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Abstract

In this chapter we propose the security-by-contract (SxC) framework and its techno-
logical implementation for trusted deployment and execution of communicating mobile
applications in heterogeneous environments. The objective is to build the basis for the
opening of the software market of nomadic devices (from smart phones to PDA) to
third party applications.

The intuition of SxC is that applications should come equipped with a security
contract (as in programming-by-contract [4]). In a nutshell, a contract describes the
security relevant interactions that the mobile application could have with the mobile
device. The contract should be accepted by the platform (if compatible with the pol-
icy) at deployment time, and its enforcement guaranteed either by static analysis at
development time or by monitoring at run time.

This paradigm will not replace, but enhance today's security mechanisms, and will
provide a exible, simple and scalable security mechanism for future mobile systems.

1 Introduction

The paradigm of pervasive services [3] envisions a nomadic user traversing a variety of
environments and seamlessly and constantly receiving services from other portables, hand-
helds, embedded or wearable computers. Bootstrapping and managing security of services
in this scenario is a major challenge.

We argue that the challenge is bigger than the "simple" pervasive service vision because
it does not consider the possibilities that open up when we realize that the smart phone in

�This chapter describes some of the research results developed in the course of the EU IST FP6 STREP
Project S3MS (Security of Software and Services for Mobile Systems), www.s3sm-project.org.

yContact author: Dip. Informatica e Telecomunicazioni - via Sommarive 14, Povo (Trento), Italy.
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our pocket has already more computing power than the PC encumbering our desk 15 years
ago.

Current pervasive services, including context-aware services, do not exploit the compu-
tational power of the mobile device. Information is provided to the mobile user anywhere
but the computing infrastructure is centralized [11]. Even when it is decentralized to in-
crease scalability and performance [7, 5], it does not exploit the devices' computing power.

We believe that the future of pervasive services will be shaped by pervasive client down-
loads. When traversing environments the nomadic user does not only invoke services ac-
cording a web-service-like fashion (either in push or pull mode) but also download new
applications that are able to exploit its computational power in order to make a better use
of the unexpected services available in the environment.

A tourist landing in a historical city might download at the airport a tourist guide
application that can route her rented car to those touristic hotspots that are among her
particular interests. The application is being con�gured with mentioned touristic hotspots
and, in order to determine the route to those hotspots, the application needs to interact
with the car's navigation system to determine the current location and to update the route
planning (but only if con�rmed by the driver), and might send travel tips to selected driver's
companions.

This is a pervasive service download because it o�ers local services, we want it exactly
where we need it (e.g. via a bluetooth link at the airport), without bothering a long and
frustrating web search before departing, we want to use it on our mobile or PDA without
connecting to a remote route planner each and every time.

Such scenarios create new threats and security risks on top of the "simple" pervasive
service invocation because it violates the heart of the security model of mobile software in
Java [10] and .NET [21, 14] [14]:

� A pervasive download is essentially untrusted code whose security properties we can-
not check and whose code signature (if any) has no degree of trust1;

� According to the classical security model it should be sandboxed, its interaction with
the environment and the devices own data should be limited;

� Yet this is against the whole business logic, as we made this pervasive download
precisely to have lots of interaction with the pervasive environment!

� In almost all cases this code will be trustworthy, being developed to exploit the
business opportunities of pervasive services.

Another example is services for mobile workers in an ubiquitous environment who have
to share not only data among each other but, if from di�erent enterprizes, may share their
applications as well [17]. Web browser plug-ins, web clients, and collaborative tools are
other examples.

The current security model is highly unsatisfactory: if we download a client in order to
use a service we either trust it fully or not at all. In contrast we need a exible mechanism
that allows the owner of the mobile platform to control which actions of a given application

1Most software is from small companies which cannot a�ord the expences necessary to obtain an opera-
tor's certi�cation and thus will not run as trusted code.
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Criteria Static Analysis In-lining Runtime

Works with existing devices
p

? �
Works with existing applications ? � p

Does not modify applications
p � p

O�ine proof of correctness
p p �

Load-time proof of correctness � p �
May depend on run-time data � p p

Does not a�ect runtime performance
p

? �

Table 1: Enforcement Technology Strengths and Weaknesses

are allowed on a platform. The enforcement of the platform security policies can be taken
at di�erent stages of the mobile application's life-cycle. Each stage will have di�erent
functionality constraints:

Development Deployment Execution

(I) at design and de-
velopment time

(II) after design but
before shipping the
application

(III) when down-
loading the applica-
tion

(IV) during the exe-
cution of the applica-
tion

(I) can be achieved by appropriate design rules and require developer support; (II) and
(III) can be carried out through (automatic) veri�cation techniques. Such veri�cations
can take place before downloading (static veri�cation [23, 20] by developers and operators
followed by a trusted signature) or as a combination of pre and post-loading operations (e.g.,
through in-line monitors [9] and proof carrying code [2, 18]); (IV) can be implemented by
run-time checking [15]. All methods have di�erent technical and business properties. For
example, from an operator's view point:

� working on existing devices would rule out run-time enforcement, and favour static
analysis. Monitors may be used (for properties that could not be proved), but on-
device proof would then not be possible.

� Operators distrusting the certi�cation process could rely on run-time checks, at the
price of upgrading devices' software.

� An operator who wants to be able to run existing applications would prefer run-time
enforcement.

The Table 1 shows some of possible strengths and limitations of each di�erent technology.
The basic idea behind the S3MS project (www.s3ms.org) is to put together these en-

forcement technologies in order to build the Security-by-Contract framework.

1.1 Our Vision

We advocate the notion of Security-by-Contract (S�C) as a mechanism to make it possible
the trustless dissemination of trustworthy code in the pervasive service scenario that we
have just described. The key idea behind S�C is that a digital signature should not just
certify the origin of the code but rather bind together the code with a contract.
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Loosely speaking, a contract is just set of rules describing the security behavior of the
mobile application with its host platform. Some examples of security relevant rules are
silently initiate a phone call or send an SMS, memory usage, secure and insecure web
connections, access to user's address book, con�dentiality of application data, constraints
on access from other applications already on the platform. We discuss informally the syntax
in Section 2 and refer to [1] for details. A mobile application can take a number of forms
such as a Java plug-in for a browser or a .NET assembly to be installed on the mobile phone
virtual machine. Essentially it is a piece of code that we download on our mobile platform
in order to use some services in the surrounding environment.

To understand how this apparently minor addition can dramatically change the reality
of pervasive services let's consider the life-cycle of a mobile client. Figure 1 summarizes the
phases of the application/service life-cycle in which the contract-based security paradigm is
present. Still, mobile systems will be more customizable and trustworthy, and 3rd-parties
services can be used securely.

Figure 1: Application/Service Life-Cycle

At development time a service provider could check its downloadable client (the mobile
application) against a contract template that is provided by operators or other service
brokers. Static analysis could be e�ciently used to check that a mobile application satis�es
the template contract. We discuss this possibility in Section 3.

At the other end of the life-cycle, end users, operators or companies managing the
platform may deploy a platform policy, describing the security behavior expected (or at
least desired) from all applications to be downloaded on the platform. At this stage we
don't need a separate language and contracts can be re-used also for policies.

At deployment time (i.e. when clicking the "download" button) the contract should be
accepted by the platform depending on the actual security policy that the platform has.
This matching step must be supported to avoid that users wishing to download a service
client simply click through their way by accepting all possible bad actions. We discuss the
key issues behind matching in Section 4.

During the execution of the mobile application the platform might opt for run-time
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monitoring the application anyhow (for example in cases where contract matching failed
or there is no trusted signature binding together code and contract. We discuss how this
can be done in Section 5.

The whole architecture of S�C can itself be represented as a service oriented infrastruc-
ture where each of the above mentioned services (matching, static analysis, etc.) can be
represented as a service. We analyze the security functionalities and the threat models of
S�C as a SOA in Section 6.

Finally we conclude our chapter with a some remarks on the role of security in the
broader outlook of S�C.

2 What is a Security Contract

As we have said, a security contract is just a claim on the security relevant actions of the
mobile applet (i.e. the client downloaded on the platform in the pervasive services scenario).

In the S�C framework, a single contract/policy can be seen as a list of disjoint rules
(for instance rules for connections, rules for Personal Identi�cation Module, PIM, and so
on), where each rule is de�ned according to the following grammar:

<RULE> :=

SCOPE [ OBJECT <class> |

SESSION |

MULTISESSION ]

RULEID <identifier>

<formal specification>

Rules can di�er both by SCOPE and RULEID. Scope de�nition reects at which scope
(OBJECT, SESSION, MULTISESSION) the speci�ed contract will be applied. The tag RULEID

identi�es the area of the contract (which security-relevant actions the policy concerns, for
example \�les" or \connections").

Intuitively the session scope de�ne behavior that can belong to a single execution of the
mobile code. The multi-session scope de�ne rules with \memory" that describe properties
that ought to be true across subsequent executions of the code.

We assume that SCOPE and RULEID divide the set of security-relevant actions into non-
interleaving sets so that two rules with di�erent scopes and RULEIDs (in the same contract
speci�cation) cannot specify the same security-relevant actions. This assumption allows us
to perform matching as a number of simpler matching operations on separate rules, as we
will show in Section ??.

The <formal specification> part of a rule gives a rigorous and not ambiguous de�-
nition of the behaviour (semantics) of the rule. Since several semantics might be used for
this purpose (such as standard process algebras, security automata, Petri Nets and so on).
In the framework of the S3MS project the industry partners of the consortium have done a
careful requirements analysis in order to capture the key business needs (see www.s3ms.org).
Some of the examples of desired security \contracts" for mobile applications are detailed
below:

� send no more than a given number of messages in each session;
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� only loads each image from the network once;

� do not initiate calls to international numbers;

� only makes call to �xed premium SMS numbers;

� do not send MMS messages.

� connects only to its origin domain.

� The length of a SMS message sent does not exceed the payload of a single SMS
message.

and so on.
Such requirements have been further distilled in the minimal characteristics of contrac-

tual features that should be captured and demonstrated:

� permitting or prohibiting the activation or deactivation of a security relevant service
(e.g. opening a communication, sending an SMS, starting an application, modifying
the address book etc.)

� presence of past events as a pre-requisite for allowing another present event (e.g. the
user con�rmation before an SMS is sent or a image is downloaded)

� cumulative accounting of events (e.g. downloading at most 5MB of images and sending
at most 3 SMS during a day time).

The next step is of course the speci�cation of the security-by-contract language that is
able to capture the above features. We refer to [1] for details and here we show informally
some examples in order to give a taster.

Example 2.1 (Requirements G-37 ([16]) ConSpec: \The MIDlet only establishes HTTP
connections".

SCOPE Session

SECURITY STATE

BEFORE javax/microedition/io/Connector.open(java/lang/String url)

PERFORM

url.startsWith("http:") -> { skip; }

BEFORE javax/microedition/io/Connector.open(java/lang/String url, int mode)

PERFORM

url.startsWith("http:") -> { skip; }

BEFORE javax/microedition/io/Connector.open(java/lang/String url, int mode,

boolean timeouts)

PERFORM

url.startsWith("http:") -> { skip; }

Example 2.2 Let us consider an application's contract which includes two rules: one for
using HTTPS network connections and the other for restricting sending messages.

� The application only uses HTTPS network connections.
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� No messages are sent by the application.

The corresponding ConSpec speci�cation follows:

MAXINT 10000 MAXLEN 10

RULEID HIGH_LEVEL_CONNECTIONS

SCOPE Session

SECURITY STATE

boolean opened = false;

BEFORE javax.microedition.io.Connector.open(string url)

PERFORM

url.startsWith("https://") && !opened -> { opened = true; }

url.startsWith("https://") && opened -> { skip; }

RULEID SMS_MESSAGES

SCOPE Session

SECURITY STATE

BEFORE javax.wireless.messaging.MessageConnection.send

(javax.wireless.messaging.TextMessage msg)

PERFORM

false -> { skip; }

AFTER javax.wireless.messaging.MessageConnection.send

(javax.wireless.messaging.TestMessage msg)

PERFORM

false -> { skip; }

3 Static Analysis

Static analysis provides a way to verify that an application's code complies to the ap-
plication's declared contract, but it needs to be performed before actually deploying the
application, as the technology is too complex to be run on the target device. Static analysis
therefore needs to be used in conjunction with other technologies, which will help relaying
the proof provided by a static analysis tool to the actual device, such as:

Digital signatures. The most classical way to use static analysis is to make the use of a
static analysis tool one of the conditions for the generation of digital signature for an
application, for instance as part of a systematic certi�cation program.

Proof-carying code. The static analysis tool is used to build a correctness proof, which
is sent over with code and veri�ed on the device. This technology relies on the fact
that it is much easier to verify a proof than to actually infer the information required
to build it. It is for instance used by the Java bytecode veri�er used in all Java ME
devices.

On-the-y analysis. The static analysis tool runs during the deployment process. This
of course supposes that the tool can run fast enough, and that the deployment process
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(a) Automaton 1 (b) Automaton 2

Abbreviations for JAVA APIs:

joc
:
= io.Connector.open(url)

s(url)
:
= url.startsWith("https://")

ajms
:
= after MessageConnection.send(message)

bjms
:
= before MessageConnection.send(message)

s0
:
= initial state, the system is staying in this state until it sends the message

Figure 2: Automata for the Contract of Ex. 2.2

occurs over a secure connection, in order to guarantee that the application actually
originates from a server that uses the appropriate static analysis tools.

Such technologies are not the main focus of the S3MS project, which looks at the core
technologies required for the use and enforcement of contracts, while minimizing the impact
on the infrastructure itself. The fact that several technologies can be used for enforcement
is actually an advantage for S�C, as it reduces the constraints on the deployment of the
technology. In particular, the fact that S�C can rely on digital signatures is a very strong
point, because all mobile application frameworks already support digital signatures as a
way to guarantee that an application has been properly certi�ed, so the adaptation of the
device for supporting S�C' static analysis can be minimal. In some cases, it simply consists
in the use of a speci�c public key.

There is a strong incentive for application developers to use static analysis tools during
the development process: static analysis tools are by essence imperfect, because they need
to reason on an approximation of the application's behavior. Therefore, static analysis
tools are often unable to prove that an application veri�es a property, although it actually
veri�es it. Static analysis tools usually make assumptions about the developer's behavior,
and each tool favors some programming habits, that happens to suit the way in which the
tool is built. Here are a few examples of such habits:

Programming patterns. Most static analysis tools are able to get better results if the
developers provide code that matches speci�c programming patterns. Such patterns
are usually well known, and often correspond to the typical uses of APIs.

Program annotations. Some static analysis programs are able to use additional infor-
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mation entered by the developer as annotations. This information is used to make
the analysis more precise, usually at points where the algorithms have di�culties in-
ferring the information by themselves. Annotations can also be a way to make the
analysis of a program faster.

Both programming patterns and program annotations can be useful with the algorithms
used in S�C.

To show the feasibility of the approach in the S3MS project we have extended to S�C
an industrial tool, that has been used to enforce security policies de�ned by operators.
It is based on a rather simple analysis, based on abstract interpretation. The analysis is
interprocedural, but it relies heavily on a method-local analysis. In particular, the tool
infers very limited information about sequences of operations across methods. The Java
ME static analysis tool is therefore not intended to be the only code-contract compliance
veri�cation method. Its objective is here to verify as many contract properties, in order to
reduce the runtime overhead. Initially, the Java static analysis tool has been designed for the
veri�cation of a �xed set of rules, most of them being hard-coded. Then, the purpose of this
section is to expose the development of generic veri�ers in the tool. Generic veri�ers, which
are well suited for contract veri�cation, satisfy the high-level business requirements speci�ed
in S�C. They can be used in several scenarios, either o�-line, before the deployment, or
on-line, during the deployment (if the performance level is su�cient).

In the context of the S3MS project, the static analysis implemented by Trusted Logic
is able to determine a Java virtual machine state (stack, frame, heap) as well as any action
on this state (API method invocation or heap accesses). On the opposite, it is not able to
enforce temporal security requirements(e.g., delay between operations). Thus, API Usage,
API Usage Restrictions and Mandatory Sequences can only be partly veri�ed by the static
analysis.

API Usage (Restrictions) This is the simple category of generic veri�ers to implement
in the Java static analysis tool. The characteristic of such a veri�er should be as follows:

� It requires to register (for instance through Java listener mechanism) to a �xed list
of API method events identi�ed by the method signature.

� It should be able to compare expected (contract) and observed (static approxima-
tion) registered method arguments, possibly ignoring some of the arguments: in the
Connector.open("http://"*, READ, *) expected expression, the timeout parame-
ter could take any value.
In addition, note that the argument comparison is delegated to the abstract domain
of each type of value and also the precision of the contract may di�er from a value
to another. In the context of the S�C project, the tool should at least support these
expressions:

Boolean Domain. A requirement on boolean values could be expressed by a con-
crete value in tuple ftrue; falseg or by any value (�).

Integer Domain. A requirement on integer values could be expressed by a concrete
value in each associated range (e.g., [�128; 127] for byte) or by any value (�).
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Floating Point Domain. Floating point values are not supported by ConSpecsim-
ilar to integer values (a concrete value or any value).

String Domain. String requirements are the most important elements in the context
of Java mobile application certi�cation since strings are used for any sensitive
operations in the application such as connection URLs. Thus, any standard
string comparisons in Java should be supported both by ConSpec and the sta-
tic analysis tool. A minimal list of string requirements must contains: string
pre�x(es) and string su�x(es) requirements, string's equality, string's length.

Reference Domain. About references, requirements should be limited to the tuple
fnull; < not null >; �g. In addition, the < not null > requirement may specify
a speci�c instance type for simple references, while for arrays it may specify an
array element type, a dimension and an array length.

Mandatory Sequences Some of the sequencing requirements could be expressed in a
generic manner too. In the context of the S�C project, the Java static analysis tool only
supports sequencing requirements that are limited to sequences of events local to a method
body. Thus, it could explore the application control ow graph regardless of the concurrency
issues on mobile applications.

A generic veri�er handling sequencing requirements has the following characteristics:

� It should be able to extract from the ConSpec policy the association state variable
updates and related events.

� Then, it should construct in a generic manner a control ow graph branch that should
be matched to the analysed one.

Example 3.1 Here is provided an example of the de�nition of the Mobius security require-
ment G-27 ([16]) in ConSpec: \The application does not send messages in a loop".

SCOPE Session

SECURITY STATE

bool loop = false;

BEFORE enterloop // Unexisting event modifier

PERFORM

TRUE -> { loop = true; }

BEFORE exitloop //Unexisting event modifier

PERFORM

TRUE -> { loop = false; }

BEFORE javax/wireless/MessageConnection.send(javax/wireless/Message msg)

PERFORM

!loop -> { skip; }
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4 Contract-Policy Matching

In order to de�ne the matching between a contract we abstract from a particular formal
speci�cation2, identifying the necessary abstract constructs for combining and comparing
rules. Moreover, we assume that rules can be combined and compared for matching only if
they have the same scope. This assumption allows us to reduce the problem of combining
rules to the one of combining their formal speci�cations, without considering scopes.

We have identi�ed the following abstract operators (C and P indicate a generic contract
and policy, respectively):

� [Combine Operator �] Spec = �i=1;:::;nSpeci
It combines all the rule formal speci�cations Spec1, : : :, Specn in a new speci�cation
Spec.

� [Simulate Operator �] SpecC � SpecP

It returns 1 if rule formal speci�cation SpecC simulates rule formal speci�cation
SpecP , 0 otherwise.

� [Contained-By Operator v] SpecC v SpecP

It returns 1 if the behaviour speci�ed by SpecC is among the behaviours that are
allowed by SpecP , 0 otherwise.

� [Traces Operator] S = Traces (Spec)
It returns the set S of all the possible sequences of actions that can be performed
according to the formal speci�cation Spec.

We assume that the above abstract constructs are characterized by the following prop-
erties:

Property 4.1 Traces (Spec1 � Spec2) = Traces (Spec1) [ Traces (Spec2)

Property 4.2 Spec1 v Spec2 , Traces (Spec1) � Traces (Spec2)

Property 4.3 Spec1 � Spec2 ) Traces (Spec1) � Traces (Spec2)

De�nition 4.1 (Exact Matching) Matching should succeed if and only if by executing
the application on the platform every trace that satis�es the application's contract also
satis�es the platform's policy:

Traces
�
�i=1;:::;nSpec

C
i

�
� Traces

�
�i=1;:::;mSpec

P
i

�

De�nition 4.2 (Sound Su�cient Matching) Matching should fail if by executing the
application on the platform there might be an application trace that satis�es the contract
and does not satis�es the policy.

De�nition 4.3 (Complete Matching) Matching should succeed if by executing the ap-
plication on the platform every traces satisfying the contract also satisfy the policy.

2Interested readers can �nd in [8] an example of exploitation of our matching algorithm for automata-
based rule speci�cations
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Figure 3: Contract-Policy Matching Problem

By applying Def. 4.2 we might reject \good" applications that are however too di�cult
or too complex to perform. On the other hand, Def. 4.3 may allow \bad" applications
to run but it will certainly accept all \good" ones (and \bad" applications can later be
detected, for instance, by run-time monitoring).

The algorithm is generic since it does not depend on the formal model adopted for
specifying the semantics of rules. Namely, it is de�ned by means of the abstract constructs
discussed in the previous Section. Therefore, to actually exploit the algorithm it will be
su�cient to have an implementation of such constructs in the formal language adopted for
specifying rules.

As shown in Fig. 3, the matching algorithm takes as inputs two rule sets RC and RP

representing respectively the contract and the policy to be matched. The algorithm checks
whether or not RC \matches" RP .

Algorithm 1 lists the pseudo code of the MatchContracts function, which represents the
root function of the whole algorithm. Basically, the algorithm works as follows. First of all,
both rule sets RC and RP are partitioned according to the scope of the rules. As already
mentioned, this partition is necessary because in the S�C framework comparison of rules
starts only within a certain scope. Created two sequences of scope-speci�c rule sets (one for
the contract and one for the policy), the algorithm checks if each rule set in the sequence of
the contract matches the corresponding rule set in the sequence of the policy (lines 3-11).
In other words, we match rules within the same scope. The match is checked by calling the
MatchRules function (lines 4-6) that we discuss in the next paragraph. If all succeeds (line
11), than the contract matches the policy. Otherwise, matching fails.

Matching Rules with the Same Scope. Matching between rules is performed by the
MatchRules function (Algorithm 2). Since the rules of the two input sets RC and RP have
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Algorithm 1 MatchContracts Function

Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1: Partition RC according to the SCOPE of the rules
2: Partition RP according to the SCOPE of the rules
3: if rules with SCOPE SESSION do match (call to the MatchRules function) then
4: if rules with SCOPE MULTISESSION do match (call to the MatchRules function) then
5: for all classes in policy do

6: if rules with SCOPE OBJECT do match (call to the MatchRules function) then
7: skip
8: else

9: return(0)
10: end if

11: end for

12: return(1)
13: end if

14: end if

15: return(0)

the same scope, before starting the match the algorithm cleansRC andRP removing the tag

SCOPE from each rule. As a consequence, two sets LC and LP of pairs
�
IDC=P ; SpecC=P

�

are built. Now the algorithm is ready to perform the contract-policy match. Each pair in
LP is compared with the set LC by means of the MatchSpec function (line 4). When a
match is not found for a pair (line 6), i.e. the MatchSpec function returns 0 and that pair
is stored in a rule set LP

failed (line 7).

If for all rules in LP there exists a match with LC , i.e. the MatchSpec function returns
1 for each pair in LP so that LP

failed = ;, then the match between rules succeeds and the

algorithm returns 1 (lines 10-11). Otherwise, if LP
failed 6= ; (i.e. there are no rules in LC

that match with the rules of LP
failed) then the algorithm performs a last \global" check.

More precisely, the combination of the rules in LC is matched with the combination of the
rules in LP

failed (line 13). If also this match does not succeed, then the algorithm returns 0,
otherwise it returns 1.

Matching Speci�cations. The MatchSpec function (Algorithm 3) checks the match
between a set of pairs LC =


�
IDC

1 ; Spec
C
1

�
; : : : ;

�
IDC

n ; Spec
C
n

��
and a pair

�
IDP ; SpecP

�
representing respectively the rules of the contract and a rule of the policy to be matched.
The function returns 1 in two situations:

1. there exists a pair
�
IDC ; SpecC

�
in LC that matches with

�
IDP ; SpecP

�

2. the combination of all the speci�cations in LC matches with
�
IDP ; SpecP

�

Otherwise, the function returns 0.

Matching is performed as follows. If there exists a pair
�
IDC ; SpecC

�
in LC such that

IDC is equal to IDP (line 1), then the algorithm checks the hash values of the speci�cations
SpecC and SpecP . Matching succeeds if they have the same value (line 2). Otherwise, the
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Algorithm 2 MatchRules Function

Input: rule set RC , rule set RP (both containing rules with the same SCOPE)
Output: 1 if RC matches RP , 0 otherwise
1: Remove tag SCOPE from all the elements of RC and save the new list LC

2: Remove tag SCOPE from all the elements of RP and save the new list LP

3: for all
`
IDP ; SpecP

´
in LP do

4: if there exists a rule in LC that matches
`
IDP ; SpecP

´
(call to the MatchSpec function) then

5: skip
6: else fmay return ; for e�ciencyg
7: add the element

`
IDP ; SpecP

´
to the list LP

failed

8: end if

9: end for

10: if LP
failed is empty then

11: return(1)
12: else
13: call MatchSpec with the combination of the contracts in LC and the combination of the policies in

LP
failed and return the result

14: end if

algorithm checks if SpecC simulates SpecP (line 4). If this is the case, then the matching
succeeds, otherwise the more computationally expensive containment check is performed
(line 6). If also this check fails, the algorithm ends and matching fails (because the rules
with the same ID must have the same speci�cation).

If there exists no pair in LC such that IDC is equal to IDP (line 11) then the algorithm
checks the match between the combination of all the speci�cations in LC and

�
IDP ; SpecP

�
(line 12).

Algorithm 3 MatchSpec Function

Input: LC =
˙`
IDC

1 ; Spec
C
1

´
; : : : ;

`
IDC

n ; Spec
C
n

´¸
,

`
IDP ; SpecP

´
Output: 1 if LC matches

`
IDP ; SpecP

´
, 0 otherwise

1: if 9
`
IDC ; SpecC

´
2 LC ^ IDC = IDP then

2: if HASH(SpecC) = HASH(SpecP ) then
3: return(1)
4: else if SpecC � SpecP then

5: return(1)
6: else if SpecC v SpecP then

7: return(1)
8: else fRestriction: if same ID then same speci�cation must matchg
9: return(0)
10: end if

11: else
12: MatchSpec

““
�; �(IDC ; SpecC)2LC

”
;
`
�; SpecP

´”
13: end if

5 Run-time Enforcement on Java ME

Java 2 Micro Edition (J2ME) consists of three distinct layers, the Mobile Information
Device Pro�le (MIDP), the Connection Limited Device Con�guration (CLDC) and the
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Kilo Virtual Machine (KVM), as shown in Fig. 4. Each of these layers provides a speci�c
security support.

Figure 4: Java 2 Micro Edition run-time environment

The security support provided by the CLDC [24] concerns the low level and the ap-
plication level security. To execute the MIDlet, the CLDC adopts a sandbox model, that
requires that: the MIDlet has been preveri�ed; the MIDlet cannot bypass or alter standard
class loading mechanisms of the KVM; only a prede�ned set of APIs is available to the
MIDlet; the MIDlet can only load classes from the archive it comes from (i.e. from the Jar
�le including it); and, �nally, that the classes of the system packages cannot be overridden
or modi�ed.

The security support provided by the MIDP [12, 13] de�nes a set of protection domains,
and pairs a set of permissions with each of these domains. Each MIDlet that runs on the
device is bounded to one of these protection domains, and this determines the value of its
permissions. A protection domain is assigned to a MIDlet depending on the who signed the
MIDlet itself, and can be: Manufacturer, Operator, Identi�ed Third Party and Unidenti�ed
Third Party. If the MIDlet is not signed, then is paired with the Unidenti�ed Third Party
protection domain. The permissions refer to the operations that the MIDlet can perform
during its execution and the value that can be paired with them can be either allowed or
user. As an example, the javax.microedition.io.Connector.http permission refers to HTTP
connections. If the value is allowed, the permission is granted, otherwise a user interaction
is required to enter the value of this permission.

5.1 S�C Security

The S�C framework enhances the J2ME standard security support by enforcing security
policies at run-time, i.e. the last stage of the application life-cycle described in Fig. 1. The
security policy is de�ned through the ConSpec language, as previously seen for contracts,
and de�nes which security relevant actions the MIDlet can perform during its execution. In
particular, the actions we are interested in are the methods of the J2ME core classes that
perform interactions with the underlying device. As an example, opening a connection with
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a remote partner is considered a security relevant action, because the connection could be
exploited by the MIDlet to send personal data to an unknown entity, while the conversion
of an integer value into a string is a negligible action from the security point of view. The
policy pairs each method with a set of conditions that must be satis�ed before and/or after
the execution of the method itself. For example, these conditions may concern the value
of the method parameters or the value of some policy variables. With respect to the static
analysis, the runtime enforcement can evaluate conditions that depend on input data. As
an example, if we want that the security policy allows connections with remote servers only
if the target URL begins with a given pre�x, e.g. \http://www.google.it/", this control
can be implemented by pairing a condition that checks the URL parameter value before
the execution of the open connection method. This value could be obtained by the MIDlet
as an input parameter, or as a result of a previous operation. The security policy can also
take into account the state of the execution, or de�ne dependencies among the execution
of actions, i.e. it can de�ne the order in which actions are performed. As an example,
the security policy can state that only three HTTP connections can be opened at the same
time, or that further HTTP connections cannot be opened after that an HTTPS connection
has been opened.

With respect to the standard J2ME security support, the security policies supported by
the S�C framework de�ne �ner granularity controls and an history-based monitoring of the
MIDlet. As a matter of fact, the policy de�nes the sequences of operations that the MIDlet
can execute. In this way, the right of the MIDlet to execute an action does not depend on
the actions itself only, but also on all the other actions that have previously been executed
by the MIDlet.

From the architectural point of view, the enforcement of a security policy during the
execution of a MIDlet is performed through the integration in the J2ME architecture of two
components: a Policy Decision Point (PDP), that evaluates the current security relevant
action against the security policy, and a MIDlet monitoring component, that intercepts the
security relevant actions performed by the MIDlet during its execution, invokes the PDP for
the evaluation of the policy, and that enforces the decision taken by the PDP. This implies
that the S�C runtime support works with existing MIDlets, but requires the upgrade of
the software of mobile devices.

Several solutions can be possible to integrate the MIDlet monitor component in the
J2ME architecture. As an example, the system calls that the KVM performs on the op-
erating system of the underlying mobile device could be intercepted by the monitor and
considered as security relevant actions. However, this solution has not been adopted because
we are interested in monitoring the MIDlet behaviour at methods level. Moreover, since
the set of system calls could be di�erent on distinct mobile devices, de�ning the security
policy in terms of system calls prevents the portability of the security policy.

Another solution is the one that exploits the permissions de�ned by MIDP. In this case,
the monitor could be embedded in the MIDP component that evaluate the permission, that
is invoked by the J2ME every time that an action that involves a permission is executed.
As an example, let us suppose that the MIDlet requests to open an HTTP connection with
a remote URL by exploiting the javax.microedition.io.Connector class of the MIDP. In this
case, the value of the javax.microedition.io.Connector.http permission decides whether the
HTTP connection can be established. However, this solution de�nes as security relevant
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actions only the ones that are also paired with a permission. Moreover, this solution does
not allow to perform the test of the security policy after the execution of the security
relevant action, because the MIDP permissions are evaluated only before the execution of
the action.

The adopted solution is based on the modi�cation of the J2ME platform. As a matter
of fact, we choosed a subset of the methods of the API provided by MIDP and CLDC as
set of security relevant actions, and the MIDlet monitoring component has been embedded
in the J2ME architecture by modifying the source code of these methods. The modi�cation
simply consists in inserting the invocation of the PDP at the beginning and at the end of the
source code that implements these methods. In this way, every method of the J2ME could,
in principle, be de�ned as security relevant action. If the result of the invocation of the
PDP is negative, i.e. the execution of the action is denied according to the security policy,
a SecurityException error is thrown by the method. The MIDlet could be instrumented
to manage this exception, and in this case it continues running, otherwise it fails. The
resulting architecture is described in Fig. 5.

Figure 5: Java 2 Micro Edition run-time monitoring

The Policy Decision Point (PDP) is the component of the architecture that decides
whether a given security relevant method can be performed in a given state according to
the policy. The PDP is invoked by the MIDlet monitor twice for each security relevant
method that the MIDlet tries to execute, and this invocation reports to the PDP the
method full name, its parameters, the name of the MIDlet, an ID of the MIDlet and a ag
that speci�es whether the invocation has been made before or after executing the method.

To evaluates the security policy, the PDP could need the value of some policy variables.
As an example, a policy could allow to open a further network connection only if this MIDlet
has opened less than X connections. In this case, the number of connections is represented
by a policy variable, and the PDP has to retrieve the value of this variable to decide whether
a new connection can be opened, and to increase the variable value to represent the fact
that a new network connection has been opened. In these cases the PDP interacts with the
Policy Information Service (PIS). The PIS is a further component of the S3MS framework
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architecture that is in charged of managing the state of the policy. The PDP could also
need some information about the current state of the device to evaluate the policy. As an
example, a policy could state that an SMS message can be sent only if the battery level
is above a given threshold. In this case, the PDP interacts to a further component of the
architecture the System Information Service (SIS). In particular, the following information
can be requested to the SIS: get date and time, get CPU load, get free memory size, get
network type, get battery level.

6 S�C as a Service Oriented Architecture

This section presents the service-oriented architecture of the S�C framework in the spirit
of the SECSE conceptual model. The architecture consists of several layers, de�nes the
S�C services provided by the S�C framework, and has been designed with the following
goals in mind:

� The application/service life-cycle (as shown in Fig. 1) is quite complex and a number
of stake-holders are involved; at least two: developer and user. The developer is the
subject that wrote the application code, while the user is the mobile device owner that
wants to execute the application. Another stake-holder is the application provider,
who distributes the applications to the users. However, the stake-holders number is
often bigger when some framework tasks are outsourced to third parties. Obviously,
the various phases of the development, deployment and execution cycle require that
data elements are to be exchanged between stake-holders. Consequently, one set of
functions of the S�C architecture is concerned with protection of the communication
and the exchanged data elements between stake-holders.

� In a real business model some support for accounting, charging and billing needs to
be provided which requires that service usages, e.g. downloading the client.

� For a certi�cation process trust relationships between stake-holders need to be estab-
lished. We do not require that this is done explicitly, but we rely on a certi�cation
infrastructure that manages public key certi�cates for digital signatures. The word
"trust" here refers to the authenticity and integrity of exchanged data elements such
as code, contract, proof and policy. Speci�cally, authenticity and integrity of data
elements becomes important when one thinks about that in-lining of code (i.e. code
is added to the byte-code of a application) for contract and policy compliance is done
by a third party.

In order to de�ne the architecture we have carried a careful threat analysis which is
reported in the S3MS deliverables and is synthetised in Fig. 6. It combines parties and
data elements and identi�es possible threats.

Code, contracts and policy are maintained in the domain of the application, service
developer, operator, and therefore the protection that they need is guaranteed by the S�C
framework itself. Let's consider the case of static analysis:

By the developer. In that case, the developer uses the static analysis tool during the
development process in order to verify that the application matches its contract. A
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Figure 6: Threat Analysis

successful result, in which the static analysis tool is able to prove that the application
actually complies with its contract, can then be used by the developer as a support
to claims about the innocuity of the application.

By the application provider. The application provider acts as a producer and distrib-
utor of the application, pushing it for deployment by network and portal operators.
After reviewing the application's contract and ensuring that it is compatible with
typical policies, the application provider will verify as part of the quality assurance
process that the application actually satis�es its contract, before o�ering it for de-
ployment.

By the application portal/network operator. The operator in charge of the applica-
tion's deployment (whether it is an application portal operator or a network operator)
usually has contractual obligations regarding the content that it proposes for down-
loading. It will therefore verify that an application's contract matches its policies,
and that the corresponding application matches its application contract.

Another example, the proof of compliance may be given as PCC (proof-carrying-code,
see [18]) in which case it is maintained in the domain of the developer. Policies are a concern
of the user and the mobile network operator. In the S3MS project KTH has developed a
PCC for Java that is currently visible on the web site of the project among the deliverables.

The analysis of the threats in the communication between the stake-holders during
the application life-cycle showed a number of low-level security issues that do not rely on
the S�C feature and therefore must be secured independently: eavesdropping, modifying
request or response, masquerading, forgery of request or response, authorization violation.
The �rst four threats obviously impact the overall security of S�C as no guarantees on the
authenticity and integrity of S�C components and policy can be given without providing
some security mechanisms for S�C .
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DoS attacks can be run against any of the parties and may block them from providing
services. As an example, running a DoS attack against a party that performs the contract
and policy matching, prevents the users that need this service to execute their applications.
Taking the threat analysis and goals from above in account and following the de�nition of
a security architecture given in [22], a layered S�C architecture with a strict separation be-
tween and allocation of services to the layers is motivated. Our proposed S�C architecture
di�erentiates four layers as depicted in Fig. 7.

Figure 7: S�C Architecture

The Service/Application Layer de�nes the top layer of the architecture, and rests on
the S�C layer. The services being provided depend on the usage scenario of the service
layer:

� The user experiences the application layer as the layer where the downloaded mobile
applications are being executed.

� For the developer the layer integrates the development tools that are being used for
the implementation of the mobile application.

� Lastly, the third party runs its certi�cation process in this layer.

The S�C services, being part of the S�C layer, are detailed on the left column of Table 2.
These services are invoked by the user to download code (from the developer or a third
party) and to initiate speci�c S�C services. The services map to the enforcement methods
that are applicable along the softwar life-cycle. To run an application on a mobile device,
a user may �rst get the application code and the contract, analyse code and contract to
check their compliance, performs the matching of contract against the platform policy and
then, if all previous steps were successful, executes the downloaded application. Eventually,
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the execution may be monitored. Similar interaction patterns can be derived for the other
S�C services.

Table 2: S�C services
Service Local Remote

get(Code, Contract) on-line on-line
analyze(Code, Contract) N/A o�-line
inline(Code, Contract) N/A o�-line
inline(Code, Policy) on-device on-line/o�-line
match(Contract, Policy) on-device on-line
monitor(Code, Policy) on-device N/A
check(Code, Contract, Proof) on-device on-line
proofGen(Code, Contract) N/A o�-line
manage(Policy) on-device on-line/on device

get(Code, Contract) This service returns the requested code and contract from either
the developer or a third party.

analyze(Code, Contract) Code and contract are analysed for compliance and, if suc-
cessful a positive result is returned to the caller; and a negative result otherwise.

inline(Code, Contract) The code is submitted to the in-lining service for code and con-
tract compliance assurance. This service returns the in-lined code, i.e. code that has
been rewritten in order to embed a monitor directly in the code itself.

inline(Code, Policy) The code is submitted to the in-lining service for code and policy
compliance assurance. This service returns the in-lined code.

match(Contract, Policy) Contract and policy are analysed and the compliance of con-
tract to policy is checked. If compliance can be established a positive, otherwise a
negative result is returned.

monitor(Code, Policy) The monitoring of the code with respect to the policy is initiated.
The monitoring terminates if a policy violation is being detected.

check(Code, Contract, Proof) The proof is checked against the given code and con-
tract. If the check is successful a positive result is returned; otherwise a negative
result is returned.

prove(Code, Contract) The compliance of code and contract is established and a re-
spective proof is returned.

manage(Policy) The service enables a party to create, update or delete its own policies.
An updated policy is returned (in case of the deletion of a policy nothing is returned).

Depending on the complexity of the code, its contract and the policies to be obeyed,
execution of some of the S�C services is demanding with respect to computational power
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and memory capacity of the executing devices. Considering mobile applications being
executed on current constrained mobile devices, it is obvious that some services cannot be
executed on these platforms. This requires to outsource respective services. In Table 2 we
consider two interesting cases from the business model perspective of S�C for pervasive
services, which also take into account the relative computational complexity of each of the
tasks. In the local services model the device is powerful enough to perform most tasks by
itself or rely on the developer to check a number of them. In the remote services model
(value-added service model in the terminology of mobile operators) the S�C services are
o�ered by a third party such as the mobile operator of the nomadic device.

� The developer can use proof-carrying-code [19] for the proof of compliance of code and
contract. Later on, the user checks the correctness of the proof-carrying-code on his
device by calling the respective check S�C service. This proof checking is restricted
in complexity and can be done on the user's mobile device.

� Code and contract compliance by in-lining is a service that should be carried out by
a third party only. Done by the developer, the user does not get any evidence that
the in-lining has been performed correctly. The third party on the other hand, as
part of the certi�cation process asserts that the in-lining is correct and covers all of
the properties of the contract.

� Lastly, monitoring execution of the mobile application code for policy compliance is
reasonably to be done on the mobile device only.

The second and third columns of Table 2 extend this discussion to all S�C services. Further,
with on-line we refer to a service that might be executed on-demand, i.e. a communication
with the pervasive environment is established in order to set up a channel between the
developer's, third party's or user's devices. A service is o�ered o�-line if a service is
requested and executed in advance. This is an option for the in-lining of code for contract
compliance which can be done much in advance of the actual mobile application code
download.

Security Layer Whenever S�C services require the cooperation of an external party,
this holds for all the S�C service marked on-line or o�-line in Table 2, the S�C layer calls
the services of the security layer to protect the communication between the parties.

The interactions between the described layers are as follows. Assuming that the user
of the mobile device is performing a download of an application from the application and
service developer then the user calls the respective method of the S�C layer (i.e. get(Code)
from (Developer)). Further, this call is mapped into a respective call to the security layer.
The security layer subsequently maps this call into a sequence of method calls to set up a
connection with the developer, performs authentication of the developer, gets the package
containing code, contract and signature, checks the signature for correctness, extracts code
and contract from the received package and hands code and contract back to the calling
S�C layer which in turn gives the code and contract back to the application layer.
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Lower layers These simply support the security layer in its communication with other
mobile devices and servers. We assume the lower layers are comprised of a TCP/IP protocol
stack.

7 Conclusions

The S3MS project belongs to the area of Service Oriented Computing, and address issues,
the security and trust, that cut across all the three research planes of the SOC roadmap
(Foundation, Composition and Management and Monitoring) [6]. As a matter of fact, the
S3MS project designed and developed a contract-based approach to develop secure service
in the mobile device scenario. The project concerns at least the three characteristics that
the SOC roadmap de�nes for transversal services (Semantics, Non functional characteristics
and Quality of Services). As a matter of fact, the S3MS project addresses non functional
characteristics of services, such security and trust in the mobile device scenario, where
contracts de�ne the semantics of the applications from the security point of view. From
the point of view of the Quality of Service (QoS), in the case of the S3MS project we can
talk of Quality of Protection (QoP), since the quality attribute that is guarantee by the
S�C framework is security. Hence, all the stake-holders of the S3MS scenario exploit this
approach, i.e. the services provided by the S�C framework, to develop, deploy and execute
new secure services for mobile devices. As an example, in the S�C model, application
developers are responsible for delivering a security contract together with each application.
Contract are written using the language de�ned by the S�C framework, and will be man-
aged by the other stake-holders of the scenario with the services provided by the the S�C
framework too.

Here we have proposed a framework and a technological solution for trusted deployment
and execution of communicating mobile applications in heterogeneous environments where
a contract-based security mechanism lies at the core of the framework. In S�C a contract
is a claim by a mobile application on the interaction with relevant security and privacy
features of a mobile platform. Here we have shown how the compliance of the contract
with the application can be veri�ed, how contracts could be matched by policies during
deployment and how can they be enforced during development, at time of delivery and
loading, and during execution of the application by the mobile platform.

We argue that in the long term new paradigm will not replace, but enhance today's
security mechanism, and will provide a exible, simple and scalable security and privacy
protection mechanism for future mobile systems. It will allow a network operator and a
user to decide what an application is allowed to do, prevent bad code from running, and
allow good code to be easily designed and deployed.

In this way we hope to build the basis for a concrete opening of the software market of
nomadic devices to trusted third party applications, without sandboxing and without the
burden of roaming trust infrastructure.
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