
A Security-by-Contracts Architecture for Pervasive Services�

N. Dragoni F. Massacci
University of Trento
surname@dit.unitn.it

C. Schaefer T. Walter
DoCoMo Euro-Labs

surname@docomolab-euro.com

E. Vetillard
Trusted Logic

eric@trusted-labs.fr

Abstract

Future pervasive environments will by characterised by
pervasive client downloads: new (untrusted) clients will be
dynamically downloaded in order to exploit the computa-
tional power of the nomadic devices to make a better use of
the services available in the environment.

To address the challenges of this paradigm we pro-
pose the notion of security-by-contract (S�C), as in
programming-by-contract, based on the notion of a mobile
contract that a pervasive download carries with itself. It de-
scribes the relevant security features of the application and
the relevant security interactions with its nomadic host.

In this paper we describe the layered security architec-
ture of the S�C paradigm for pervasive security, the threats
and mitigation strategies of security services and sketch
some interaction modalities of the security services layer.

1 Introduction

The paradigm of pervasive services [1] envisions a no-
madic user traversing a variety of environments and seam-
lessly receiving services from other devices. Yet, the chal-
lenge is broader than this ”simple” distributed service vi-
sion because it does not consider the possibilities that open
up when we realize that the smart phone in our pocket has
already more computing power than our 10 years old PC.

Current pervasive services, including context-aware ser-
vices, hardly exploit this computational power. Information
is provided to the mobile user based on his location but the
computing infrastructure is usually centralised [7]. Even
when it is decentralised to increase scalability it does not
exploit the devices’ power (e.g. [3, 2]).

There is a new challenge ahead: pervasive client down-
loads: when traversing environments the nomadic user does
not only invoke services in a web-service-like fashion (push
or pull mode) but also download new applications that can

�This work is partly supported by the project EU-IST-STREP-S3MS.

exploit the computational power device to make a better use
of the (new) services available in the environment.

A tourist landing in a historical city might download at
the airport a tourist guide application that can route her
rented car to her favourite touristic hotspots. The applica-
tion is configured with mentioned touristic hotspots and, in
order to determine the route to those hotspots, the applica-
tion needs to interact with the car’s navigation system to
determine the current location and to update the route plan-
ning (but only if confirmed by the driver), and might send
travel tips to selected driver’s companions. This is a perva-
sive service download because it offers local services, we
want it exactly where we need it (e.g. via a bluetooth link
at the airport), without bothering a long and frustrating web
search before departing. We use it on our mobile or PDA
without connecting to a remote route planner each time.

This scenario violates the model of software download
of the Java [6] and .NET security architecture [16, 10]:

� A pervasive download is untrusted code whose secu-
rity properties we cannot check and whose code signa-
ture (if any) will not bring any degree of trust;

� it should be sandboxed, its interaction with the envi-
ronment and the devices own data should be limited;

� yet this is against the business logic, as we made this
pervasive download precisely to have lots of interac-
tion with the pervasive environment!

The Contribution of this Paper. In this paper we advo-
cate the notion of Security-by-Contract (S�C) as a solu-
tion to the pervasive download problem. Loosely speak-
ing, an application should come with a contract containing
a description of the relevant features of the application and
the relevant interactions with its host platform. A mobile
platform could specify its security requirements, a policy,
which should be matched by the application’s contract.

The contributions of the paper are threefold: (1) we de-
scribe the layered security architecture of the S�C paradigm
for pervasive security, (2) we discuss the threats and mitiga-
tion strategies for the security services and (3) sketch some
interaction modalities of the security services layer.

1



We define the security architecture as in RFC-2828: [the]
set of principles that describe (a) the security services that a
system is required to provide to meet the needs of its users,
(b) the system elements required to implement the services,
and (c) the performance levels required in the elements to
deal with the threat environment. In this paper we focus
on the first two aspects which leads to a functional design
of the security architecture. The performance issue will be
addressed during its implementation.

In the next section (x2) we present a prototypical exam-
ple of pervasive client downloads, mobile games. Then we
discuss the key intuition behind security by contract (x3)
and the layered security architecture supporting it (x4). Se-
curity threats are analysed (x5) and mitigating services are
proposed (x6). We end the paper describing some scenarios
(x7) and concluding.

2 The Ancestors of Pervasive Downloads

As we said, current pervasive services are essentially lo-
cal invocation of centralised services with little or no dy-
namic content with one notable exception: Mobile Games.
On-line games are more complex than one can expect
[9] and Massive Multi-player Online Role Playing Game
(MMORPG), introduces additional challenges. Essentially,
an MMORPG is a persistent, graphical, online environment
which allows many users to play simultaneously [17]. Once
again, most commercial games are based on multi-billion
massive servers storing data and characters.

Still, new architectures of MMORPG are emerging
based on peer-to-peer (P2P) technologies and a pervasive
notions of gaming [13, 8]. The basic idea is that servers
must be as thin as possible, essentially performing registra-
tion of the players and providing the data of the different
Levels and the Rooms of the World. The players will do the
rest, by interacting with other players located in the same
”virtual” environment and by communicating directly with
them. Most of the interactions require a P2P connection
and most implementations are structured in order to ease
such local interaction, using whatever communication fa-
cility is available to the players (SMS, MMS, GPRS, WiFi,
Bluetooth) as shown in Fig. 1.

This paradigm reflects perfectly the business logic and
the security issues of pervasive downloads:

1. Most game developers are SMEs which cannot afford
the costs necessary to obtain a mobile operator’s certi-
fication and thus will not run as trusted code;

2. downloaded clients require to perform a significant
amount of computation and communication with other
service rounds (players or other services);

3. such actions use and consume costly resources such as
battery, bandwidth or time or sensitive resources such

Figure 1. P2P Interaction in MMORPGs

Executable code managed or native code
for the nomadic device

Run-time level contract describes all se-
curity relevant actions and behaviour
of executable code

Proof of compliance optional component
supporting an efficient verification
that the code complies with claims
stated in the contract;

Application credentials (signatures, cer-
tificates, etc.) needed by the applica-
tion to run.

Figure 2. Components of a S3MS Application

as the user address book or other security material used
to authenticate it towards other players.

3 Security-By-Contract Framework

The framework of S�C is shaped by four stake-holders:
mobile operator, service provider or developer, mobile user
and third party security service provides. Application devel-
opers are responsible to provide a description (called con-
tract) of the security behaviour that their code exhibits.

With the security-by-contract paradigm each “applica-
tion” may consist of the four components described in
Fig. 2. By signing the code the developer binds the code
with the stated claims on its security-relevant behaviour
thus providing a semantics to digital signatures.

Definition 3.1 (Contract) A contract is a formal, complete
and correct specification of the behaviour of an application
for what concerns relevant security actions (Virtual Ma-
chine (VM) API Calls, Operating System Calls).

Users and mobile phone operators are interested in that
any software deployed on their platform is secure. In other
words they must declare their security policy:

Definition 3.2 (Policy) A policy is a formal, complete and
correct specification of the acceptable behaviour of appli-



Figure 3. Application/Service Life-Cycle

cations to be executed on the platform for what concerns
relevant security actions (VM API Calls, etc...).

A contract should be negotiated and enforced during de-
velopment, at time of delivery and loading, and during exe-
cution of the application code by the mobile platform. Fig. 3
summarises the phases of the S�C life-cycle.

The first step is the contract authoring stage in which a
contract for the mobile application is specified (as require-
ments to the application development teams or derivation
from analysis of the existing application) and a policy tem-
plate for the platform is provided (as defined by the template
of the operator, company, etc...).

Once identified the contract that the application actually
provides and the policy that the platform would like, the
step of contract matching is performed, i.e. matching the
compliance of the application as given by the contract with
the requirements as defined in the policy.

We also have the problem of compliance of the applica-
tion with the contract. In order to guarantee that an ap-
plication complies with its desired contract or the policy
requested on a particular platform we should consider the
stage where such enforcement can be done. Enforcing at
development time can be achieved by appropriate design
rules. Enforcement before or at deployment can be carried
out through (automatic) verification techniques. Such ver-
ifications can take place before downloading (static verifi-
cation [11] developers and operators followed by a contract
coming with a trusted signature) or as a combination of pre
and post-loading operations (e.g., through proof carrying
code [15] and in-line monitors [4, 12]); run-time enforce-
ment can be implemented by run-time checking [5, 12].

All methods have different technical and business prop-
erties. Table 1 shows strengths (p) and limitations (�)
of each technology w.r.t. the different requirements. For
instance, working on existing devices would rule out run-
time enforcement and favour static analysis, code signing
and signature verification on the mobile platform. Monitors

Table 1. Tech. Strengths and Weaknesses
Criteria Static Analysis Monitors Runtime
Works with existing devices p

? �
Works with existing applications ? � p

Does not modify applications p � p

Offline proof of correctness p p �
Load-time proof of correctness � p �
May depend on run-time data � p p
Does not affect runtime perfor-
mance

p
? �

Figure 4. S�C Architecture

may be used (for properties that could not be proved), but
on-device proof would then not be possible.

4 Layered S�C Architecture

The security architecture has the following goals:

� Supporting the application and service life cycle
shown in Fig. 3 which means guaranteeing the security
of the channel between parties as well as authenticity
of the parties and non-repudiation of communication
actions for charging and billing.

� Enabling trust relationships between stakeholders, i.e.
authenticity and integrity of exchanged data elements
such as code, contract and policy. Specifically, this au-
thenticity and integrity of data elements becomes im-
portant when one thinks about that in-lining of code
for contract compliance is provided by a third party.

The S�C architecture is composed of 3 layers (Fig. 4).

Application layer: where development tools run on the
developer’s system, and where administration and certifica-
tion services run on the third party’s systems. The applica-
tion layer accesses services of the S�C layer.



Table 2. S�C services
Service Self-Service Value-Added Serv.
get(Code, Contract) on-line on-line
analyse(Code, Contract) N/A off-line
inline(Code, Contract) N/A off-line
inline(Code, Policy) on-device on-line/off-line
match(Contract, Policy) on-device on-line
monitor(Code, Policy) on-device N/A
check(Code, Contract, Proof) on-device on-line
proofGen(Code, Contract) N/A off-line
manage(Policy) on-device on-line/on device

S�C layer: where services enable the user to download
code (from the developer or a third party) and to initiate
specific S�C services such as performing in-lining of code
for code and contract compliance.

A service is used on-device if it is invoked and executed
on the very device that the user is using to run also the ap-
plication. It might be executed on-line if a communication
with the pervasive environment must be established in or-
der to obtain the services. A service might be also offered
off-line followed by traditional signature verification.

Not all services can be equally well used at different
levels. Monitoring the code for compliance with the user-
defined policies, for instance, makes sense only on the mo-
bile device itself. On the other hand, some services can very
well be executed in advance. The in-lining of code for con-
tract compliance, for instance, can be done by a third party
in advance of deploying the code on a mobile device.

In Table 2 we consider two interesting cases from the
business models point of view of S�C. In the self-service
model the device is powerful enough to perform most tasks
by itself or rely on the developer to check a number of them.
In the value-added services the S�C services are offered by
a third party such as the mobile operator of the device.

Security layer: whenever S�C services require the coop-
eration of an external party, e.g., code and contract that is
being downloaded from the developer, the S�C layer calls
the services of the security layer to protect the communica-
tion between the parties. These services and the respective
service primitives are further detailed in Section 6.

The interactions between the described layers are as fol-
lows (see Section 7): Assuming that the user of the mobile
device is performing a download of an application from the
developer then the user calls the respective method of the
S�C layer (i.e. get (Code) from (Developer)). This call
is mapped into a respective call to the security layer which
maps it into the sequence of method calls to set up a connec-
tion with the developer, performs authentication of the de-
veloper, gets the package containing code, contract and sig-
nature, checks the signature for correctness, extracts code
and contract from the received package and hands code and

Figure 5. Threats Analysis

contract back to the calling S�C layer which in turn gives
the code and contract back to the application layer.

5 Threat Analysis

In this section, we describe possible threats and the el-
ements these threats have an impact on, i.e. data items,
communication links, processes or devices. For the threat
model, Fig. 5 combines parties and data elements and iden-
tifies possible threats which we analyse below.

Threats against data elements code, contract, proof of
compliance and policies. Code and contract are main-
tained in the domain of the application and service devel-
oper. The proof of compliance may be given as PCC (proof-
carrying-code) in which case it is maintained in the domain
of the developer. Policies are a concern of the user and the
mobile network operator. These components are bound into
packages (Fig. 2). A possible threat is the manipulation of
code, contract, proof and policy.

Threats against communication links. Communication
between the stakeholders is as follows:

1. the user may get code, contract and optionally proof
from the developer;

2. user involves a third party to perform code/contract
matching, proof verification, contract/policy matching;

3. developers may involve a third party to attest code and
contract compliance.

The following major threats are considered: Eavesdropping,
Modifying request or response, Masquerading, Forgery of
request or response, Authorisation violation. The first four



threats obviously impact the overall security of S�C as no
guarantees on the authenticity and integrity of S�C compo-
nents and policy can be given and, thus, execution of code
may harm the user’s device. Not doing proper authentica-
tion and authorisation may give parties access to code they
are not entitled to access or, on the other hand, code access
may be charged to parties that have not accessed said code.

Threats against parties. DoS attacks can be run against
any of the parties and may block them from providing ser-
vices. E.g. in order to run downloaded code the S�C op-
eration for contract and policy matching (Table 2) has to
be executed. If this can not be done by the user on his mo-
bile device, then this operation has to be externally executed
by a third party. Running a DoS attack against the third
party makes the service unavailable. Consequently, accord-
ing to the S�C paradigm the user can not be execute the
code. Similar scenarios apply for the other parties as well
(code cannot be accessed from the developer or results of
the matching cannot be given back to the user).

In order to mitigate those threats a number of security
services must be put in place.

6 Security Services and Primitives

The basic component of the architecture is the nomadic
device which requires the following sub-components:

� Key store for asymmetric and symmetric keys. The
key store should be protected by a passphrase, biomet-
ric trait, etc. in order to control access.

� Certificate store for own and third party certificates.
Among the third party certificates should be all root
certificates for parties participating in off-line services.

� Cryptographic software implementing the required
cryptographic algorithms for en- and decryption, hash-
ing and signing as well as signature verification.

The detailed data processing and communication actions
depend on the various options (see Table 2), but some secure
communication services are necessary:

� For communication between user and application
provider it is required that the latter authenticates with
the former and, if charging and billing is an issue be-
cause the download is not for free, also vice versa.

As part of the authentication process, a protected chan-
nel can be established so that exchanged data is pro-
tected for confidentiality to avoid disclosing the data
against unauthorised third parties.

In order to achieve integrity, the code and contract
should be hashed and the hash be transmitted to the
user for verification against the received data.

If, however, communication does not run over a pro-
tected channel then code and contract should be signed
by the developer so that the user can identify the origin
and correctness of received data.

� For the communication between user and third party,
the same considerations as presented before apply. If
the user communicates its platform policy to the third
party then this should be done over a secret channel.

� The same arguments apply for the communication be-
tween third party and developer, i.e. if the third party
deals with the downloading of code and contract and
policy matching on behalf of the user.

If the download of code is being charged and billed then
accounting of the download is to be performed and non-
repudiation of the code download is required. This can be
extended in order to cover the situation that the contract and
policy matching is charged and billed by the third party.

7 Interaction Patterns

In this section we discuss some scenarios that represent
different business cases for value-added service offerings.

Policy and contract as well as policy matching on mo-
bile device. The process of downloading code is initiated
by the user. The user has to authenticate with the server
which holds the requested code. If required the server au-
thenticates with the user’s device, thus we authenticate mu-
tually. After authentication has taken place, the code is
downloaded onto the user’s mobile device. Subsequent to
the download, the S�C layer of the proposed security archi-
tecture (Fig. 4) is taking control of the further steps until
execution). Assuming that the downloaded code arrives as
in Fig. 2, the following steps are to be done:

1. The public key of the signing authority has to be re-
trieved and the signature verified.

2. The contract has to be extracted from the packet.

3. The platform policy has to be retrieved.

4. Contract and platform policy are forwarded to the
contract-policy matching module (i.e. operation
match(Contract, Policy) is called).

5. If matching is successful the code is loaded and exe-
cuted; eventually execution is done under the control
of a monitor (i.e. monitor(Code, Policy) is called).



Figure 6. Download and service via portal

Policy on mobile device and contract and policy match-
ing by third party. With this scenario we build on the
previous scenario, i.e. the code is downloaded onto the
user’s mobile devices, but extend the scenario. A third party
is involved that performs the contract and policy matching.
So, the user’s device sends the contract and policy to the
third party. In this scenario, we assume that the user’s de-
vice sends a signed message including contract and policy
to the third party. Upon reception of the message the third
party verifies the message’s signature, extracts contract and
policy, performs contract-policy matching by calling oper-
ation match(Contract, Policy) of the S�C layer, and subse-
quently returns the signed results back to the user’s device.

Policy with third party and contract and policy match-
ing done by third party. The last option being considered
is the one where the third party functions as a ”portal”, i.e.
the only interface of the user from his mobile device to the
environment is via this portal. The interactions of the user
with the portal are shown in Fig. 6.

8 Conclusion

In this paper we have proposed the notion of Security-
by-Contract (S�C), as in programming-by-contract, based
on the notion of a mobile contract that a pervasive down-
load carries with itself. A contract describes the relevant
security features of the application and the relevant security
interactions with its mobile host.

The main contributions of the paper can be summarized
as follows. First we have described the layered security ar-
chitecture of the S�C paradigm for pervasive security. Then
we have discussed the threats and mitigation strategies for

security services. Finally, we have sketched some interac-
tion modalities of the security services layer.

The current activity is towards implementing the archi-
tecture in a realistic simulation environment such as the
MOAP platform used by DoCoMo [14].

A challenge problem still open concerns the dynamic ne-
gotiation of contracts: the code provider should be able to
negotiate with the host platform a specific contract, i.e. the
two agents should reach an agreement on the set of relevant
security actions that should match. Moreover, such actions
can be interdependent with each other: the choice of which
rules to negotiate could depend on what choice has been
previously made by an agent for other rules.

References

[1] J. Bacon. Toward Pervasive Computing. IEEE Perv., 1(2):84–86,
2002.

[2] D. Chakraborty, K. Dasgupta, S. Mittal, A. Misra, A. Gupta,
E. Newmark, and C. Oberle. Businessfinder: harnessing presence
to enable live yellow pages for small, medium and micro mobile
businesses. IEEE Comm., 45(1):144–151, Jan. 2007.

[3] C. Diot and L. Gautier. A distributed architecture for multiplayer
interactive applications on the internet. IEEE Network, 13(4):6–15,
1999.

[4] U. Erlingsson. The Inlined Reference Monitor Approach to Security
Policy Enforcement. Technical report 2003-1916, Department of
Computer Science, Cornell University, 2003.

[5] U. Erlingsson and F. B. Schneider. IRM Enforcement of Java Stack
Inspection. In Proc. of IEEE SS&P’00, Washington, DC, USA,
2000.

[6] L. Gong and G. Ellison. Inside Java(TM) 2 Platform Security: Ar-
chitecture, API Design, and Implementation. Pearson Education,
2003.

[7] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The
Anatomy of a Context-Aware Application. WiNet, 8(2 - 3):187–
197, 2002.

[8] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support
for massively multiplayer games. In Proc. of IEEE Infocom, 2004.

[9] D. Kushner. Online gaming demands heavyweight data centers.
IEEE Spectrum, 42(7):34–39, July 2005.

[10] B. LaMacchia and S. Lange. .NET Framework security. Addison
Wesley, 2002.

[11] X. Leroy. Bytecode verification on java smart cards. Softw. Pract.
Exper., 32(4):319–340, 2002.

[12] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement
mechanisms for run-time security policies. IJIS, 4(1–2):2–16, Feb.
2005.

[13] M. Merabti and A. E. Rhalibi. Peer-to-peer architecture and proto-
col for a massively multiplayer online game. In Proc. of GLOBE-
COM’04, pages 519–528, Dallas, TX, 2004, 29 Nov.-3 Dec. 2004.
IEEE.

[14] H. Tsuji, K. Ohno and T. Saito. “MOAP”, Software Platform for
FOMA Terminals. NTT DoCoMo Technical Journal, 1(1), June
2005.

[15] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying
code. In Mobile Agents and Security, pages 61–91. Springer-Verlag,
London, UK, 1998.

[16] N. Paul and D. Evans. .NET Security: Lessons Learned and Missed
from Java. In Proc. of ACSAC’04, 2004.

[17] N. Yee. The Psychology of MMORPGs: Emotional Investment,
Motivations, Relationship Formation, and Problematic Usage. In
R. Schroeder and A. Axelsson, editors, Avatars at Work and Play:
Collaboration and Interaction in Shared Virtual Environments, Lon-
don, 2005. Springer-Verlag.


