figure 4. Basic idea of interactive access control
1.	 check whether PA and Cp entail r,
2.	 if the check succeeds then grant access
3.	 else

(a)	 compute a set CM such that:
-	 PA together with Cp and CM entail r, and
-	 PA together with Cp and CM preserve consistency.

(b)	 if CM exists then ask the client for CM and iterate
(c)	 (c) else deny access.

 �

Interactive Access Control and Trust Negotiation for Autonomic Communication

Intuition 2: We claim that we need two policies:
one for granting access to one’s own resources and
one for disclosing the need of foreign (someone
else’s) credentials. Therefore, we introduce a se-
curity policy for disclosure control PD. The policy
for disclosure control is used to decide credentials
whose need can be potentially disclosed to a client.
In other words, PA protects partner’s resources
by stipulating what credentials a requestor must
satisfy to be authorized for a particular resource
while, in contrast, PD defines which credentials
among those occurring in PA are disclosable so, if
needed, can be demanded from the requestor.

The relevant approach with respect to the dis-
closure policy PD is the one by Yu and Winslett
(2003). It postulates that policies for protecting
resources should be themselves treated (protected)
as first class sensitive resources. The authors
distinguish between policy disclosure and policy
satisfaction which allows them to have control
on when a policy can be disclosed from when a
policy is satisfied.

However, Yu and Winslett policies determine
whether a client is authorized to be informed of
the need to satisfy a given policy. While, in our
case, having a separate disclosure policy PD allows
us to have a finer-grained disclosure control over
the information flow back to a client. Instead of
controlling the disclosure of (entire) policies as
a finest-grained unit we are able to control the
disclosure of single credentials composing those

policies separately and independently from the
disclosure of the policies themselves.

We give a new refined algorithm for interactive
access control with controlled disclosure shown
in Figure 5.

Now, let us refer to Yu and Winslett’s own
example (Example 2) formalized as two logic
programs:

Example 3
PD CAliceID ← . PA r ← CAliceID .

CCSWL ← CMcKinleyEmployee . r ← CCSWL , CRoI .

CRoI ← CMcKinleyEmployee .

The disclosure control policy is read as the
disclosure of Alice’s ID is not protected and
potentially released to anybody. The need for
disclosing the credentials for California social
worker license CCSWL and release-of-information
CRoI is released only to users that have already
presented their McKinley employee certificates
CMcKinleyEmployee.

The access policy specifies that access to r
is granted either to Alice or to California social
workers that have a release-of-information cre-
dential issued by Alice.

We note that the disclosure requirement for
CMcKinleyEmployee cannot be captured via the service
accessibility scheme by Bonatti and Samarati
(2002) and refer to Yu and Winslett (2003) for de-
tails. We also point out (as in Yu & Winslett, 2003)
that having CMcKinleyEmployee does not allow access

Figure 5. Interactive access control with controlled disclosure

1.	 check whether PA and Cp entail r,
2.	 if the check succeeds then grant access
3.	 else

(a)	 compute the set of disclosable credentials CD entailed by PD and Cp,
(b)	 compute a set CM out of the disclosable ones (CM ⊆CD) such that:

-	 PA together with Cp and CM entail r, and
-	 PA together with Cp and CM preserve consistency.

(c)	 if CM exists then ask the client for CM and iterate
(d)	 else deny access.

�

Interactive Access Control and Trust Negotiation for Autonomic Communication

to r but rather is used to unlock more information
on how to access r. We also emphasize that the
disclosure control on r’s policy {CCSWL, CRoI} can
be further split down on controlling the disclosure
of the single credentials constituting it.

There are still tricky questions to be answered
such as:

•	 How do we know that the algorithm termi-
nates? In other words, can a client waste the
server’s time forever?

•	 How do we know that a cooperative client,
starting with a wrong set of credentials, can
actually arrive to a grant? For example, can
we assure that the server will not keep asking
Alice for a UNITN full professor credential
which she does not have, while never asking
for a FOKUS senior researcher credential,
which she has?

We will show how to fix the details of the
algorithm in a later section so that all answers
are positive.

So far, we have considered the access control
process taking part on a server side. Then one
would ask what about protecting clients from un-
authorized disclosure of missing credentials. One
can use the interactive access control algorithm
also on the client side so that the client can do
policy evaluation itself to determine whether the
requested credentials can be disclosed to (granted,
to be seen by) servers. And, alternatively, what
additional information the servers should provide
in order to see the requested credentials. In this
way the interactive access control model can be
used on client and server sides allowing them
to automatically negotiate missing credentials
until an agreement is reached or denied. The full
evolvement of the negotiation model is described
later in the chapter.

This is enough to cover stateless systems.
We still have a major challenge ahead: How do
we cope with stateful systems? Stateful systems
are systems where the access decisions change

depending on past interactions or past presented
credentials. Such systems can easily become
inconsistent with respect to the client’s set of
presented credentials mainly because access
policies may forbid the presentation of credential
if another currently active credential has been
presented in the past.

Past requests or services usage may deny ac-
cess to future services as in Bertino, Ferrari and
Atluri (1999) centralized access control model for
workflows. Separation of duties means that we
cannot extend privileges by supplying more cre-
dentials. For instance a branch manager of a bank
clearing a cheque cannot be the same member of
staff who has emitted the cheque (Bertino, Ferrari
& Atluri, 1999, p. 67). If we have no memory of
past credentials then it is impossible to enforce
any security policy for separation of duties on the
application workflow. The problems that could
cause a process to get stuck are the following:

•	 The request may be inconsistent with some
role, action or event from the client in the
past.

•	 The new set of credentials may be inconsis-
tent with requirements such as separation
of duties.

To address the problem of inconsistency, we
extend the stateless algorithm in a way that it al-
lows a service provider to reason of not only what
missing credentials are needed to get a service,
but also to find out what excessing (conflicting)
is among the client’s set of credentials that makes
the policy state inconsistent.

Intuition 3: We claim that in the stateful systems’
domain we need to reason of not only on what
missing credentials allow access but also on what
excessing (conflicting) credentials make the policy
state inconsistent. We need a procedure by which
if a user has exceeded his privileges he has the
chance to revoke them.

 �

Interactive Access Control and Trust Negotiation for Autonomic Communication

The basic intuitive algorithm for interactive ac-
cess control for stateful systems is shown in Figure
6. Steps 1 to 3d are essentially the basic interactive
access control algorithm (see Figure 5).

The part for stateful systems comes when we
are not able to find a set of missing credentials
among the disclosable ones (step 3d).

In this case there are two reasons which may
cause the abduction failure when computing CM.
The first one could be that in CD there are not
enough disclosed credentials to grant r – case
in which we should deny access (step 3(d)iii), or
there might be credentials in the client’s set of
presented credentials Cp that make the policy state
inconsistent – case in which any solution among
the disclosable credentials cannot be found by
the abduction.

The latter reason motivates step 3(d)i. In this
step, first, we want to find a set of conflicting
credentials CE, called excessing, among the pre-
sented ones Cp such that removing them from Cp
preserves the access policy consistent, step 3(d)iA.
Second, on top of the not conflicting credentials
it must exist a solution set that entails the service
request, step 3(d)iB. The second requirement as-
sures that there is a potential solution for the client
to get access to the requested service.

We refer the reader to (Koshutanski, 2005) for
full details on the stateful model.

Interactive Access Control and
Current Policy-Based Approaches

Having introduced the core logical reasoning ser-
vices and the respective access control algorithms
does not completely show the advantages of the
interactive access control model. This section
describes how current logic-based approaches
suit our interactive model.

The logical model, as presented so far, abstracts
from a specific policy language and presents an
execution framework for reasoning about access
control. As such, the model fills an important gap
between the policy language specification and the
policy language enforcement and evaluation.

We skip here the classical access control
models (see, e.g., (De Capitani di Vimercati &
Samarati, 2001) for a comprehensive survey) and
concentrate on the current logic-based access con-
trol approaches widely cited in the literature.

The work by Li, Mitchell, and Winsborough
(2002) introduces a model for distributed access
control, called RT (Role-based Trust manage-
ment). The core idea of the model is the way

Figure 6. Interactive Access control for stateful systems with controlled disclosure
1.	 check whether PA and Cp entail r,
2.	 if the check succeeds then grant access
3.	 else

(a)	 compute the set of disclosable credentials CD entailed by PD and Cp ,
(b)	 compute a set of missing credentials CM out of the disclosable ones (CM ⊆CD) such that:

-	 PA together with Cp and CM entail r, and
-	 PA together with Cp and CM preserve consistency.

(c)	 if a set CM exists then ask the client for CM and iterate
(d)	 else

i.	 compute a set of excessing credentials CE among the client’s presented ones (CE ⊆Cp) such
that:

A)	 PA together with Cp\CE preserve consistency, and
B)	it exists CM (⊆CD) such that:

-	 PA together with Cp\CE and CM entail r, and
-	 PA together with Cp\CE and CM preserve consistency.

ii.	if a set CE exists then ask the client to present CM and revoke CE , and iterate
iii.	 else deny access.

10

Interactive Access Control and Trust Negotiation for Autonomic Communication

it classifies principles in a distributed manner.
Basically, the model classifies each entity’s local
attributes (roles) and how other entities relate to
those attributes. It classifies how each entity’s
attributes relates to other entities’ attributes (at-
tribute mapping from one domain to another). It
also defines attribute-based delegation of attribute
authority, i.e. the ability to delegate authority to
strangers whose trustworthiness is determined
based on their own certified attributes.

A later approach (Li, Li, & Winsborough,
2005) extends the RT framework to cope with
different cryptographic schemes (e.g., zero-
knowledge proof of attributes, oblivious signature
envelope, hidden credential etc.) that are used to
improve the privacy protection and effectiveness
during a process of bilateral negotiation. The
authors proposed a new language, called Attri-
bute-based Trust Negotiation Language (ATNL),
that specifies fine-grained protection of resources
and their policies.

Another interesting logic-based approach is
(Ruan, Varadharajan, & Zhang, 2003). In con-
trast to what we have seen, this work presents an
authorization model that supports both positive
and negative authorizations. The model introduces
variety of rules that define different authorization
and delegation statements, as well as, rules for
conflict resolutions. This work targets another
type of polices where explicit negation is needed
to express the policy requirements.

All of the above described approaches are
good candidates for an underlying policy language
as the interactive access control model is data-

driven by the abduction and deduction reasoning
services. So, we will not target a particular policy
language throughout the chapter as it is immate-
rial to the meta-level access control process the
actual logical language.

Winsborough and Li (2004) postulate an
important property concerning trust negotiation
called safety in automated trust negotiation. Dur-
ing a negotiation process a sensitive credential
is disclosed when its policy is satisfied by the
negotiator. So, the problem comes from the fact
that although a sensitive credential itself is not
transmitted unless its associated policy is satis-
fied, the behavior of a negotiator differs based
on whether he has the attribute or not. One can
reveal additional information about the content
of the credential by monitoring the opponent’s
behavior.

Since the interactive access control model
enforces a meta-level negotiation process one
can address the safety property requirement by
properly defining the structure of the access and
disclosure control policies.

THE UNDERLYING LOGICAL
MODEL

Syntax

As we have identified, policy-based approaches
suit well our needs for having an appropriate
policy language depending on particular access
control scenario. Still we need to define the syn-

Table 1. Predicates used in the logical model
dominate(Role: ri, Role: rj) when role ri dominates role rj (), where ri and rj are possibly the same.

grant(Resource: s, Action: p) when action p is granted to be performed on resource s.

credential(holder, Attr: a, Issuer: i) a certificate attesting that holder has an attribute a issued by i, where a can be a role or other
property charcterizing particular access rights.

certificate(subject, Issuer: i) a certificate identifying entity subject issued by i.

classify(Issuer: i, IssuerType: t) classifies issuer i as a particular type t certificate authority

 11

Interactive Access Control and Trust Negotiation for Autonomic Communication

tax of the underlying logical model that covers
the basic needs of the autonomic communication
domain.

In the model we have the following sets of
identifiers: Role for role identifiers; Resource for
resource identifiers; Action for action identifiers
performed on resources; Attr for attribute iden-
tifiers, where Role ⊆ Attr; Issuer for certificate
issuer identifiers; and IssuerType for type/clas-
sification of issuers.

Table 1 shows the basic predicates used in the
logical model.

An attribute certificate is represented as a
combination of two predicates: one defining the
holder, attribute and the issuer of the certificate,
and the other classifying the issuer authorized
(trusted) to issue such attributes.

Analogously, an identity certificate is repre-
sented as a predicate identifying the subject and
a predicate classifying the trusted issuer.

We do not keep a set of user identifiers be-
cause in the autonomic communication’s domain
anybody is potentially a client and the notion of
identity-based access control does not apply. Thus,
holder and subject variables, shown in Table 1,
do not have a priori fixed values but rather are
used to relate with each other in order to express
proper identification requirements.

Example 4 To grant access to a bank report, a
client should identify itself by a trusted identity
certificate and present a credential for a role
bank manager (issued by the bank attribute
authority).

In this situation, we are not particularly in-
terested in the client’s identity but in the relation
that the subject of the identity certificate correctly
maps the holder of the attribute certificate.

The model presented in this section can be
adapted to any generic policy framework. The
information we need from the underlying policy
language is shown in the table above and can be
found in (adapted to) most policy languages.

Access policies are written as normal logic
programs (Apt, 1990). These are sets of rules of
the form:

A ← B1, . . . , Bn, not C1, . . . , not Cm, 	 (1)

where A, Bi and Cj are (possibly ground)
predicates. A is called the head of the rule, each
Bi is called a positive literal and each not Cj is a
negative literal, whereas the conjunction of the
Bi and not Cj is called the body of the rule. If the
body is empty the rule is called a fact. A normal
logic program is a set of rules.

In our framework, we also need constraints
that are rules with an empty head.

 ← B1, . . . , Bn, not C1, . . . , not Cm 	 (2)

The intuition is to interpret the rules of a pro-
gram P as constraints on a solution set S (a set of
ground atoms) for the program itself. So, if S is a
set of atoms, rule (1) is a constraint on S stating
that if all Bi are in S and none of Cj are in it, then
A must be in S. A constraint (2) is used to rule
out from the set of acceptable models situations
in which Bi are true and all Cj are false.

Formalization of the Example

Following is the full formalization of the example
introduced at the beginning of the chapter. A
new predicate used in the example is authNet(IP,
DomainName). It is a tuple with first argument
the IP address of the authorized network endpoint
(the client’s machine) and the second argument
the domain name where the IP address comes
from.

We omit the resource field in the grant predicate
meaning that for any resource in the system the
user is considered to have disk, run or configure
access rights. We represent variables with staring
capital letter (e.g., Holder, Attr, Issuer) while con-
stants with starting small case letters (e.g., plan-

12

Interactive Access Control and Trust Negotiation for Autonomic Communication

etLabClass1SOA, institute, juniorResearcher). A
variable indicates any value in its field.

Figure 7 shows the formalization of the
Planet-Lab policies. Following is the functional
explanation of the policies.

The access policy says:

•	 Rules (1), (2), and (3) classify issuers (SOAs)
in different logical categories used by the
access control logic. Example, Rule (1) cat-
egorizes planetLabClass1SOA as a system
level SOA.

•	 Rules (4) and (5) give disk access to the
shared network content to everybody from
the University of Trento and Fraunhofer
institute, regardless the IP and roles at these
institutions.

•	 Rule (6) gives disk access to anybody who
has a run access permission.

•	 Rules (7) and (8) allow run access for those
machines that are internal of the two institu-
tions (dedicated only for Planet-Lab access)
and distinguished by their fixed IPs.

•	 Rules (9), (10), and (11) relax the previous
two and allow run access from any place of
the institutions to those users which present
either a Planet-Lab membership certificate
or a role-position certificate at one of the
two institutions.

•	 Rule (12) gives run access to anybody who
has a configure access permission.

•	 Rules (13) and (14) give configure access
right if a user has a disk access and is at
minimum assistant, attested (issued) by a

Figure 7. Planet-lab access and disclosure control policies

Access Policy:
 (1) 	 classify(planetLabClass1SOA, system).
 (2) 	 classify(fraunhoferClass1SOA, institute).
 (3) 	 classify(unitnClass1SOA, university).
 (4) 	 grant(disk) ← authNet(*, *.unitn.it).
 (5) 	 grant(disk) ← authNet(*, *.fraunhofer.de).
 (6) 	 grant(disk) ← grant(run).
 (7) 	 grant(run) ← authNet(193.168.205.*, *.unitn.it).
 (8) 	 grant(run) ← authNet(198.162.45.*, *.fraunhofer.de).
 (9) 	 grant(run) ← grant (disk), credential(*, memberPlanetLab, Issuer), classify(Issuer, system).
(10) 	 grant(run) ← grant(disk), credential(*, Attr, Issuer), classify (Issuer, university), Attr  researcher.
(11) 	 grant(run) ← grant(disk), credential(*, Attr, Issuer), classify (Issuer, institute), Attr  employee.
(12) 	 grant(run) ← grant(configure).
(13)	 grant(configure) ← grant(disk), credential(*, Attr, Issuer), classify(Issuer, university), Attr  assistant.
(14) 	 grant(configure) ← grant(disk), credential(*, Attr, Issuer), classify(Issuer, institute), Attr  juniorResearcher.
(15) 	 grant(configure) ← authNet(*, *.it), credential(*, Attr, Issuer), classify(Issuer, university), Attr  assProf.
(16) 	 grant(configure) ← authNet(*, *.de), credential(*, Attr, Issuer), classify(Issuer, institute), Attr  seniorResearcher.
(17) 	 grant(configure) ← credential(*, Attr, Issuer), classify(Issuer, university), Attr  fullProf.
(18) 	 grant(configure) ← credential(*, Attr, Issuer), classify(Issuer, institute), Attr  boardOfDirectors.

Disclosure Policy:
(1) 	 credential(Holder, memberPlanetLab, Issuer) ← authNet(*, *.unitn.it), classify(Issuer, system).
(2) 	 credential(Holder, memberPlanetLab, Issuer) ← authNet(*, *.fraunhofer.de), classify(Issuer, system).
(3) 	 credential(Holder, employee, Issuer) ← credential(Holder, memberPlanetLab, IssuerSys), classify(IssuerSys, system),

classify(Issuer, institute).
(4) 	 credential(Holder, researcher, Issuer) ← credential(Holder, memberPlanetLab, IssuerSys), classify(IssuerSys, system),

classify(Issuer, university).
(5) 	 credential(Holder, AttrX, Issuer) ← credential(Holder, AttrY, Issuer), classify(Issuer, university), AttrX  AttrY.
(6) 	 credential(Holder, AttrX, Issuer) ← credential(Holder, AttrY, Issuer), classify(Issuer, institute), AttrX  AttrY.

 13

Interactive Access Control and Trust Negotiation for Autonomic Communication

trusted university’s SOA, or at minimum
junior researcher attested by a trusted in-
stitutional SOA.

•	 Rules (15) and (16) relax the previous two
and give configure access to associate pro-
fessors and senior researchers provided that
requests come from the respective country
domains.

•	 Rules (17) and (18) give configure access
regardless the geographical region only to
members of board of directors and to full
professors.

The disclosure policy says:

•	 Rules (1) and (2) disclose the need for a
Planet-Lab membership certificate to any
request coming from domains of the respec-
tive organizations.

•	 Rules (3) and (4) disclose the need for an
employee or a researcher certificate if either
a client has already presented its Planet-Lab
membership certificate or the certificate is
disclosed by other rules of the disclosure
policy.

•	 Rules (5) and (6) disclose (upgrade) the need
of higher role-position certificates than those
provided either by a client or (disclosed) by
other rules of the policy.

Semantics

One of the most prominent semantics for normal
logic programs is the stable model semantics pro-
posed by Gelfond and Lifschitz (1988) (see also
Apt, 1990, for an introduction). In the following we
formally define the reasoning services intuitively
introduced in the motivation section.

Definition 1 (Deduction and Consistency) Let
P be a policy and L be a ground literal. L is de-
ducible of P (P |= L) if L is true in every stable
model of P. P is consistent (P |≠ ⊥) if there is a
stable model for P.

Definition 2 (Security Consequence) A resource
r is a security consequence of a policy P if (i) P
is consistent and (ii) r is deducible of P.

Definition 3 (Abduction) Let P be a policy, H
a set of ground atoms (called hypotheses or ab-
ducibles), L a ground literal (called observation)
and  a partial order (p.o.) over subsets of H. A
solution of the abduction problem <L, H, P> is
a set of ground atoms E such that:

1.	 E ⊆ H,
2.	 P ∪ E |= L,
3.	 P ∪ E |≠ ⊥,
4.	 any set E’ E does not satisfy all conditions

above.

Traditional partial orders are subset contain-
ment or set cardinality.

Definition 4 (Solution Set for a Resource) Let
P be a policy and r be a resource. A set of cre-
dentials CS is a solution set for r according to P
if r is a security consequence of P and CS, i.e. P
∪ CS |= r and P ∪ CS |≠ ⊥.

Definition 5 (Monotonic and Non-monotonic
Policy) A policy P is monotonic if whenever a set
of statements C is a solution set for r according
to P (P ∪ C |= r) then any superset C’⊃C is also
a solution set for r according to P (P ∪ C’ |=
r). In contrast, a nonmonotonic policy is a logic
program in which if C is a solution for r it may
exist C’⊃C that is not a solution for r, i.e. P ∪
C’ |≠ r .

THE INTERACTIVE ACCESS
CONTROL ALGORITHM

Below we summarize all the information we
have recalled (policies, credentials, etc.) to this
extend.

14

Interactive Access Control and Trust Negotiation for Autonomic Communication

•	 PA security policy governing access to re-
sources.

•	 PD security policy controlling the disclosure
of foreign (missing) credentials.

•	 Cp the set of credentials presented by a client
in a single interaction.

•	 CP the set of active credentials that have been
presented by a client during an interactive
access control process.

•	 CN the set of credentials that a client has
declined to present during an interactive
access control process.

Now, we have all the necessary material to
introduce our interactive access control algorithm
for stateless services, shown in Figure 8.

The intuition behind the algorithm is the fol-
lowing. Once the client has initiated a service
request r with (optionally) a set of credentials
Cp, the interactive algorithm updates the client’s
profile CP and CN (lines 1: and 2:). CP is updated
with the newly presented credentials Cp and CN is
updated with the set difference of what the client

was asked in the last interaction (CM) (set)minus
what he presents in the current one (Cp). Next, the
algorithm consults for an access decision (line
3:). The first step of the access decision func-
tion checks whether the request r is granted by
PA according to the client’s set CP (step 1). If the
check fails, the starting point of the interactive
framework, then in step 2a the algorithm computes
all credentials disclosable from PD according to
CP and from the resulting set removes all already
declined and already presented credentials. The
latter is used to avoid dead loops of asking some-
thing already declined or presented. Then, the
algorithm computes (using the abduction reason-
ing) all possible subsets of CD that are consistent
with the access policy PA and, at the same time,
grant r. Out of all those sets (if any) the algorithm
selects the minimal one.

Example 5 A senior researcher at Fraunhofer
institute FOKUS wants to reconfigure an online
service for paper submissions of a workshop. The
service is part of a big management system hosted

Figure 8. Interactive access control algorithm
Input: r, Cp
Output: grant/deny/ask(CM)
iAccessControl(r, Cp){
 1: CP = CP ∪Cp;
 2: CN = CN ∪(CM\Cp), where CM is from the last interaction;
 3: result = iAccessDecision(r, PA, PD, CP, CN);
 4: return result;
}
iAccessDecision(r, PA, PD, CP, CN){

1.	 check whether r is a security consequence of PA and CP , namely
-	 PA ∪CP |= r, and
-	 PA ∪CP |≠ ⊥.

2.	 if the check succeeds then return grant else
(a)	 compute the set of disclosable credentials CD as
CD = {c | c credential that PD ∪CP |= c} \ (CN ∪CP) ,
(b)	 use abduction to find a set of missing credentials CM (⊆CD) such that:

-	 PA ∪CP ∪CM |= r, and
-	 PA ∪CP ∪CM |≠ ⊥.

(c)	 if no such set exists then return deny
(d)	 else return ask(CM).

}

 15

Interactive Access Control and Trust Negotiation for Autonomic Communication

at the University of Trento’s network that is part of
the Planet-Lab network, formalized in the previ-
ous section. For doing that, at the time of access,
she presents her employee certificate, issued by
a Fraunhofer certificate authority, presuming
that it is enough as a potential user. Formally
speaking, the request comes from a domain fokus.
fraunhofer.de with an attribute credential for an
employee. The set of credentials is:

{authNet(198.162.193.46, fokus.fraunhofer.
de),

credential(AliceMilburk, employee, fraun-
hoferClass1SOA)}

So, according to the access policy the cre-
dentials are not enough to get configure access
and the request would be denied (see rule 14 in
Figure 7). Then, following the algorithm (step 2a
in Figure 8) it is computed the set of disclosable
credentials from the disclosure policy and the
user’s set of active credentials CP. In our case, CP
is the set of credentials mentioned above. Next,
the algorithm computes CD as the need of all
roles higher in position than memberPlanetLab
(see Figure 7, Disclosure Policy part) and the
abduction step (Figure 8 step 2b), with criterion
minimal set cardinality, computes the following
missing sets that satisfy the request:

{credential(AliceMilburk, juniorResearcher,
fraunhoferClass1SOA)},

{credential(AliceMilburk, seniorResearcher,
fraunhoferClass1SOA)},

{credential(AliceMilburk, boardOf Directors,
fraunhoferClass1SOA)}

Then, using role minimality criterion, the
algorithm returns back the need for {credenti
al(AliceMilburk, juniorResearcher, fraunhofer-
Class1SOA)}.

In the next interaction, since Alice is a senior
researcher, she declines to present the requested

credential by returning the same query but with
no entry for presented credentials (Cp = ∅). So,
the algorithm updates the user’s profile marking
the requested credential credential(AliceMilburk,
juniorResearcher, fraunhoferClass1SOA) de-
clined.

The difference comes when the algorithm
recomputes the disclosable credentials as all
disclosable credentials from the last interaction
minus the newly declined one. Next, abduction
computes the following sets of missing credentials
that satisfy the request:

{credential(AliceMilburk, seniorResearcher,
fraunhoferClass1SOA)},

{credential(AliceMilburk, boardOf Directors,
fraunhoferClass1SOA)}

According to role minimality criterion, the
algorithm returns the need for a credential
{credential(AliceMilburk, seniorResearcher,
fraunhoferClass1SOA)}. On the next interaction,
Alice presents a certificate attesting her as a
senior researcher and the algorithm grants the
requested service.

Remark 1 Using declined credentials is essential
to avoid loops in the process and to guarantee
successful interactions in presence of disjunctive
information.

For example suppose we have alternatives in
the partner’s policy (e.g., “present either a VISA
or a Mastercard or an American Express card”).
An arbitrary alternative can be selected by the
abduction algorithm and on the next interaction
step (if the client has declined the credential) the
abduction algorithm is informed that the previous
solution was not accepted. The process continues
until all credentials have been declined (and ac-
cess is denied) or a solution is found (and access
is granted).

16

Interactive Access Control and Trust Negotiation for Autonomic Communication

Technical Guarantees

In the following we show the summary of the
technical results that the access control algorithm
provides. We refer the reader to (Koshutanski,
2005) for full details on the theoretical frame-
work.

Following are the basic guarantees that the
interactive framework provides:

•	 Termination: The interactive access control
algorithm always terminates, that is, in a
finite number of interactions either grant or
deny is returned by the algorithms (resistant
against DoS attacks).

•	 Correctness: If a client gets grant for a ser-
vice then he has a solution for the service,
that is, the algorithm does not grant access
to unauthorized clients.

•	 Completeness: If a client has a solution for
a service request then the algorithm will
grant him access.

The most important thing, also the most dif-
ficult, is to model and prove that a client who has
the right set of credentials and who is willing to
send them to the server will not be left stranded
in our autonomic network and will get grant.

First we need to define two different types
of clients.

Definition 6 (Powerful client) A powerful client
is a client that whenever receives a request for
missing credentials returns all of them.

Definition 7 (Cooperative client) A cooperative
client is a client that whenever receives a request
for missing credentials returns those of them that
he has in possession.

Defining the notion of good clients with respect
to the interactive algorithm is still not enough to
state the practical relevance of the access control
model. We need to introduce the notion of fairness

regarding the access and disclosure control poli-
cies. We define the following two properties:

Definition 8 (Fair Access) A fair access property
guarantees that whenever there is a request for a
service it exists a solution in the access control
policy which unlocks (grants) the service.

In other words, for each resource protected
by the access policy there should exist a set of
credentials (a solution) that grants the resource
according to the policy. Fair access property avoids
cases where the policy specifies a solution for a
service but the solution itself makes the policy state
inconsistent, so that even a client with the right set
of credentials for the service cannot get it.

Definition 9 (Fair Interaction) A fair interac-
tion property guarantees that if a solution for a
service request exists (according to the access
policy) then this solution should be disclosable
by the disclosure control policy.

In other words, any solution for a service should
be potentially disclosable to a client requesting
the service. In an autonomic scenario, where a
service is potentially accessible by any client, fair
interaction property would disclose a solution for
a service to potentially any client requesting it.
So, on one side, we want to be fair and disclose
solutions to clients but, on the other side, we want
to protect and restrict the disclosure of informa-
tion only to selected clients (not to anybody). To
approach this problem we introduce the notion
of hidden credentials.

Informally speaking, a credential is hidden
if an access control system needs it for taking
an access decision, but does not disclose the
need to anybody. Thus, an autonomic server can
dynamically protect the privacy of its policies by
specifying which credentials are hidden and which
are not. This allows a server to restrict access to
certain services only to selected clients.

 17

Interactive Access Control and Trust Negotiation for Autonomic Communication

Now we can define a client with hidden cre-
dentials.

Definition 10 (Client with Hidden Credentials
for a Service) A client with hidden credentials
for a service is any client that has in possession
the hidden credentials for that service and knows
that these are to be pushed to the server.

Now, we have to redefine the fair interaction
property with respect to hidden credentials.

Definition 11 (Fair Interaction with Hidden
Credentials) If a solution for a service exists and
there are hidden credentials for that solution then
all credentials from the solution set which are
not hidden must be disclosable by the disclosure
policy and the set of hidden credentials.

So far, we have introduced all we need to for-
mulate the main guarantees showing the practical
relevance of the access control framework.

• 	 Completeness for a powerful client: If ac-
cess and disclosure control policies guaran-
tee fair access and interaction, respectively,
then a powerful client requesting access to
a service will get grant with the interactive
access control algorithm.

• 	 Completeness for a cooperative client:
If access and disclosure control policies
guarantee fair access and interaction, re-
spectively, then if a cooperative client has
a solution for a service request then he will
get grant with the interactive access control
algorithm.

We have the same claims for powerful and
cooperative clients with hidden credentials.

IMPLEMENTING THE ACCESS
CONTROL FRAMEWORK

This section emphasizes on the practical
relevance of the access control framework and,
particularly, on how the access control model can
be of practical use.

There are two main points relevant to the
implementation of the framework. This first
one is how to cope with the implementation of
the interactive access control algorithm and the
second one is how to integrate the logical model
with the current security standards widely adopted
by IT companies.

For the first point, we will use a logical-based
reasoning system, called DLV (see http://www.
dlvsystem.com) and, particularly, how to employ
DLV in order to perform the basic computations
of abduction and deduction. As for the second one,
we will show how to integrate the logical model
with X.509 certificate framework and OASIS
SAML standard.

Integration with the Automated
Reasoning Tool DLV

For the implementation of the interactive access
control algorithm (presented in Figure 5) we use
the DLV system (a disjunctive datalog system
with negations and constraints) as a core engine
for the basic functionalities of deduction and
abduction. The disjunctive datalog front end (the
default one) is used for deductive computations
while the diagnosis front end is used for abductive
computations. Figure 9 shows the implementation
using the DLV system. The input of the function
iAccessDecision is the requested service r, the
policy for access control PA, the policy for dis-
closure control PD, the set of active credentials
CP and the set of declined credentials CN . Step 1
uses the DLV’s deductive front end. It specifies

18

Interactive Access Control and Trust Negotiation for Autonomic Communication

as input the service request r marked as a query
over the models (r?) computed over PA∪CP. The
output of this step are those models of in which
r is true.

If it exists a model in Step 1 that satisfies r
then it is returned grant (step 1). If no model for
r exists then we use the DLV’s deductive front
end with input PD ∪CP (step 3). In this case, DLV
computes all credentials disclosable from PD
∪CP. Then from the computed set we remove all
credentials that belong to CN and CP .

Once the disclosable credentials are computed
then, in Step 4, we use the abductive diagnosis
front end with the input: the requested service
r, stored in a temporary file with extension .obs
(observations), the just computed set of disclosable
credentials CD stored in a temporary file with ex-
tension .hyp (hypotheses or also called abducibles)
and the third argument is the access policy together
with the active credentials PA∪CP. The two input
files (.hyp and .obs) have particular meaning for
DLV system in the abductive mode.

Figure 9. Implementation of the basic functionalities of deduction and abduction
iAccessDecision(r, PA, PD, CP, CN){
 1: if doDeduction(r, PA∪CP) then return grant
 2: else
 3: CD = {c | PD∪CP |= c} \ (CN ∪CP);
 4: result = doAbduction(r, CD, PA∪CP);
 5: if result = = ⊥ then return deny
 6: else return ask(result);
}
doDeduction(R: Query, P: LogProgram){ check for P |= R?
 1: run DLV in deduction mode with input: P , R? ;
 2: check output: if R is deducible then return true else return false;
}
doAbduction(R: Observation, H: Hypotheses, P : LogProgram){
 1: run DLV in abduction diagnosis mode with input: R, H, P ;
 2: DLV output: all sets Ci that (i) Ci ⊆ H, (ii) P ∪Ci |= R, (iii) P ∪Ci |≠ ⊥;
 3: if no Ci exists then return ⊥
 4: else select a minimal Cmin and return Cmin;
}

Figure 10. X.509 identity and attribute certificates structure

 19

Interactive Access Control and Trust Negotiation for Autonomic Communication

The output of that computation are all possible
subsets of the hypotheses that satisfy the obser-
vations. In that way we find all possible missing
sets of credentials satisfying r. Then we filter
them according to some minimality criteria and
select the minimal set out of them. If no missing
set is found then we return deny else we return
the missing set back to the client.

The automated reasoning tool depends on the
one’s own choice. It can be used any other tool
that supports the basic reasoning services.

Integration with X.509 and SAML
Standards

The framework described so far processes creden-
tials on a high (abstract) level: defines what can
be inferred and what missing is from partner’s
access policy and user’s set of credentials. There
is a need of a suitable certificate infrastructure
for describing participant’s identities and access
rights. A good choice is the widely adopted cer-
tificate standard X.509 (X.509, 2001).

There are two certificate types considered by
the standard: identity and attribute certificates.
Figure 10 shows the structures of the two cer-
tificates.

X.509 identity certificate is used to identify
entities in a network. The main fields of the cer-
tificate’s structure are the subject information, the
public key identifying the subject (corresponding
to the subject’s private key), the issuer information
and the digital signature on the document, signed
by the issuer (with its private key).

X.509 attribute certificate has the same struc-
ture like the identity one with the difference that
instead of a public key field there is a field for
listing attributes and the Subject field is called
Holder (of the attributes).

Referring to the message level, one can adopt to
use the OASIS SAML standard (SAML) for having
standard semantics for authorization statements
among participants in an autonomic network.
SAML offers a standard way for exchanging

authentication and authorization information
between on-line partners.

The basic SAML data objects are assertions.
Assertions contain information that determines
whether users can be authenticated or authorized
to use resources. The SAML framework also
defines a protocol for requesting assertions and
responding to them, which makes it suitable when
modeling interactive communications between
entities in a distributed environment.

We list below the SAML Request/Response
protocol and how we employ it in the interactive
access control framework.

•	 SAML Request: Use the Authorization
Decision Query statement for expressing ac-
cess decision requests. Specify the resource
and action in the respective standard fields
of the access statement.

	 Once an access decision is taken use the
SAML response part.

•	 SAML Response: Use the Authorization
Decision Statement
°	 Permit / Deny: When explicit grant/

deny is returned by the iAccessControl
protocol (see Figure 8).

°	 Indeterminate: When ask(CM) is
returned. In this case, list the missing
credentials in the standard SAML at-
tribute fields, for example,

	 <at t r ibute name=``MISSI NG_
CREDENTIAL’’>Employee ID</at-
tribute>

	 <at t r ibute name=``MISSI NG_
CREDENTIAL’’>Full Professor</at-
tribute>

	 To make the access decision engine Web Ser-
vices compatible we also adopted the W3C
SOAP (see http://www.w3.org/TR/soap)
as a main transport layer protocol. SOAP
is a lightweight protocol for exchanging
structured information in a decentralized,
distributed environment. It has an optional
Header element and a required Body ele-

20

Interactive Access Control and Trust Negotiation for Autonomic Communication

ment. Informally, in the body we specify
what information is directly associated with
the service request and in the header addi-
tional information that should be considered
by the end-point server.

	 So, to request for an access decision on a
message level we have to:
°	 First, attach X.509 Certificates in the

SOAP Header using WS-Security (WS-
Security) specification for that,

°	 Then, place the SAML Request in the
SOAP Body thus making it an input to
the decision engine being invoked.

Having the needed technologies in hands, the
next section describes how the just introduced
standards and protocols can be integrated into
one architecture.

System Architecture

Figure 11 shows the architecture of a prototype
that has been developed, called iAccess. The
bottom most layer in the figure comprises the
integration of the prototype with the Tomcat (see
http://tomcat.apache.org) application server. We
perform all requests over SSL connection. Thus,
assuring message confidentiality and integrity on
the transport layer.

Once an access request is received by the
Tomcat server, it invokes the iAccess engine for
an access decision. As shown in the figure, first,
the engine parses the SOAP envelope, containing
the body and the header elements. Then, it extracts
X.509 (see X.509 technology provider: http://
www.bouncycastle.org) identity and attribute
certificates, and the SAML (see SAML technol-

Figure 11. iAccess architecture

 21

ogy provider: http://www.opensaml.org) request
protocol. Next, the engine performs validation and
verification of the certificates: first for expiration
dates and second for trustworthiness. The latter
is performed according to local databases listing
the trusted identity issuers and, respectively, the
trusted attribute issuers (their public keys). The
two databases are service provider specific.

Remark 2 We point out that the check for trusted
CAs and SOAs is to filter out those certificates
that are issued by unknown (distrusted) certifi-
cate authorities. The fine-grained granularity on
trusted attributes and identities is performed
on the logical level and according to the access
policy.

Once the certificates are validated and verified,
iAccess invokes an ontology alignment module
for mapping the global certificate information
to a local, provider specific, representation. The
same mapping is also performed for the SAML
request protocol information.

The ontology mapping transforms global-to-
local and local-to-global the following informa-
tion:

•	 Certificate attributes
•	 Certificate issuers
•	 Resource names (service requests)
•	 Service actions

These transformations leverage access control
management on the logical level because on this
level there is local (domain specific) syntax for
the representation of the above items.

After the transformation is performed iAccess
invokes the iAccessControl module for an access
decision. The iAccessControl module transforms
certificates’ information and SAML request
to predicates suitable for the logical model, as
described below.

•	 Identity certificates are transformed to
certificate(subject, Issuer: i) predicates,

•	 Attribute certificates are transformed to
credential(holder, Attr: a, Issuer: i) predi-
cates,

•	 SAML access request to grant(Resource: r,
Action: p).

Once an access decision is taken (returned by
the iAccessControl protocol), iAccess maps the
information grant, deny or additional credentials
to their global representation and then generates
the respective SAML Response protocol. After
that, iAccess places a time-stamp for validity
period on the access decision statement and then
digitally signs it to ensure integrity of the infor-
mation. Next, Tomcat server returns the SAML
decision to the entity requested it.

TRUST NEGOTIATION

In an autonomic network scenario servers must
have a way to find out what credentials are required
for clients to get access to resources. Clients, once
asked for the missing credentials, may be unwill-
ing to disclose them unless the server discloses
some of its credentials first, that is, negotiate the
need of sensitive credentials.

If we merge the two frameworks we have the
following open problems:

1.	 Alice wants to access some service of
Bob

2.	 Alice does not know exactly what credentials
Bob needs, so
(a)	 Bob must compute what is missing and

ask Alice,
(b)	 Alice must send to Bob all credentials

he requested.
3.	 In response to 2b, Alice may want to have

some credentials from Bob before sending
hers, so

22

(a)	 She must tell Bob what he needs to
provide,

(b)	 Bob must have a policy to decide how
access to his credentials is granted.

4.	 In response to 2a, Bob may not want to dis-
close all that is missing at once but may want
to ask Alice first some of the less sensitive
credentials, so
(a)	 Bob must have a way to request in a

stepwise fashion the missing creden-
tials.

To combine automated trust negotiation and
interactive access control we assume that both
clients and servers have the three logical security
policies:

1.	 PAR a policy for access to own resources on
the basis of foreign credentials,

2.	 PAC a policy for access to own credentials
on the basis of foreign credentials,

3.	 PD a policy for disclosure the need of (miss-
ing) foreign credentials.

Technically speaking we could merge 1 and 2
into a flat policy for protecting sensitive resources
as in (Yu & Winslett, 2003; Yu, Winslett, &
Seamons, 2003). However, the structured ap-
proach is better because the criteria behind and
likely the administrator of each policy are differ-
ent. Resource access is decided by the business
logic whereas credential access is due to security
and privacy considerations.

For example the negotiation of a sensitive
credential may require activation of credentials
that are not considered from the business logic
for the actual access control process and even
they may be inconsistent with the business logic
rules. Thus, forcing separation between policies
1 and 2 we free the access policy PAR to be ar-
bitrarily complex with almost everything that is
on the (Datalog) access control market (say with
negation as failure, constraints on separation of
duties, or other credentials such as those by Li

and Mitchell (2003).
Rather, the policy for access to own credentials

PAC we restrict to be monotonic because of its
particular nature: once the need for a credential
is disclosed (granted), it is disclosed! In contrast,
a credential needed for access to resources may
come and go due to separation of duty or other
constraints.

The Negotiation Protocol

This sections shows how one can bootstrap from
the simple security policies a comprehensive
negotiation protocol that establishes proper trust
relationships via bilateral exchange of creden-
tials.

We introduce a new set notation O indicating
a set of own credentials with respect to a negotia-
tion opponent.

Now, let us recall the interactive access control
protocol with the following modification. Instead
of returning the set of missing credentials CM
we will transform in into a sequence of single
requests each asking for a foreign credential from
the missing set. Figure 12 shows the new version
of the protocol.

We extended the protocol to work on client
and server sides so that they automatically re-
quest each other for missing credentials. Step 1
of the protocol updates the set of active (foreign)
credentials with those presented at the time of
request. Those presented credentials are typically
pushed by the opponent when initially requests
for a service. After the initial update we go in a
loop where iAccessDecision algorithm is run for
an access decision.

The purpose of the loop is to keep asking the
opponent new solutions (missing credentials)
until a final decision of grant or deny is taken.
The technicality of the protocol is in step 6 where
we represent the request for a missing credential
as a remote invocation of the iAccessNegotia-
tion protocol on the opponent side. In this way,
the new protocol has the same functionality as

 23

iAccessControl protocol if the client does not
negotiate but just replies whether he has a cre-
dential or not.

Step 6 invokes iAccessNegotiation protocol
with an empty set of presented own credentials.
One would ask why we do not push own creden-
tials when requesting for foreign credentials. We
simply want to enforce a negotiation process only
on the basis of opponents’ policies for protecting
credentials rather than burdening the process
with an additional reasoning for deciding what
are one’s own credentials that must be pushed for
each request for a foreign credential. Of course
one can slightly modify the protocol by introduc-
ing a function PushedCredentials(c) that decides
what own credentials an opponent has to present
(Opush) when requesting for a foreign credential
c. Since it is not directly relevant for the protocol
itself we will omit this function in the rest of the
section.

To approach bilateral negotiation first we have
to take into account the following two issues:

•	 Each request for a credential spurs a new
negotiation thread that negotiates access to
this credential.

•	 During a negotiation process parties may
start to request each other credentials that
are already in a negotiation. So, the notion
of suspended credential requests must be
taken into account.

Figure 13 shows the updated version of the
iAccessNegotiation protocol. With its new version,
whenever a request arrives it is run in a new thread
that shares the same session variables CP, CN and
Osusp with other threads running under the same
negotiation process. The set Osusp keeps track of
the opponent’s own credentials that have been
requested and which are still in a negotiation. We
called it a set of one’s own suspended credentials
meaning that each request for an own credential
must be suspended if it appears in Osusp.

Now, if a request for a credential, which is
already in a negotiation, is received the protocol
suspends the new thread until the respective
negotiation thread finishes (step 3). Then, when
the original thread returns an access decision
the protocol resumes all threads awaiting on the
requested credential and informs them for the
final decision (step 20).

Figure 12. The core of the negotiation protocol

Session vars: CP and CN. Initially CP =CN = ∅;.
iAccessNegotiation(r, Cp){
 1: CP = CP ∪Cp;
 2: repeat
 3: result = iAccessDecision(r, PA, PD, CP, CN);
 4: if result = = ask(CM) then
 5: for each c ∈ CM do
 6: response = invoke iAccessNegotiation(c, ∅)@Opponent;
 7: if response = = grant then
 8: CP = CP ∪ {c};
 9: else
 10: CN = CN ∪ {c};
 11: done
 12: fi
 13: until result = = grant or result = = deny.
 14: return result;
}

24

Figure 14 shows the full-fledged negotiation
protocol. The iAccessDispatcher module manages
the negotiation session information. Its role is to
dispatch (assign) to each request/response the right
negotiation process information. It works in the
following way. Whenever a request for a service
is received the dispatcher runs iAccessNegotiation
in a new session process and initializes CP, CN and
Osusp to an empty set (step 2). Then each counter-
request for a credential is run in a new thread
under the same negotiation process (step 4).

On the other hand, whenever an entity requests
a service r at the opponent side, presenting initially
some own credentials Op, the iAccessDispatcher
module invokes iAccessNegotiation (at the op-
ponent side) and creates a new session process
so that any counter-request from the opponent
is run in a new thread under the new negotiation
process.

The intuition behind the negotiation protocol
is the following:

1.	 A client, Alice, sends a service request r
and (optionally) a set of own credentials Op
to a server, Bob.

2.	 Bob’s iAccessDispatcher receives the re-
quests and runs iAccessNegotiation(r, Cp)
in a new process. Here Cp = Op with respect
to Bob.

3.	 Once the protocol is initiated, it updates the
over all set of presented foreign credentials
with the newly presented ones and checks
whether the request should be suspended or
not (steps 1 and 2).

4.	 If no suspended, then Bob looks at r and if it
is a request for a service he calls iAccessDe-
cision with his policy for access to resources
PAR, his policy for disclosure of foreign
credentials PD, the set of foreign presented
credentials CP and the set of foreign declined
credentials CN (step 9).

5.	 If r is a request for a credential then Bob
calls iAccessDecision with his policy for

Figure 13. The negotiation protocol with suspended credentials
Session vars: CP and CN and Osusp. Initially CP =CN = Osusp= ∅;.
iAccessNegotiation(r, Cp){ runs in a new thread
 1: CP = CP ∪Cp;
 2: if r ∈ Osusp then
 3: suspend and await for the result on r’s negotiation;
 4: return result when resumed;
 5: else
 6: Osusp = Osusp ∪ {r};
 7: repeat
 8: result = iAccessDecision(r, PA, PD, CP, CN);
 9: if result = = ask(CM) then
 10: for each c ∈ CM do
 11: response = invoke iAccessNegotiation(c, ∅)@Opponent;
 12: if response = = grant then
 13: CP = CP ∪ {c};
 14: else
 15: CN = CN ∪ {c};
 16: done
 17: fi
 18: until result = = grant or result = = deny.
 19: Osusp = Osusp \ {r};
 20: resume all processes awaiting on r with the result of the negotiation;
 21: return result;
 22:elseif
}

 25

access to own credentials PAC, his policy for
disclosure of foreign credentials PD, the set
of presented foreign credentials CP and the
set of declined foreign credentials CN (step
11).

6.	 In the case of computed missing foreign cre-
dentials CM, Bob transforms it into requests

for credentials and awaits until receives all
responses. At this point Bob acts as a client,
requesting Alice the set of credentials CM.
Alice runs the same protocol with swapped
roles.

7.	 When Bob receives all responses he restarts
the loop and consults the iAccessDecision
algorithm for a new decision.

Figure 14. The negotiation protocol

Session vars: CP, CN and Osusp. Initially CP= CN= Osusp= ∅;.
iAccessDispatcher{
 OnReceiveRequest: iAccessNegotiation(r, Cp)
 1: if isService(r) then
 2: reply response = iAccessNegotiation(r, Cp); in a new negotiation session process.
 3: else
 4: reply response = iAccessNegotiation(r, Cp); in a new thread under the original negotiation session.
 OnSendRequest: <r, Op>
 1: if isService(r) then
 2: result = invoke iAccessNegotiation(r, Op)@Opponent; in a new negotiation session process.
}
iAccessNegotiation(r, Cp){
 1: CP = CP ∪Cp;
 2: if r ∈ Osusp then
 3: suspend and await for the result on r’s negotiation;
 4: return result when resumed;
 5: else
 6: Osusp = Osusp ∪ {r};
 7: repeat
 8: if isService(r) then
 9: result = iAccessDecision(r, PAR, PD, CP, CN);
 10: else
 11: result = iAccessDecision(r, PAC, PD, CP, CN);
 12: if result = = ask(CM) then
 13: AskCredentials(CM);
 14: until result = = grant or result = = deny.
 15: Osusp = Osusp \ {r};
 16: resume all processes awaiting on r with the result of the negotiation;
 17: return result;
 18:elseif
}
AskCredentials(CM){
 1: parfor each c ∈ CM do
 2: response = invoke iAccessNegotiation(c, ∅)@Opponent;
 3: if response = = grant then
 4: CP = CP ∪ {c};
 5: else
 6: CN = CN ∪ {c};
 7: done
 8: await untill all responses are received (await until CM ⊆ CP ∪ CN);
}

26

8.	 When a final decision of grant or deny is
taken, the respective response is returned
back to Alice.

Technicality in the protocol is in the way
the server requests missing credentials back to
the client. As indicated in the figure, we use the
keyword parfor for representing that the body
of the loop is run each time in a parallel thread.
Thus, each missing credential is requested in-
dependently from the requests for the others.
At that point of the protocol, it is important that
each of the finished threads updates presented
and declined sets of foreign credentials properly
without interfering with other threads. We note
that after a certain session time expires each cre-
dential request that is still awaiting on an answer
is marked as declined.

Also an important point here is to clarify
the way we treat declined and not yet released
credentials. In a negotiation process, declining
a credential is when an entity is asked for it and
the same entity replies to the same request with
answer deny. In the second case, when the entity
is asked for a credential and, instead of reply,

there is a counter request for more credentials,
then the thread, started the original request,
awaits the client for an explicit reply and treats
the requested credential as not yet released. In
any case, at the end of a the negotiation process
the client either supplies the originally asked
credential or declines it.

Example 6 Figure 15 shows an example of Alice’s
and Bob’s interactions using the negotiation
protocol on both sides. The policies for access
to resources and access to sensitive credentials
are in notations like in Yu, Winslett and Seamons
(2003) where the Alice’s local credentials are
marked with subscript “A” and Bob’s with “B”,
respectively. Bob’s access policy PAR says that
access to resource r1 is granted if {CA1, CA2}
are presented by Alice. To get access to r2 Alice
should either present {CA1, CA3} or satisfy the
requirements for access to r1 and present CA4.
To get access to r5 Alice should either satisfy the
requirements for r2 and present CA7 or satisfy the
requirements for r1 and present CA6.

We read Bob’s disclosure policy as to disclose
the need for a credential CA2 there should be al-

Figure 15. Example of interoperability of the negotiation protocol

 27

ready disclosed a credential CA1, which by default
is always disclosable. But in contrast, the need
for a credential CA4 is never disclosed by PAR but
expected when r2 is requested. It is an example of
a hidden credential that must be pushed.

Analogously, Bob’s PAC says: to grant access
to Bob’s CB1 Alice must present CA5 and to grant
access to Bob’s CB2 Alice must present CA7.

Following is the negotiation scenario. Alice
requests r5 to Bob presenting empty set of initial
credentials. Alice’s TN Dispatcher detects the
request and creates a new session process await-
ing on Bob’s reply. Next, Bob runs the interac-
tive algorithm on his PAR. The outcome of the
algorithm is the set of missing credentials {CA1,
CA3, CA7} (computed as the minimal one). Then,
Bob transforms the missing credentials in single
requests and asks Alice for them.

Alice’s TN Dispatcher receives the requests
and runs them in three new threads for each of
them, respectively. Next, Alice runs the interactive
access control algorithm on her PAC for each of
the requests and returns grant CA1, deny CA3 and
counter request for Bob’s CB2. Bob replies to the
request for CB2 with a counter request for Alice’s
CA7. Since CA7 has been already requested by Bob,
now Alice suspends the new request and awaits
on the original one to finish its negotiation.

If we look again in the sequence of requests we
recognize than the original thread depends on the

outcome of the suspended one and we come to a
recursive loop (interlock). Since Alice’s suspended
thread has a session timeout, so after it expires
Alice returns to Bob a decision deny. At this point
Alice can choose (automatically) to extend her
session time to allow the negotiation to continue
and eventually to successfully finish.

Next, Bob recalls its interactive access control
for a new decision for r5. The next set of missing
credentials is {CA2, CA6} which Bob transforms to
single requests. The rest of the scenario follows
analogously.

After Alice and Bob successfully negotiate on
Bob’s requests for missing credentials, Bob grants
access to the service request r5.

However, we have not solved the problem of
stepwise disclosure of missing foreign credentials
yet. The intuition here is that Bob may not want
to disclose the missing foreign credentials all at
once to Alice but, instead, he may want to ask
Alice first some of the less sensitive credentials
assuring him that Alice is enough trustworthy
to disclose her other more sensitive credentials
and so on until all the missing ones are disclosed.
Here we point out that the stepwise approach may
require a client to provide credentials that are not
directly related to a specific resource but needed
for a fine-grained disclosure control.

To address this issue we extend the negotiation
protocol with an algorithm for stepwise disclo-

Figure 16. The architecture of the negotiation framework

28

sure of missing credentials. The basic intuition
is that the logical policy structure itself tells us
which credentials must be disclosed to obtain the
information that other credentials are missing.
So, we simply need to extract this information
automatically. We perform a step-by-step evalu-
ation on the policy structure. For that purpose
we use a one-step deduction over the disclosure
policy PD to determine the next set of potentially
disclosable credentials. We refer the reader to
(Koshutanski & Massacci, 2004) for details on
the stepwise algorithm.

Implementing the Trust Negotiation
Framework

Figure 16 shows the architecture of the trust ne-
gotiation framework. JBOSS application server
(see http://www.jboss.org/products/jbossas) uses
TCP/IP sockets to send/receive information. The
functionality of the server has been extended with
the possibility to transform high-level creden-
tial/service requests, understandable by the TN
Dispatcher, to low-level raw data requests suitable
for transmission over TCP/IP connections.

Whenever the TN Dispatcher is initially run
it internally runs the JBOSS application server.
So, when the TN Dispatcher is run it resides in
the memory awaiting for new requests. Once the
JBOSS server receives a request it transforms it
from raw data to a high-level representation and
automatically redirects it to the dispatcher.

On each received request the TN Dispatcher
analyzes the session data from the request and its
local database, and acts as following. If no session
data is specified in the request then the dispatcher
generates new session information (new session
data sets, see Figure 14) and runs the negotiation
protocol with the new session info. If it exists a
session data in the request and the session data
correctly maps to the corresponding one in the
dispatcher’s local database then the dispatcher
runs the negotiation protocol under the existing
session. We remind that the negotiation protocol

is anyway run in a new parallel thread and it
internally updates the session information. The
Trust Negotiation Protocol uses the JBOSS server
methods to send/receive requests.

CONCLUSION

In this chapter we presented a framework on
policy-based access control for autonomic com-
munications. The framework is grounded in a
formal model with the stable model semantics.
The key idea is that in an autonomic network a
client may have the right credentials but may not
know it and thus an autonomic server needs a
way to interact and negotiate with the client the
missing credentials that grant access.

We have proposed a solution to this problem
by extending classical access control models with
an advanced reasoning service: abduction. Build-
ing on top of this service, we have presented the
key interactive access control algorithm that, in
case service request fails, computes on-the-fly
missing credentials that entail the request. We
have also introduced the notion of disclosable
and hidden credentials. The distinction allows
servers to dynamically protect the privacy of
their policies by specifying which credentials are
hidden and which are not and notifying selected
clients for that.

We have identified the interactive access
control model as a way for protecting security
interests with respect to disclosure of information
and access control of both server and client sides.
We have proposed a protocol for leveraging trust
negotiation between two entities involved in an
autonomic communication. The protocol com-
municates and negotiates the missing credentials
until enough trust is established and the service is
granted or the negotiation fails and the process is
terminated. The protocol is run on both client and
server sides so that they understand each other
and automatically interoperate until a desired
solution is reached or denied.

 29

One of the advantages of the approach is that
we do not pose any restrictions on partner’s poli-
cies because the basic computations of deduction
and abduction, performed on the policies, do not
require any specific policy structure. We have also
presented an implementation of the framework
using X.509 and SAML standards.

Open Problems and Future Work

Future work is in the direction of characterizing
the complexity of the framework. Proving which
guarantees the protocol can offer in terms of
interoperability, completeness and correctness
when applied to a practical policy language is
still an open process and will be a subject of
future research.

In the direction of mutual negotiation, future
work is to explore the interoperability of the nego-
tiation framework with the TrustBuilder prototype
(Yu, Winslett, & Seamons, 2003). We believe that
this is an important step toward building a secure
open computing environment.

ACKNOWLEDGMENT

This work was partly supported by the proj-
ects: 2003-S116-00018 PAT-MOSTRO, 016004
IST-FP6-FET-IP-SENSORIA, 27587 IST-FP6-
IP-SERENITY, 038978 EU-MarieCurie-EIF-
iAccess, 034744 EU-INFSO-IST ONE, 034824
EU-INFSO-IST OPAALS.

REFERENCES

Apt, K. (1990). Logic programming. In J. van
Leeuwen (Ed.), Handbook of theoretical computer
science. Elsevier.

Atluri, V., Chun, S. A., & Mazzoleni, P. A (2001).
Chinese wall security model for decentralized
workflow systems. In Proceedings of the Eighth

ACM conference on Computer and Communica-
tions Security, 48-57.

Bertino, E., Catania, B., Ferrari, E., & Perlasca, P.
(2001). A logical framework for reasoning about
access control models. In Proceedings of the Sixth
ACM Symposium on Access Control Models and
Technologies (SACMAT), 41-52.

Bertino, E., Ferrari, E., & Atluri, V. (1999) The
specification and enforcement of authorization
constraints in workflow management systems.
ACM Transactions on Information and System
Security (TISSEC), 2(1), 65-104.

Bonatti, P., & Samarati, P. (2002). A unified fra-
mework for regulating access and information
release on the Web. Journal of Computer Security,
10(3), 241-272.

Damianou, N., Dulay, N., Lupu, E., & Sloman, M.
(2001). The Ponder policy specification language.
In Proceedings of the International Workshop on
Policies for Distributed Systems and Networks
(POLICY), 18-38.

De Capitani di Vimercati, S., & Samarati, P. (2001).
Access control: Policies, models, and mechanism.
In R. Focardi & F. Gorrieri (Eds.), Foundations
of security analysis and design - tutorial lectures
(vol. 2171 of LNCS). Springer-Verlag.

Ellison, C., Frantz, B., Lampson, B., Rivest, R.,
Thomas, B. M., & Ylonen, T. (1999, September).
SPKI certificate theory. IETF RFC, 2693.

Gelfond, M., & Lifschitz, V. (1988). The stable
model semantics for logic programming. In
Kowalski R., & Bowen, K. (Eds.), Proceedings
of the Fifth International Conference on Logic
Programming (ICLP’88), 1070-1080.

Georgakopoulos, D., Hornick, M. F., & Sheth,
A. P. (1995, April). An overview of workflow
management: From process modeling to work-
flow automation infrastructure. Distributed and
Parallel Databases 3(2), 119-153.

30

Kang, M. H., Park, J. S., & Froscher, J. N. (2001).
Access control mechanisms for interorganiza-
tional workflow. In Proceedings of the Sixth
ACM Symposium on Access Control Models and
Technologies, 66-74.

Koshutanski, H. (2005). Interactive access control
for autonomic systems. Unpublished doctoral
dissertation, University of Trento, Italy.

Koshutanski, H., & Massacci, F. (2004, August).
An interactive trust management and negotiation
scheme. In Proceedings of the Second Interna-
tional Workshop on Formal Aspects in Security
and Trust (FAST), 139-152.

Li, J., Li, N., & Winsborough, W. H. (2005).
Automated trust negotiation using cryptogra-
phic credentials. In Proceedings of the 12th ACM
conference on Computer and communications
security, 46-57.

Li, N., Grosof, B. N., & Feigenbaum, J. (2003).
Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions
on Information and System Security (TISSEC),
6(1), 128-171.

Li, N., & Mitchell, J. C. (2003). RT: A role-based
trust-management framework. In Proceedings
of the Third DARPA Information Survivability
Conference and Exposition (DISCEX III), 201-
212.

Li, N., Mitchell, J. C., & Winsborough, W. H.
(2002). Design of a role-based trust management
framework. In Proceedings of IEEE Symposium
on Security and Privacy (S&P), 114-130.

Lymberopoulos, L., Lupu, E., & Sloman, M.
(2003). An adaptive policy based framework for
network services management. Plenum Press
Journal of Network and Systems Management,
11(3), 277-303.

Ruan, C., Varadharajan, V., & Zhang, Y. (2003). A
logic model for temporal authorization delegation
with negation. In C. Boyd & W. Mao (Eds.), Pro-

ceedings of the Sixth International Conference on
Information Security (ISC), 2851, 310-324.

SAML. (2004). Security assertion markup
language (SAML). Retrieved from http://www.
oasis-open.org/committees/security

Sandhu, R., Coyne, E., Feinstein, H., & Youman,
C. (1996). Role-based access control models. IEEE
Computer 39(2), 38-47.

Seamons, K., Winslett, M., & Yu, T. (2001). Li-
miting the disclosure of access control policies
during automated trust negotiation. In Network
and Distributed System Security Symposium.
San Diego, CA.

Shanahan, M. (1989). Prediction is deduction
but explanation is abduction. In Proceedings of
IJCAI’89 (pp. 1055-1060). Morgan Kaufmann.

Sloman, M., & Lupu, E. (1999). Policy specifica-
tion for programmable networks. In Proceedings
of the First International Working Conference on
Active Networks, 73-84.

Smirnov, M. (2003). Rule-based systems security
model. In Proceedings of the Second International
Workshop on Mathematical Methods, Models,
and Architectures for Computer Network Security
(MMM-ACNS), 135-146.

SPKI. (1999). SPKI certificate theory. IETF RFC,
2693.

Weeks, S. (2001). Understanding trust mana-
gement systems. IEEE Symposium on Security
and Privacy.

Winsborough, W., & Li, N. (2004). Safety in
automated trust negotiation. In Proceedings of
the IEEE Symposium on Security and Privacy,
147-160.

WS-Security. (2002, April). Web services security
(WS-security). Retrieved from http://www-106.
ibm.com/developerworks/webservices/library/
ws-secure

 31

X.509. (2001). The directory: Public-key and attri-
bute certificate frameworks. ITU-T Recommenda-
tion X.509:2000(E) | ISO/IEC 9594-8:2001(E).

XACML. (2004). eXtensible Access Control
Markup Language (XACML), from http://www.
oasis-open.org/committees/xacml.

Yu, T., & Winslett, M. (2003). A unified scheme
for resource protection in automated trust nego-

tiation. In Proceedings of the IEEE Symposium
on Security and Privacy, 110-122.

Yu, T., Winslett, M., & Seamons, K. E. (2003).
Supporting structured credentials and sensitive
policies through interoperable strategies for
automated trust negotiation. ACM Transactions
on Information and System Security (TISSEC),
6(1), 1-42.

