
Security-by-Contract for Web Services

or How to Trade Credentials for Services∗

Nicola Dragoni Fabio Massacci
Department of Information and Communication

Technologies
University of Trento, Italy
surname@dit.unitn.it

ABSTRACT
The classical approach to access control of Web Services is
to present a number of credentials for the access to a ser-
vice and possibly negotiate their disclosure using a suitable
negotiation protocol and a policy to protect them.

In practice a “Web Service” is not really a single service
but rather a set of services that can be accessed only through
a suitable conversation. Further, in real-life we are often
willing to trade the disclosure of personal attributes (fre-
quent flyer number, car plate or AAA membership etc.) in
change of additional services and only in a particular order.

In this paper we propose a novel negotiation framework
where services, needed credentials, and behavioral constraints
on the disclosure of privileges are bundled together and that
clients and servers have a hierarchy of preferences among
the different bundles.

While the protocol supports arbitrary negotiation strate-
gies we sketch two concrete strategies (one for the client
and one for the service provider) that make it possible to
successfully complete a negotiation when dealing with a co-
operative partner and to resist attacks by malicious agent
to ”vacuum-clean” the preference policy of the honest par-
ticipant.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: On-line Information Services—
Web-based services, Commercial services; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms
Algorithms, Security, Theory

∗Research partly supported by the project EU-IST-STREP-
S3MS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWS’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-892-3/07/0011 ...$5.00.

Keywords
Security-by-Contract, Automated Trust Negotiation, Web
Services

1. INTRODUCTION
The basic tenet of Service Oriented Computing is the pos-

sibility of building distributed applications on the Web by
using Web Services (WS) as basic building blocks. If the set
of related functionalities is significantly large and can only
be accessed according a suitable work-flow then we more
appropriately speak of WS Conversations or Business Pro-
cesses for WS.

Controlling access to such services has become a key is-
sue because services are distributed, and might also be con-
trolled by different entities. Indeed, one often speak of
policy-based access control of services (e.g. [18, 6, 13] or the
large number of papers appeared in the IEEE Policy Work-
shop series and the ACM SACMAT series). The intuition
is that access to services and resources is automatically de-
rived from policies that are deployed on the point of service.
Policies might specify the various attributes (often called
privileges) that the individual clients might need to show in
order to access to each service.

In order to identify the holders of the appropriate set of
privileges across the web cryptographic credentials can be
put in place thus creating what is called a Privilege Manage-
ment Infrastructure or PMI [5] or, with a slightly misleading
terminology, a trust management system [3, 19]. Credentials
needed to access the system might be presented in push or
pull mode or discovered interactively [11].

One of the key issue, as pointed out initially by Yu, Winslett
and Seamons [20], is the problem of gradually building trust
between two unknown parties so that the client doesn’t empty
its wallet on the counter and the server doesn’t list an ency-
clopedia of policies rules (sometimes highly sensitive, most
likely highly irrelevant).

Yet, Yu, Winslett, and Seamons [20], and many other
works [16, 4, 12, 11] where the need of credentials is grad-
ually disclosed to the client, take for granted that a client
always starts the negotiation by requesting access to a re-
source.

Instead, as pointed out by Mecella et al. [14]:

While many in the literature treated Web ser-
vices as a set of independent single operations,
interacting with real world Web services involves
generally a sequence of invocations of several of
their operations, referred to as conversation. A

simple example is a bookstore Web service; buy-
ing a book involves generally searching for the
book, browsing the details and reviews about
this book, adding the book to the shopping cart,
checking out, paying, etc.

It is therefore important to consider the access control
and negotiation issues for the overall WS conversation. As
noted by Koshutanski and Massacci [10] it might well be that
the conversation takes different routes, therefore changing
the set of needed credentials. Keeping up with the book
example, if we decided to send the books as gift then we
only need to specify the address of the credit card holder
and the address of the gift recipient. Our address is not
needed.

Mecella et al. [14] have provided an access control model
and a trust-negotiation scheme for WS where such conver-
sational aspect is taken care of. While they take full care
of the behavioral aspect of WS, their negotiation protocol
still sticks to the progressive disclosure of credentials while
keeping the set of requested services fixed.

What is missing is a typical feature of real-life negotia-
tions: we are usually willing to trade off disclosure of our se-
curity attributes for (additional) services. Back to the book
shopping example: we might not be willing to disclose our
Frequent Flyer card for buying a book. But we might be
willing to do so if the system tells us that travel books gets
a 10% discount if a Frequent Flyer card is disclosed.

1.1 The Contribution of this Paper
In this paper we propose a negotiation framework that

considers not only the negotiation of credentials but also
the corresponding negotiation of services and the behavioral
constraints on the disclosures of credentials depending on
the business process.

In a nutshell we envisage that services and privileges are
bundled together and that clients and servers have a hierar-
chy of preferences among the different bundles.

From the perspective of a client, say Alice, we assume that
she has a ranked list of services and for each set of services
in this rank she has a ranked list of security attributes or
digital credentials that she is willing to disclose. For each set
of attributes, she also has a behavioral model that dictates
how she will disclose her credentials as soon as she uses the
services. For example Alice might be willing to disclose her
credit card in order to buy a book and her frequent flier
number in order to have a discount. She might be willing
to disclose her car plate number in order to buy technical
manuals from the car manufacturer only available to holder
of a specific brand of cars. A similar tree-like structure might
be present at Bob’s server.

Notice that we do not assume that the ranked list is com-
plete (i.e. in the lists there are all possible sets) because it
will not be realistic.

While negotiation protocols in the agent community [15]
can assume cooperative agents, such assumption is not ac-
ceptable in a security setting. So we have designed the
framework to take into account both cooperative and mali-
cious agents.

In the next Section we introduce the overall framework
which also defines the type of messages participants can ex-
change, the type of information messages will contain and
finally we specify the general protocol flow (§3). In order to
show that the flow is actually executable we define two pos-

sible strategies for the client and the service provider (§4).
Such strategies are at the same time cooperative (they do
negotiate a mutually liked bundle of services and privileges if
one exists) and robust (they resist to potentially malicious
parties that would only like to discover the preferences of
their opponents). We conclude the paper with a discussion
on related works and highlighting the main contributions of
our proposal (§5).

2. THE NEGOTIATION FRAMEWORK
The basic idea behind our proposal is a combination of

the idea of programming-by-contract originally introduced
by B. Meyer for object oriented software and later applied
to WS [9] and extended to security-by-contract as proposed
by Dragoni et al. [7]. Similar ideas are also present in the
definition of the WS security behavior by Mecella et al. [14].

In a nutshell a web service provider is offering a contract :
I’ll grant you the services s1, . . . sn, but in change I want
you to show me that you have security attributes (or privi-
leges) p1, . . . pn. Further, I’ll ask you to show me your cre-
dentials according the following dynamic behavior ω1 where
e.g. possession of privilege pi is asked before service sj can
be accessed.

On the other side a client is making a counter-proposal: I
want to use your services s′1, . . . s′n, and I’m only willing to
give you evidence that I have security privileges p′

1, . . . p′
m.

Further, I’m going to accept showing my credentials only
according the following dynamic behavior ω′

1 where e.g. I’m
willing to show possession of privilege pi but only is I’m
asking service s1 or s2.

In our setting security attributes will usually be digitally
signed credentials in X509 format [5] and requests for cre-
dentials can be provided by SAML tokens as proposed by
Kohustanski and Massacci [11], but it is not necessarily the
case. For example one can speculate that certain services
are only available to mobile users and one resorts to tech-
niques belonging to Mobile IPv6 security [2]. On the other
side services could be described by WSLD or semantic web
services in OWL.

For the formal theory that we develop in the rest of the
paper, we assume them to be atomic predicates as in Yu,
Winslett, and Seamons [20] and Koshutanski and Massacci
[11]. Further, instead of referring to them as ”security at-
tributes or digital credentials to be disclosed”we will simply
refer to them as privileges (from PMI).

Definition 2.1. Let P be a set of atomic proposition p
denoting security privileges and let S be a set of atomic
propositions s (disjoint from P) denoting services.

If contract represents the security behavior of a WS the
temptation would be to make such contractual claims ar-
bitrarily complex. Since we argue that contract should be
matched and negotiated by the WS on-the-fly a complex
procedure is likely to defy the spirit of our proposal. So we
suggest to follow the ideas behind a number of papers [17,
14, 7] and represent the security behavior as an automaton.

Definition 2.2. The set of security behaviors Ω is a fi-
nite state automaton whose actions are drawn from P and
S.

From now on, let us refer to a service client as Execu-
tor and to a service provider as Provider. We have iden-

tified the following abstract operator (ΩP and ΩE indicate
respectively the behavior of Provider and Executor):

• [Traces Operator] T = Traces (Ω)
It returns the set T of all the possible sequences of
actions that can be performed according to the security
behavior Ω.

• [Match Operator �] ΩE � ΩP

It returns 1 if the behavior specified by ΩE is among
the behaviors that are allowed by ΩP , 0 otherwise.
In terms of the Traces operator:
ΩE � ΩP ⇔ Traces

`
ΩE

´
⊆ Traces

`
ΩP

´

From now on we will say that the security behavior ΩE

of Executor matches the security behavior ΩP of Provider if
and only if ΩE � ΩP returns true. A detailed discussion on
such operator and its possible implementation is outside the
scope of the paper. However, interested readers can find in
[7] detailed algorithms for matching security behaviors.

We assume agents have preferences over different negoti-
ation alternatives, or proposals.

Definition 2.3. Let
˙
SA, P A, ΩA

¸
be a tuple represent-

ing a proposal of a generic agent A, where SA ⊂ S is a set
of services, P A ⊂ P a set of privileges and ΩA a security
behavior.

Definition 2.4. Let PSA be the set of tuples
˙
SA, P A, ΩA

¸

representing the policy space of A.

Each Executor E , resp. Provider P , will have his own
policy spaces PSE, resp. PSP . We also assume that pref-
erences are specified by means of a partial order �E over
PSE (resp. �P over PSP).

According to the above definitions, from now on we will
use

˙
SE , P E, ΩE

¸
and

˙
SP , P P , ΩP

¸
to indicate a proposal

of Executor and Provider, respectively.

Definition 2.5. 〈S, P , Ω〉 is an acceptable proposal for
an Executor E if there exists an

˙
SE , P E, ΩE

¸
in PSE such

that S⊇ SE , P⊆ P E, and Ω� ΩE .
˙
SE , P E , ΩE

¸
will be a

solution for the Executor E .

Definition 2.6. 〈S, P , Ω〉 is an acceptable proposal for
a Provider P if there exists a

˙
SP , P P , ΩP

¸
in PSP such

that SP ⊇ S, P P ⊆ P , and ΩP � Ω.
˙
SP , P P , ΩP

¸
will be

a solution for the Provider P .

Notice that an acceptable proposal for a provider is not
necessary an acceptable proposal for an executor.

Definition 2.7. 〈S, P , Ω〉 is the best solution for the
agent A if:

1. 〈S, P , Ω〉 is a solution for A and

2. there is no another solution 〈S′, P ′, Ω′〉 such that 〈S′, P ′, Ω′〉�A

〈S, P , Ω〉.

Table 1 shows the type of messages agents can exchange
during the overall negotiation protocol as well as their mean-
ing. Essentially, agents send or accept a proposal by means
of the propose and accept message, respectively. The ask
message is used by an Executor to start a negotiation and

Table 1: Messages and their Meaning
Message Meaning

ask(SE) Executor asks Provider for ser-
vices SE

propose(SE , P E, ΩE) Executor wants at least services
SE , gives at most privileges P P

and accepts at most to behave
as ΩE .

propose(SP , P P , ΩP) Provider offers services SP , re-
quires at least privileges P P and
promises at most to behave as
ΩP .

accept(SP , P E , ΩE) Agent (Provider or Executor)
accepts services SP , privileges
P E , and security behavior ΩE .

no more proposals(SE) Agent (Provider or Executor)
has no more proposals for the
negotiation of SE .

failure A protocol violation has oc-
curred or the negotiation termi-
nates unsuccessfully.

the failure and no more proposals messages are used for ter-
minating the negotiation when a protocol violation occurs
or an agent cannot proceed for some reason (see Section 3
for details).

To guarantee safety and timely termination of trust ne-
gotiation no matter what policies the parties possess, our
protocol requires the negotiation strategies used with it to
enforce the following conditions throughout negotiations.

Proposal Conditions.
Let P

E
sent, P

P
sent be the set of proposals sent by Execu-

tor and Provider at a given point in the negotiation pro-
cess, respectively. To send a propose(SE , P E , ΩE) (resp.,
propose(SP , P P , ΩP)) message, the following conditions
must hold:

1. SP ⊇ SE

From the point of view of Provider, this means that
each proposal must contain at least the services re-
quired by Provider. For Executor, this means that it
can not propose different services. To do this, Execu-
tor must exploit the ask message, restarting in this way
the negotiation on a new set of services.

2. (P E
= ∅) ∧ (ΩE
= ∅) ((P P
= ∅) ∧ (ΩP
= ∅))
To avoid attacks that could cause the complete disclo-
sure of a policy, both privileges and acceptable security
behaviors must not be empty.

3.
˙
SE , P E, ΩE

¸
/∈ P

E
sent (

˙
SP , P P , ΩP

¸
/∈ P

P
sent)

A proposal can be sent at most once. Again, this con-
dition prevents the full disclosure of an agent’s policy
caused by possible attacks.

Remark. The above conditions guarantee attack resistance
by requiring some progress in the negotiation process each
time a proposal is sent by a negotiator. In other words, an
agent gradually discloses its policy if and only if the other
agent does the same, sending new proposals at each negoti-
ation step (that is, each time a propose message is received).

Acceptance Conditions.
Let P

E
received, P

P
received be the set of proposals received

by Executor and Provider at a given point in the negotia-
tion process, respectively. To send an accept(SP , P E , ΩE)
message, the following conditions must hold:

• Executor: there exists
˙
SP , P P , ΩP

¸
such that

1.
˙
SP , P P , ΩP

¸
∈ P

E
received ∧

2.
˙
SP , P P , ΩP

¸
is an acceptable proposal with so-

lution
˙
SE , P E, ΩE

¸

• Provider: there exists
˙
SE , P E, ΩE

¸
such that

1.
˙
SE , P E, ΩE

¸
∈ P

P
received ∧

2.
˙
SE , P E, ΩE

¸
is an acceptable proposal with so-

lution
˙
SP , P P , ΩP

¸

In other words, the above conditions require that both
Executor and Provider can accept only a received acceptable
proposal. Note that we do not require that the acceptable
proposal is the last received proposal, but only that it was
received in the past. Indeed, we cannot force an agent to
accept the first acceptable proposal he receives because this
would prevent the agent to negotiate for a better solution.

3. PROTOCOL FLOW
The intuition behind the protocol is that agents contin-

uously exchange propose messages until an accept or failure
message is sent by one party (terminating successfully or
unsuccessfully the protocol). For the sake of readability and
due to space limitations, we split the protocol flow in several
Figures (1, 2, 3 and 4).

The protocol works as follows:

• Executor starts the protocol sending the Provider a
request of services SE by means of an ask(SE) message
(Figure 1).

• Provider can reply with one of the following two mes-
sages:

– no more proposals(SE): Provider has no more pro-
posals

˙
SP , P P , ΩP

¸
for SE. In this particular

case, this means that Provider does not have any
bundle SP which contains SE .

– propose(SP , P P , ΩP): Provider offers the bundle
SP (containing SE), it requires at least privileges
P P and it promises to behave at most as described
by ΩP .

• When Executor receives a propose message, it can reply
with one of the following messages:

– propose(SE , P E , ΩE): Executor sends a new pro-
posal for services SE . Note that this new proposal
must follow the proposal conditions.

– accept(SP , P E, ΩE): Executor accepts a Provider’s
proposal and the protocol ends successfully. Note
that the acceptance conditions must hold, so we
are sure that Executor is accepting an acceptable
proposal previously sent by Provider. We stress
that the acceptable proposal could not be the last
one made by Provider, since Executor could de-
cide to postpone an accept message until it has
no more counterproposals to send.

– failure: this message is sent if some protocol viola-
tion occurs, that is the received propose message
does not satisfy the proposal conditions. The pro-
tocol ends unsuccessfully.

– no more proposals(SE): the Executor has no more
proposals for SE .

• When Executor receives a no more proposals(SE) mes-
sage (Figure 2), it can reply with:

– accept(SP , P E, ΩE): Executor accepts an accept-
able proposal previously received. Again, the ac-
ceptation conditions must hold and the protocols
ends successfully.

– ask(SE
new): Executor asks for a new set of services

SS
new , restarting the protocol.

– failure: a failure message is sent if Executor has
no more services to ask for. The protocol ends
unsuccessfully.

• When Provider receives a propose message the possible
answers are the same as those of Executor, as shown
in Figure 3.

• Finally, a Provider can reply to a no more proposals(SE)
message (Figure 4) with:

– accept(SP , P E , ΩE): subjected to the accepta-
tion conditions already stated. The protocol ends
successfully.

– failure: if Provider has no solution for SE . In par-
ticular, this means that Provider didn’t receive
any acceptable proposal from Executor. The pro-
tocol ends unsuccessfully.

Protocol Termination..
The negotiation ends successfully when an accept message

is sent by an agent. Instead, the protocol ends unsuccessfully
when an agent sends a failure message.

4. NEGOTIATION STRATEGIES
A Services-vs-Privileges Negotiation Strategy controls the

exact content of messages, i.e. which proposals of the form
〈S, P , Ω〉 agent disclose and when disclose them. For the
sake of readability and simplicity, in this Section we de-
scribe only the main ideas behind the Executor and Provider
strategies, omitting technical and implementation details.
The programs implement the protocol flow as well as the
agents’ strategies we are going to discuss.

Let j, k, q be indexes referring to some sets S, P , Ω,
respectively. To describe an agent’s strategy, we assume
agent’s policy is structured as shown in Figure 5. Basically,
a policy is represented by a SPΩ-structure composed by
several SPΩ-trees, that is trees having a bundle Sj as root,
then a level of privileges set Pjk and finally a level of security
rule sets Ωjkq . The SPΩ-structure contains the policy space
of an agent, say A, and it is ordered according to the relation
�A.

An important remark is that, to describe the strategy of
one party (Executor or Provider), we assume that its own
policy is represented as a SPΩ-structure, but we do not nec-
essarily require the same for the other party. This because

Executor Provider

ask(SE)

no_more_proposals(SE)

propose(SP, PP, ΩP)

propose(SE, PE, ΩE)

accept(SP, PE, ΩE)

no_more_proposals(SE)

failure

SP ⊇ SE, PP ⊆ PE, ΩP ΩE

Protocol violation

No new proposals (PE, ΩE) for SE

 SP ⊇ SE

SP ⊇ SE, PP ≠ ∅, ΩP ≠ ∅

1

Success

Failure

4

3SP ⊇ SE, PE ≠ ∅, ΩE ≠ ∅

2
(SP, PP, ΩP) ∉

P
sent

(SP, PP, ΩP) ∈
E
received

(SE, PE, ΩE) ∉
E
sent

Figure 1: Trust Negotiation Protocol (part I)

Executor Provider

no_more_proposals(SE)

accept(SP, PE, ΩE)
SP ⊇ SE, PP ⊆ PE, ΩP ΩE

ask(SE
new)

No more services to ask for

Ask for new services

failure

1

Success

Failure

Restart

(SP, PP, ΩP) ∈
E
received

Figure 2: Executor: possible replies to a no more proposals message.

Executor Provider

propose(SP, PP, ΩP)

accept(SP, PE, ΩE)

no_more_proposals(SE)

failure

SP ⊇ SE, PP ⊆ PE, ΩP ΩE

Protocol violation

No new proposals (PP, ΩP) for SE

Success

Failure

2

1

SP ⊇ SE, PE ≠ ∅, ΩE ≠ ∅

propose(SE, PE, ΩE)
3

(SP, PP, ΩP) ∉
P
sent

(SE, PE, ΩE) ∈
P
received

Figure 3: Provider: possible replies to a propose message.

we consider the other party as a self interested agent which
most reasonably will follow its own (best) strategy1. In par-

1Our protocol does not impose any strategy to agents.

ticular, we assume that one party does not know which pol-
icy’s representation and reasoning (i.e., search strategy in
the policy search space) the other party will follow. The
only information an agent knows of the other party is the

Executor Provider

no_more_proposals(SE)

SP ⊇ SE, PP ⊆ PE, ΩP ΩE

4

accept(SP, PE, ΩE)

failure
No solution for SE

Success

Failure

(SE, PE, ΩE) ∈
P
received

Figure 4: Provider: possible replies to a no more proposals message.

S1

P1mP1kP11 ≪ ≪

Sn

PnsPnkPn1 ≪ ≪

... ≪ ...

best set
of services

worst set
of services

Ω111

worst
permissions

for S1

Ω11q Ω11t

best
permissions

for S1

... and so on for other permissions ...≪ ≪

best
rules

for P1k

worst
rules

for P1k

Figure 5: Agent’s Policy as SPΩ-structure.

set of messages it receives. The foregoing assumption has
a significant impact on the design of an agent strategy, be-
cause knowing more information could improve the strategy
by reducing the number of interactions.

Of course, given a negotiation protocol agents must follow,
the number of possible strategies is almost limitless and the
definition of a specific strategy usually depends on which
properties the strategy wants to guarantee. In this paper,
we have designed the agents’ strategies with two properties
in mind.

Property 4.1. (Sound Termination) Assuming coopera-
tive and rational agents, if a solution exists then eventually
agents will reach an agreement and the protocol will end suc-
cessfully.

In other words, if agent are cooperative and rational, then
they will agree on a mutually liked bundle of services and
privileges if one exists.

The second property we want to guarantee is that, assum-
ing self interested but not necessarily cooperative agents,
strategies must be robust, that is they must resist to poten-
tially malicious parties that would only like to discover the
preferences of their opponents:

Property 4.2. (Attack Resistance) Agents does not dis-
close their preferences to malicious parties.

4.1 Strategies
According to the protocol flow described in Section 3, Ex-

ecutor starts the negotiation sending Provider a request of
services SE

j and then it waits for Provider’s reply. It is rea-
sonable to assume that Executor will start asking for his
best bundle of services, i.e., SE

1 .

Received a request for services SE , Provider searches in
his SPΩ-structure for the best bundle SP such that SP ⊇
SE . If this is available, it replies with his best proposal, i.e.˙
SP

j , P P
j1, Ω

P
j11

¸
, otherwise it sends a no more proposals(SE)

message.
From this point on, agents negotiate by exchanging pro-

pose messages that satisfy the proposal conditions. Accord-
ing to the protocol flow, this exchange ends when one party
accepts a proposal of the other party or some failure oc-
curs. The strategies followed by both agents when they
receive a propose message is summarized in the following
Evaluate Proposal procedure, where parameters S, P ,
Ωrepresent the received proposal and j is the index of the
current bundle of services Sj :

1: procedure Evaluate Proposal(S, P , Ω, j)
2: Find a counterproposal for Sj

3: if counterproposal does not exist then
4: Find best proposal for Sj

5: Find a solution for Sj

6: Store solution if better than the previous one
7: if both proposal and solution exist then
8: if proposal � solution then
9: sendMsg(propose(proposal))

10: else
11: sendMsg(accept(solution)) // Success

12: else if proposal exists then
13: sendMsg(propose(proposal))
14: else if solution exists then
15: sendMsg(accept(solution)) // Success
16: else
17: sendMsg(no more proposals(Sj))

The basic idea behind the above strategy is that, given a
proposal sent by the other party, an agent searches in his
SPΩ-Structure for both a new proposal and a solution. If
a solution is found, then it is stored if better than the old
one. If both proposal and solution exist, then the agent
will act following the best behavior according to his SPΩ-
structure, that is it will send a new proposal if better than
the solution (proposal � solution in the SPΩ-structure) or
it will accept the solution otherwise (solution � proposal
in the SPΩ-structure). In this way we are sure that an
agent will always act trying to get his best, but also that
if a solution exists than sooner or later it will be proposed
by a party and accepted by the other (as described in the
protocol flow in Section 3).

4.1.1 Selection of a Proposal
According to the above strategy, an agent first searches for

his best (not already proposed) counterproposal for Sj , that

is a proposal such that P E ⊂ P P . From the point of view
of Executor, this means reducing the privileges requested
by Provider, while for Provider this means asking for more
privileges respect to those given by Executor. A sketch of
the Find CounterProposal function of Provider follows,
where Find Best Contract is a function that returns the
best (not already proposed) contract under a given privilege
set.

1: function Find CounterProposal(P E, j, k)
2: Search for P P

jk such that P E ⊂ P P
jk

3: if P P
jk
= ∅ then

4: ΩP
jkq ⇐ Find Best Contract(j, k, 1)

5: if ΩP
jkq
= ∅ then

6: return(P P
jk, ΩP

jkq)
7: else
8: return(Find CounterProposal(P E, j, k+1))
9: else

10: return(∅, ∅)
An example of counterproposal is shown in Figure 6. The

algorithm visits the privileges sets in a BFS way from the
left to the right (i.e., from the best to the worst privilege
set) looking for the first P P

jk such that P E ⊂ P P
jk. Then

it goes down to one level searching for the best (not al-
ready proposed) contract Ω. If all the contracts have been
already proposed, a new privilege set is searched starting
from P P

jk+1. This is the case of P11 in the Figure, since it

is a counterproposal (P11 ⊃ P E), but it is not selected be-
cause all the contracts under it have been already sent (i.e.,
proposal 〈S1, P11, 〉 cannot be sent). Therefore, the best
counterproposal is 〈S1, P13, Ω132〉 (note also that Ω131 can
not be chosen because already proposed).

S1

P13P12P11

Ω131 Ω132 Ω133

P14PE⊅ PE⊃

Ω134

PE⊃

Ω112 Ω113 Ω121

item already proposed item selected

Figure 6: Example of Counterproposal

If a counterproposal is not available, then the agent searches
for his best (not already sent) proposal for SE

j . An example
of best proposal is shown in Figure 7, where the policy is
the same as the one of the previous example (note that the
best proposal is different from the counterproposal).

A sketch of the Find Best Proposal function of Provider
follows.

1: function Find Best Proposal(j, k)
2: if P P

jk
= ∅ then

3: ΩP
jkq ⇐ Find Best Contract(j, k, 1)

4: if ΩP
jkq
= ∅ then

5: return(P P
jk, ΩP

jkq)
6: else
7: return(Find Best Proposal(j, k+1))
8: else
9: return(∅, ∅)

S1

P13P12P11

Ω131 Ω132 Ω133

P14PE⊅ PE⊃

Ω134

PE⊃

Ω112 Ω113 Ω121

item already proposed item selected

Figure 7: Example of Best Proposal

In both cases (counterproposal and best proposal), se-
curity rules are determined by searching for the best (not
already proposed) security rule set Ω, as shown in Figure
8. This is done by using the Find Best Contract func-
tion cited above. If all security rule sets Ωunder a privilege
set Phave been already proposed, a new privilege set P is
searched (according to the current strategy, i.e. counterpro-
posal or best proposal).

S1

P1k

Ω1k1 Ω1k2 Ω1k3 Ω1k4

item already proposed

item selected

.

(a) Ωavailable
under the cur-
rent P

S1

P1k

Ω1k1 Ω1k2 Ω1k3 Ω1k4

item already proposed

item selected

. P1l

Ω1l1 Ω1l2

(b) Ωavailable under a dif-
ferent P

Figure 8: Selection of the Best Security Rule Set

Remark. At this stage we assume that agents negotiate in a
cooperative way, i.e., proposing different privileges only if a
counterproposal is not available.

4.1.2 Selection of a Solution
The strategies exploited by Provider and Executor for

finding a solution are basically the same, except for the

search space they visit. Indeed, Executor just needs to
search the solution in the SPΩ-tree corresponding to the
requested set of services SE , while Provider could need to
search the solution in different SPΩ-trees having as root a
bundle SP ⊇ SE . The Provider must search for a solution
in another SPΩ-tree if it has not found any solution in the
current SPΩ-tree. Functions Find Solution in Tree and
Find Solution implement the strategy for Provider while
Executor uses only the function Find Solution in Tree.

1: function Find Solution in Tree(P E, ΩE , j, k)
2: Search for P P

jk : P P
jk ⊆ P E

3: if P P
jk
= ∅ then

4: ΩP
jkq ⇐ Find Contract(ΩE , j, k, 1)

5: if ΩP
jkq
= ∅ then

6: return(P P
jk, ΩP

jkq)
7: else
8: return(Find Solution in Tree(P E,ΩE , j, k+1))

9: else
10: return(∅, ∅)

11: function Find Solution(SE, P E , ΩE , j, k)
12: (P P

jk, ΩP
jkq) ⇐ Find Solution in Tree(P E, ΩE , j, k)

13: if P P
jk = ∅ then

14: SP
j ⇐ Find Best Service(SE, j)

15: if SP
j
= ∅ then

16: P P
jk ⇐ Find Solution(SE, P E, ΩE , j, 1)

17: return(SP
j , P P

jk, ΩP
jkq)

Starting from an index j in the SPΩ-structure, the func-
tion Find Best Service searches for and returns the best
set SP

t containing SE , with t ≥ j. The function Find Contract
searches for the best contract ΩP

jkq (under a privilege set P P
jk)

such that ΩP
jkq � ΩE .

The search strategy of Find Solution in Tree is the
same as the one exploited to find a counterproposal: the
first P P

jk : P P
jk ⊆ P E is searched in a BNF way and then

the algorithm calls Find Contract to search for the best
contract ΩP

jkq not already proposed such that ΩP
jkq � ΩE . If

the contract is not found under P P
jk, then the search restarts

from P P
jk+1.

Example 4.1. In the negotiation of Figure 9, a solution
exists but Provider does not accept it until it receives a no mo-
re proposals message from Executor. Indeed, Provider al-
ways sent a proposal because better than that solution.

SE

P12P11

Ω111 Ω112 Ω121

SP

P12P11

Ω121Ω111 Ω112 Ω113 Ω122

no_more_proposals(SE)

accept(SP, P11, Ω112)

= solution

Ω123

...propose...

Figure 9: Example 4.1

Example 4.2. In this Example, Provider receives an ac-
ceptable proposal from Executor and accepts it because the
solution it finds is better than any possible remaining pro-
posals.

SE

P12P11

Ω122Ω111 Ω112 Ω121

SP

P12P11

Ω122Ω111 Ω112 Ω121

P13

Ω123 Ω131 Ω132

propose(SP, P11, Ω111)

...propose...

propose(SE, P12, Ω121)

accept(SP, P11, Ω112)

ask(SE)
= solution

Figure 10: Example 4.2

4.1.3 Ensuring Strategy’s Properties
The foregoing strategy ensures the Sound Termination

property by searching a solution each time the agent re-
ceives a proposal. If the solution is found then it is stored
if better than the old one. In this way we are sure that, if
a solution exists, then sooner or later the agent will accept
it. Note that this could happen at the latest when the agent
receives a no more proposals message from the other party
(as described by the protocol flow in Section 3). Indeed, be-
fore the receipt of this message, the agent will always send
a proposal if better than the current solution, trying to get
his best.

The Attack Resistance property is ensured by checking
the proposal conditions each time the agent receives a pro-
pose message. We stress that those conditions guarantee
attack resistance by requiring some progress in the negoti-
ation process. Therefore, the agent gradually discloses its
policy if and only if the other agent does the same, sending
new proposals at each negotiation step. As an example, the
following Check Proposal function is used by Provider to
perform this check, where

˙
SE , P E, ΩE

¸
represents the re-

ceived proposal and SP
j is the current bundle of services of

Provider. Provider will continue the negotiation if and only
if this function will return true.

1: function Check Proposal(SE , P E , ΩE , SP
j)

2: if (SP
j ⊇ SE) ∧ (P E
= ∅) ∧ (ΩE
= ∅) ∧

˙
SE , P E, ΩE

¸

/∈ P
P
received then

3: return(true)
4: else
5: return(false)

5. RELATED WORKS AND CONCLUSIONS
Regulating access control over distributed systems (such

as the web) has been the subject of intense research in the
last few years. A classical way is to set up Privilege Manage-
ment Infrastructures such as PERMIS [5], SPKI [8] or other
hybrid models [1]. Trust management systems are just a dif-
ferent name for such PMIs where more sophisticated rules for
access are used [3, 19]. In such systems credentials needed to

access the system might be presented in push or pull mode
or discovered interactively [11].

The controlled disclosure of such credentials can be the
subject of a complex negotiation protocol [20, 16, 4, 12,
11]. However all those works, including more recent ones
appearing in the POLICY workshop this year still consider
as a starting point of the negotiation the request for ac-
cess to a single service. Mecella et al. [14] pointed out the
importance to consider the access control and negotiation
issues for the overall business process taking into account
the dynamic aspect of the conversation.

One of the limitation is essentially no paper considers the
possibility of negotiating the disclosure of our privileges for
(additional) services. This gap is also evident in the broad
literature on service negotiations in multi-agent systems.
Here the focus is mainly on one-to-many negotiation pro-
tocols for voting, auctions, bargaining and coalition forma-
tion (see [15] for a nice survey on the topic), therefore with
emphasis on the negotiation strategy and how this strategy
works when agents exploit some utility space (i.e., linear,
nonlinear). Again, to the best of our knowledge, we don’t
know papers which address the aforementioned problem.

The contribution of this paper is twofold. First, we have
proposed a negotiation framework that considers not only
the negotiation of privileges but also the corresponding ne-
gotiation of services and the behavioral constraints on the
disclosures of such privileges depending on the business pro-
cess. In our framework services and required privileges are
bundled together and clients and servers have a hierarchy
of preferences among the different bundles. The framework
also defines the type of messages participants can exchange
during the overall negotiation, the type of information mes-
sages will contain and the general protocol flow.

As second contribution of the paper, we have designed two
possible strategies for the client and the service provider in
order to show that the flow is actually executable. To take
into account both cooperative and malicious agents, we have
designed such strategies to be at the same time cooperative
(they do negotiate a mutually liked bundle of services and
credentials if one exists) and robust (they resist to poten-
tially malicious parties that would only like to discover the
preferences of their opponents).

6. REFERENCES
[1] C. Altenschmidt, J. Biskup, U. Flegel, and

Y. Karabulut. Secure mediation: Requirements,
design, and architecture. JCS, 11(3):365–398, 2003.

[2] T. Aura and M. Roe. Designing the mobile ipv6
security protocol. Annales des Télécommunications,
61(3-4):332–356, 2006.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proc. of IEEE SS&P’96, pages
164–173. IEEE Press, 1996.

[4] P. Bonatti and P. Samarati. A unified framework for
regulating access and information release on the web.
JCS, 10(3):241–272, 2002.

[5] D. W. Chadwick and A. Otenko. The PERMIS X.509
role-based privilege management infrastructure. In
Proc. of SACMAT’02, pages 135–140. ACM Press,
2002.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The Ponder policy specification language. In Proc. of
POLICY’01, pages 18–38. Springer, 2001.

[7] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan.
Security-by-contract: Toward a semantics for digital
signatures on mobile code. In Proc. of EuroPKI’07,
pages 297–312. Springer-Verlag, 2007.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI Certificate Theory,
September 1999. IETF RFC 2693.

[9] R. Heckel and M. Lohmann. Towards contract-based
testing of web services. In Proc. of the Int. Workshop
on Test and Analysis of Component Based Systems
(TACoS 2004), volume 82 of ENTCS. Elsevier Sci.,
2004.

[10] H. Koshutanski and F. Massacci. An access control
framework for business processes for web services. In
XMLSEC ’03: Proceedings of the 2003 ACM workshop
on XML security, pages 15–24. ACM Press, 2003.

[11] H. Koshutanski and F. Massacci. A negotiation
scheme for access rights establishment in autonomic
communication. J. of Net. and Sys. Managment,
15(1):117–136, 2007.

[12] J. Li, N. Li, and W. H. Winsborough. Automated
trust negotiation using cryptographic credentials. In
Proc. of CCS’05, pages 46–57. ACM Press, 2005.

[13] L. Lymberopoulos, E. Lupu, and M. Sloman. An
adaptive policy based framework for network services
management. J. of Net. and Sys. Managment,
11(3):277–303, 2003.

[14] M. Mecella, M. Ouzzani, F. Paci, and E. Bertino.
Access control enforcement for conversation-based web
services. In Proc. of WWW’06, pages 257–266. ACM
Press, 2006.

[15] T. Sandholm. Distributed rational decision making. In
G. Weiss, editor, Multiagent Systems, pages 201–259.
The MIT Press, Cambridge, Massachusetts, 1999.

[16] K. Seamons and W. Winsborough. Automated trust
negotiation. Technical report, US Patent and
Trademark Office, 2002. IBM Corporation, patent
application filed March 7, 2000.

[17] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar,
and D. DuVarney. Model-carrying code: a practical
approach for safe execution of untrusted applications.
In Proc. of ACM SOSP’03., pages 15–28. ACM Press,
2003.

[18] M. Sloman and E. Lupu. Policy specification for
programmable networks. In Proce. of the 1st Int.
Working Conf. on Active Networks, pages 73–84.
Springer, 1999.

[19] W. Yao. Trust management for widely distributed
systems. PhD thesis, Univ. of Cambridge, Computer
Laboratory, 2004. Technical report
UCAM-CL-TR-608, ISSN 1476-2986.

[20] T. Yu, M. Winslett, and K. E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust
negotiation. TISSEC, 6(1):1–42, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

