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Abstract

The possibility of solving the Quantified
Boolean Formulae (QBF) problems using the
SMV system is a consequence of two well-
known theoretical results: the membership of
QBF to PSPACE, and the PSPACE-hardness
of LTL (and therefore, of SMV). Nevertheless,
such results do not imply the existence of a
reduction that is also of practical utility. In
this paper, we show a reduction from QBF
to SMV that is linear (instead of cubic), and
uses a constant-size specification.

This new reduction has three applications the
previous one has not: first, it allows for solv-
ing QBF problems using SMV-like systems,
which are now more developed than direct
QBF solvers; second, we can use it to ver-
ify whether the performance behavior of di-
rect QBF solvers is intrinsic of the problem,
or rather an effect of the solving algorithm;
third, random hard SMV instances can be
easily generated by reduction from QBF hard
instances (whose generation method is now
established).

1 Introduction

In recent years a number of solvers for Quantified
Boolean Formulae (QBFs) have been proposed in the
literature [CSGG00, Rin99, EETW00, FMS00]. QBFs
are a natural extension of satisfiability problems in

classical propositional logic (SAT), and are of great
theoretical interest since they allow to precisely char-
acterize all computational complexity classes in the
polynomial hierarchy and PSPACE [Sto76]. From
a knowledge representation point of view, it is well
known that most problems in propositional reasoning,
such as planning, nonmonotonic reasoning, abduction,
and diagnosis can be reduced to the problem of check-
ing the truth of a quantified boolean formula.

An obviously interesting problem is to find out
whether the phenomena of the existence of a steep
state transition and of the easy-hard-easy pattern,
which are found in SAT problems, also arise in QBF,
and if they are similarly related. The initial inves-
tigations based on the Evaluate algorithm [CSGG00]
have shown that both phenomena exist in QBFs, even
though not as evident as in SAT. Further investiga-
tions by Gent and Walsh [GW99] and others have con-
firmed this initial investigation.

In this paper we show a very simple and efficient re-
duction from the problem of checking the truth of a
QBF into model-checking of an LTL (linear temporal
logic) or a CTL (computation tree logic) formula over
an SMV model. In the following section we briefly
present LTL, CTL, and SMV. The reader interested in
a more formal and detailed presentation should refer
to McMillan’s thesis [McM93] and Huth and Ryan’s
book [HR00] that contain a detailed exposition. Im-
plementing a translator based on this reduction allows
for using the SMV system as a QBF solver. A first ben-
efit is that, since the SMV system is widely used, well
engineered, and efficient, this method may be more
efficient than direct QBF solving.



A second benefit is the effect of SMV being based on a
completely different technology than most of the cur-
rent QBF solvers, which are usually variations of the
DLL procedure [DLL62], and are therefore way too
similar to prove that some computational properties
(such as the easy-hard-easy pattern) are intrinsic of
the problem.

A third important benefit of the proposed reduction is
for the benchmark generation and system evaluation
in model checking. Indeed, currently one is forced to
choose between two alternatives:

1. generate computationally challenging benchmarks
using the problems constructed from the theoret-
ical results; these problems (model-checking ex-
plicit Kripke structures) are not interesting for
evaluating actual systems, which take a different
input (an SMV specification);

2. use the large number of “real world” problems
(written using SMV specifications); unfortunately,
there is no way to know whether these problems
are really representative of a broader class of prob-
lems and really computationally challenging.

We would like to have the best of both approaches:
generation of computationally challenging (and con-
trollable) benchmark with model-checking specifications
actually used in practice. The reduction we propose
allows for generating benchmarks from random QBF
instances, which can be generated in a way that guar-
antees their computational properties. Namely, the
critical parameters for the generation of hard instances
of QBF have been deeply studied [CSGG00].

From a theoretical point of view, this reduction implies
that CTL and LTL model checking Kripke specifica-
tions written in SMV is PSPACE-hard even when the
specification has constant size (known reductions em-
ploy specifications of polynomial size). However, the
benefit of this reduction is more practical than theoret-
ical: besides having a new method for solving QBF in-
stances, we can now generate model checking problems
whose hardness can be somehow “controlled”. This al-
lows for testing the empirical effectiveness of various
model checking optimizations. QBFs offer complete
problems for all classes in the polynomial hierarchy
[Sto76], and therefore very suitable for the experimen-
tal analysis, as they include problems that belong to a
wide range of complexity classes [CSGG00, EETW00],
a property not easily found with direct experimen-
tal analysis. See for instance the difficulties noted by
Daniele, Giunchiglia, and Vardi [DGV99] for the ex-
perimental comparison of LTL automata generation
algorithms.

MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request = 1 : busy;
: {ready, busy};

esac;

SPEC
AG(request -> AF state = busy)

Figure 1: An example SMV program

We remark that a proof of PSPACE completeness of
LTL, implying the existence of a polynomial reduction
from QBF to SMV, already exists [SC85]. However,
this reduction requires a cubic encoding and requires
the usage of the until modality, while our reduction
is linear and employs the temporal modalities globally
and next only. This is why the new reduction is more
suited to a practical use.

2 Preliminaries

In this section we briefly introduce the model-checking
system SMV; the following presentation is adapted
from the NuSMV manual [CCO+]. Further details on
SMV are in McMillan’s book [McM93], while NuSMV
is described in the paper by Cimatti et al. [CCGR00].

The primary purpose of an SMV specification is to
describe the transition relation of a Kripke structure.
Any expression in the propositional calculus can be
used to describe this relation. This provides a great
deal of flexibility, and at the same time a certain dan-
ger of inconsistency. For example, the presence of a
logical contradiction can result in a deadlock – a state
or states with no successor. This can make some spec-
ifications vacuously true, and makes the description
unimplementable. While the model checking process
can be used to check for deadlocks, it is best to avoid
the problem when possible by using a restricted de-
scription style. The SMV system supports this by pro-
viding a parallel-assignment syntax. The semantics of
assignment in SMV is similar to that of single assign-
ment data flow language. By checking programs for
multiple parallel assignments to the same variable, cir-
cular assignments, and type errors, the interpreter in-
sures that a program using only the assignment mecha-
nism is implementable. Consequently, this fragment of
the language can be viewed as a description language,
or a programming language.



Consider the SMV program in Figure 1. The first part
defines the Kripke structure. The space of states of
the Kripke structure is determined by the declarations
of the state variables (in the above example request
and state). The variable request is declared to be of
(predefined) type boolean. This means that it can as-
sume the (integer) values 0 and 1. The variable state
is a scalar variable, which can take the symbolic values
ready or busy.

The following assignment sets the initial value of the
variable state to ready. The initial value of request is
completely unspecified, i.e. it can be either 0 or 1.

The transition relation of the Kripke structure is ex-
pressed by defining the value of variables in the next
state (i.e. after each transition), given the value of
variables in the current states (i.e. before the tran-
sition). The case segment sets the next value of the
variable state to the value busy (after the column) if
its current value is ready and request is 1 (i.e. true).
Otherwise (the 1 before the column) the next value for
state can be any in the set {ready,busy}.
The variable request is not assigned. This means that
there are no constraints on its values, and thus it can
assume any value, which is thus an unconstrained in-
put to the system.

Specifications can be expressed in CTL (Computation
Tree Logic). The NuSMV system also allows for spec-
ifications in LTL (Linear Temporal Logic). These log-
ics allow a rich class of temporal properties, including
safety, liveness, fairness and deadlock freedom, to be
specified in concise a syntax.

The keyword SPEC is followed by a CTL formula, that
is intended to be checked for truth in the Kripke struc-
ture defined above. The intuitive reading of the for-
mula is that every time request is true, then in all
possible future evolution, eventually state must be-
come busy.

The two (modal) propositional temporal logics LTL
and CTL are used to express temporal properties of
the modeled system. LTL is a temporal logic whose
underlying model of time is linear. More precisely,
every model of LTL is a Kripke structure where all
worlds are connected in a (possibly infinite) chain. The
syntax of LTL includes three unary modal operators
X, F and G and a binary one U . Where the intended
meanings are:

• Xα means: α is true in the next state;

• Fα means: α is true in some future state;

• Gα means: α is true in all future states;

• αUβ means: α is true Until β becomes true.

When a linear model of time is not adequate we can
resort to CTL whose semantics is based on branching
time. The semantics is given via unrestricted Kripke
models. In the contest of CTL a sequence of connected
states is called a path. In CTL it is possible to quantify
either existentially or universally on the paths.

3 Intuition

In this section we provide some intuitions of the re-
ductions presented in Sections 4.

The truth of the QBF formula F is transformed into a
model checking problem for SMV in which the model is
made up by a number of (slightly modified) counters,
a boolean formula in CNF and a number of modules
that non-deterministically set a boolean variable.

In a nutshell, the SMV system works as follows:

• all possible assignments to the universal variables
are generated using one binary counter whose dig-
its are the assignments to the universal variables,
while the assignments to the existential ones are
“guessed” non-deterministically. In each state of
the system the satisfaction of the CNF formula is
checked. Whenever the CNF formula is not satis-
fied the counting is halted (no carry is propagated
to the next variable).

• The LTL (or CTL) specification simply says that
for any execution there exists a state that makes
the formula false.

4 From QBF to SMV structures

QBFs extend propositional logic by allowing proposi-
tional variables to be quantified over, either existen-
tially or universally. The evaluation problem for a
QBF is to decide whether a given QBF is true or not.

Let F be the Quantified Boolean Formula over n
propositional variables:

Qx1Qx2 . . . Qxn.(γ1 ∧ · · · ∧ γm)

where Q is a quantifier (either ∀ or ∃) and each γj is
a clause over the variables {x1, . . . , xn}. The sequence
of quantifiers Qx1Qx2 . . . Qxn is called the prefix of F
and will be denoted as P , while un-quantified boolean
formula γ1 ∧ · · · ∧ γm is called the matrix of F and
will be denoted as E. A clause γj with k literals is
represented as lj1 ∨ . . . ∨ ljk

, where each literal l is
either a variable or its negation.



MODULE forall(carry-in)
VAR

value : boolean;
ASSIGN

init (value) := 0;
next (value) := value ^ carry-in;

DEFINE
carry-out := value & carry-in;

Figure 2: The forall module in SMV syntax

MODULE exists(carry-in)
VAR

value : boolean;
ASSIGN

init (value) := {0,1};
next (value) :=

case
carry-in : {0,1};
1 : value;

esac;
DEFINE carry-out := carry-in;

Figure 3: The exists module in SMV syntax

In the above formulation we do not pose any restric-
tion on the alternation of the quantifiers. For any given
variable xi it is only necessary to know its position (i)
in the prefix and whether it is existentially or univer-
sally quantified.

We now briefly present our encoding of QBFs in SMV.
As usual {0, 1} means the non-deterministic choice
between 0 and 1. Each universally quantified vari-
able is coded in a module forall(carry-in), de-
scribed in Fig. 2, which is a binary digit of a bi-
nary counter with carry [HR00, p.184]. The bit is
stored in a variable value. The presence of a module
forall(xi+1.carry-out) in the main module corre-
sponds to a universally quantified variable xi.

The module exists(carry-in) in Fig. 3 is used for
existentially quantified variables. Its single boolean
variable value is non-deterministically set to 0 or 1.
Whenever a carry (the parameter carry-in) changes
the value of the inner variable, its value is non-
deterministically chosen again. The module never
changes the carry, but simply forwards the carry it
receives from the inner variable to the outer variable.

The boolean formula is coded in a purely reactive mod-
ule formula (Fig. 4) that evaluates the truth value of
matrix.

To build the whole SMV code we simply need to:

1. incorporate the definition of the modules forall
and exists;

MODULE formula(v1,.......,vn)

DEFINE
c1 := "first clause of F";
c2 := "second clause of F";
.
.
cm := "last clause of F";
sat := c1 & c2 & ....... & cm;

Figure 4: The formula Module in SMV syntax

MODULE main

VAR
xn : QUANT(clauses.sat);
xn-1 : QUANT(xn.carry-out);
xn-2 : QUANT(xn-1.carry-out);
.
x2 : QUANT(x3.carry-out);
x1 : QUANT(x2.carry-out);
clauses : formula(x1.value,...,xn.value);

SPEC AF (!clauses.sat)

Figure 5: The main Module in SMV syntax

2. instantiate the module formula with the clauses
in the matrix;

3. in the main module (see Fig. 5):

(a) declare the variables x1, . . . , xn using the ap-
propriate module (either forall or exists)
and a parameter, which is the carry-out of the
next module, but for xn whose parameter is
sat of the formula module;

(b) declare the variable clauses with the module
formula, and all the values of x1, . . . , xn as
parameters;

(c) declare the specification.

The specification is independent of the QBF and can
be expressed either in LTL or in CTL. In LTL it is
F(¬clauses.sat), while in CTL it is AF(¬clauses.sat).
Either formula is interpreted as: for all execution paths
of the system, eventually the matrix will not be satis-
fied. Then clearly the QBF F is false.

An Example of the Translation

In order to make the translation easier to understand,
we show it in action: we convert the simple QBF for-
mula ∀x1∃x2.x1 ≡ x2 into SMV code, where x1 ≡ x2

is an abbreviation for (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2).

First of all, we have the modules forall and exists,
which are not repeated here because they do not de-



¾

?

?
x1.value = 0

x2.value = 0
clauses.sat = 1
x2.carry-out = 1
x1.carry-out = 0

x1.value = 1

x2.value = 1
clauses.sat = 1
x2.carry-out = 1
x1.carry-out = 1

Figure 6: A path that makes the specification false in
the translation of ∃x1∀x2.x1 ≡ x2.

pend on the specific formula. The formula module
is:

MODULE formula(x1, x2)
DEFINE

c1 := x1 | !x2;
c2 := !x1 | x2;
sat := c1 & c2;

To complete the example, only the main module is
missing. Here, we specify how the variables are quan-
tified. In particular, each variable is defined to be the
result of the appropriate module (forall or exists),
using the carry of the next variable as input (exception
made for the last variable, whose module input is the
truth value of the formula).

MODULE main
VAR

x2 : exists(clauses.sat);
x1 : forall(x2.carry-out);

Finally, the specification is independent from the for-
mula, and is as follows:

SPEC AF (!clauses.sat)

In Figure 6 we show an infinite path (in fact a cycle)
that makes such a specification false. The initial state
encodes the assignment 00 to variables x1, x2 of the
QBF, while its successor state encodes the assignment
11. Together, 00 and 11 form a proof that ∀x1∃x2.x1 ≡
x2 is a valid QBF.

In order to complete the example, we show how the
formula ∃x1∀x2.x1 ≡ x2 is translated (this is almost

the same formula as above, but the quantification of
variables are swapped). The only point of the SMV
code that depends on the quantifiers is the main mod-
ule: now x1 is existentially quantified while x2 is uni-
versally quantified.

MODULE main
VAR

x2 : forall(clauses.sat);
x1 : exists(x2.carry-out);

The rest of the SMV code is the same as the first ex-
ample of translation. In Figure 7 the Kripke structure
resulting from such translation is depicted. Clearly,
for every initial state the specification is now satisfied.

Summarizing, changing the quantification of variables
amounts to changing the definition of variables in the
main module, while changing the matrix leads to a
different formula module.

5 Correctness of the reduction

To ease notation, we let the symbol 1 stand for >, and
0 for ⊥. Let P.E be a QBF, with n boolean variables.
To determine whether the QBF is valid, one can start
by peeling off the outermost quantifier: if it’s ∃x1, we
choose one of the truth values 1 or 0 and substitute for
the newly freed occurrence of xi; if it’s ∀x1, substitute
both 1 and 0 for the newly freed occurrences of x1.
In short, while evaluating QBFs we are generating a
tree, where existential quantifiers increase the depth,
and universal quantifiers force branching. If we always
reach a leaf where the assignments of boolean values to
variables make the matrix E true, the overall formula
F is valid.

If we look at the assignments sequentially, an assign-
ment is a sequence of bits; hence, we denote an assign-
ment to variables x1, . . . , xn as a string b1b2 · · · bn ∈
{0, 1}n, i.e., a sequence of n bits, where bi is assigned
to xi.

We denote UNIVS(P ) the sequence of indexes of the
universally quantified variables in the prefix P (in
the same order) while EXISTS(P ) is the sequence of
indexes of the existential quantified variables in P .
Given two sequences A and B, the projection of B
along A, denoted as πB(A), is the subsequence of A
obtained by selecting only the elements whose index is
in B.

The key of the proof is that we establish a corre-
spondence between the sequence of assignments to the
boolean variables generated by the quantifiers of a
valid QBF and the states of the SMV model. Given



?
x1.value = 0

x2.value = 0
clauses.sat = 1
x2.carry-out = 0
x1.carry-out = 0

?
x1.value = 0

x2.value = 1
clauses.sat = 0
x2.carry-out = 0
x1.carry-out = 0

¾

?
x1.value = 1

x2.value = 0
clauses.sat = 0
x2.carry-out = 0
x1.carry-out = 0

¾

Figure 7: The Kripke structure resulting from the translation of ∀x1∃x2.x1 ≡ x2. The state corresponding to
assignment 11 is unreachable from initial states, so it is not represented.

two assignments, we start by defining a relation of suc-
cessor between them.

Definition 1 (Successor) Let P be a prefix of a
QBF, and let s1, s2 be two assignments to variables in
P . Then s2 is a successor of s1 (denoted by s1 ;P s2)
if the following conditions hold:

1. πUNIVS(P )(s2) is the successor of πUNIVS(P )(s1) in
the lexicographical order, in {0, 1}|UNIVS(P )|;

2. for any k ≤ n, if π1···k(πUNIVS(P )(s1)) =
π1···k(πUNIVS(P )(s2)) then
π1···k(πEXISTS(P )(s1)) = π1···k(πEXISTS(P )(s2))

The first condition is equivalent to: the integer num-
bers defined by taking the value of the universally
quantified variables of the sequences must be consec-
utive. The second condition says that, if the univer-
sally quantified variables of two assignments coincide
up to an index k, then the existentially quantified vari-
ables must coincide up to the same index. In other
words, two consecutive assignments s1 = a1 · · · an and
s2 = b1 · · · bn can assign a different value to an existen-
tially quantified variable xi (so, ai 6= bi) only if there
is a universally quantified variable xj with j < i (i.e.,
it has a lower index), and aj 6= bj .

Since the prefix will be clear form the context, in what
follows we omit P in ;.

For instance, if P = ∀x1∃x2∀x3∀x4∃x5,
then 10010 ; 10100. This is because since
UNIVS(P ) = 134, EXISTS(P ) = 25, and

πUNIVS(P )(10010) = 101, πUNIVS(P )(10100) = 110
hence Condition 1 is met. Also, Condition
2 requires that π1···2(πUNIVS(P )(10010)) =
10 = π1···2(πUNIVS(P )(10100)) implies
that π1···2(πEXISTS(P )(10010)) = 0 =
π1···2(πEXISTS(P )(10100)), which is indeed true.
Instead, 11010 6; 10100 because Condition 2 is not
met.

We now define a sequence of assignments that covers
all assignments needed to satisfy a given prefix.

Definition 2 (Consistent sequence) A sequence
of assignments (s1, . . . , sm) is consistent with a prefix
P if and only if:

1. it is made of m = 2|UNIVS(P )| assignments;

2. πUNIVS(P )(s1) = 0 · · · 0;
3. si ; si+1, for every i = 1, . . . , n− 1.

Observe that in a consistent sequence of assignments,
the bits assigned to universally quantified variables
span from 0 to 2m − 1. For the last assignment sm

of the sequence, it must be πUNIVS(P )(sm) = 1 · · · 1.
Not all possible sequences of assignments are consis-
tent with a prefix. For example, let P = ∃x1∀x2∀x3.
We have that {000, 001, 010, 011} is consistent (we
guessed x1 = 0 and tried all possible values of x2 and
x3) whereas {000, 001, 110, 011}, and {000, 001, 010}
are not consistent. Intuitively, once a value is set
for an existential variable, all universal variables with
higher index must range over all possible truth values



in the successive assignments. In practice, if we have
∃xi∀xi+1∀xi+2 . . . and we set, say, xi = 1 we must use
a binary counter to test all possible values of xi+1xi+2.

The intuition behind consistent sequences of assign-
ments is that they can represent both a proof of valid-
ity of a QBF F , and a path falsifying the specification
of the translation of F in SMV. The rest of this sec-
tion is then devoted to these two issues: on one side,
prove that a QBF is valid iff there exists a consistent
sequence of assignments all satisfying the matrix; on
the other side, prove that the translation of F in SMV
has a false specification iff there exists a consistent se-
quence of assignments all verifying clauses.sat.

If the values in an assignment are less than the num-
ber of variables n, we call it partial assignment. We
implicitly assume that the truth values of a partial as-
signment are used for the first variables, while the last
variables are left unassigned.

Definition 3 (Partial Evaluation) Let E be a
boolean formula over variables x1, . . . , xn, and let s =
a1 · · · ak, with k ≤ n be a partial assignment. The
partial evaluation of E according to s, denoted by E|s,
is the boolean formula obtained by replacing variables
x1, . . . , xk with a1, . . . , ak respectively.

For sake of completeness, we can now recall the in-
ductive definition of validity of a QBF w.r.t. a partial
assignment.

Definition 4 [Validity of a QBF] Let P.E be a QBF,
where P = Qk+1xk+1 · · ·Qnxn, and let s = a1 · · · ak be
a partial assignment. Formula P.E|s is valid iff one
of the following conditions hold:

1. If k = n (i.e., P is empty and s is total), then F
is valid iff E|s ≡ 1;

2. If P = ∀xk+1P
′ (i.e., the first element of P is a

universally quantified variable), then F is valid iff
both P ′.E|s0 and P ′.E|s1 are valid;

3. If P = ∃xiP
′ (i.e., the first element of P is an

existentially quantified variable), then the formula
is true iff either P ′.E|s0 or P ′.E|s1 is valid.

Obviously, F is valid iff it is valid w.r.t. the empty
assignment.

Theorem 1 A QBF P.E is valid if and only if there
exists a sequence of assignments that is consistent with
P , and such that every assignment satisfies E.

Proof. ⇒ Let P.E be valid: then Definition 4 is met.
Based on the definition, we recursively construct a se-
quence of assignments. Let S(P, E , s) a function from

a (generic) prefix P, a (generic) matrix E , and a par-
tial assignment s, to a sequence of assignments. Let ◦
denote the concatenation of sequences of assignments.
Then S(P, E , s)is defined as follows:

1. if P is empty, then S(P, E , s) = s;

2. if P = ∃x.P ′, and v is the truth value making
P ′.(E|(s·v)) valid, then S(P, E , s) = S(P ′, E , s·v);

3. if P = ∀x.P ′ then S(P, E , s) = S(P ′, E , s · 0) ◦
S(P ′, E , s · 1)

Note that the value v in Point 2. exists by Definition 4.
We now prove that computing S(P, E, ∅) one obtains
a sequence of assignments that is consistent with P ,
and such that each of its assignments satisfies E.

The second claim follows from an invariant: from the
first call, and at each inner recursive call of S(P, E , s),
the formula P.(E|s) is valid, hence it is valid also for
leaf calls which yield the total assignments.

Regarding the first claim, we prove the following prop-
erties of S: for each call of S(P, E , s), the sequence
of assignments it generates contains 2|UNIVS(P)| as-
signments, starts with an assignment st for which
πUNIVS(P)(t) = 0 · · · 0, and ends with an assignment
of the form sq for which πUNIVS(P)(q) = 1 · · · 1. All of
these properties are proved by induction on the num-
ber |UNIVS(P)|. Then, Points 1. and 2. of Definition 2
immediately follow, and Point 3. is proved again by in-
duction on |UNIVS(P)|.
⇐ Let s1, . . . , sm be the consistent sequence of assign-
ments. Let bi

1 · · · bi
k denote the first k assignments of si.

The proof is by induction, on the following statement:
if Qk+1xk+1 · · ·Qnxn.(E|bi

1 · · · bi
k) are all valid, for ev-

ery i = 1, . . . , m, then Qkxk · · ·Qnxn.(E|bi
1 · · · bi

k−1

are all valid. The base case is for k = n, which is
true because every assignment satisfies E. We work
backwards on k, achieving the proof for k = 0. If
Qk = ∃, then the inductive claim is trivially true, since
bi
k is either 0 or 1. If Qk = ∀, suppose bi

k = 0. Let
u = |UNIVS(Qk+1xk+1 · · ·Qnxn)|. Then since the se-
quence is consistent with P , the assignment sj , with
j = i + 2u, is such that bi

1 · · · bi
k−1 = bj

1 · · · bj
k−1, and

bj
k = 1. Since also Qk+1xk+1 · · ·Qnxn.(E|bj

1 · · · bj
k) is

valid, the claim follows. 2

We now prove the correspondence between paths fal-
sifying the specification in the Kripke structure of the
translation of a QBF, and consistent sequences of as-
signments all satisfying E.

Theorem 2 Let F = P.E be a QBF, and let SF be the
Kripke structure defined by the translation of F . Then



the specification is false iff there exists a sequence of
assignments, consistent with P and such that every
assignment satisfies E.

Proof. ⇒ If the specification is false, then there exists
an infinite path satisfying G(clauses.sat), that is, in
every state the assignment to variables satisfies E. We
now prove that the first m = 2|UNIVS(P )| states of the
path define a consistent sequence of assignments.

We go through all points of Definition 2. Point 1. is
true by hypothesis.

The initial state of the SMV model assigns 0 to every
universal variable, hence the assignment of the initial
state satisfies Point 2. of Definition 2.

For Point 3, let si and si+1 be two states in the path.
To avoid multiple notations, let also si and si+1 de-
note the truth assignments obtained by taking the
value of variable v in each module. If E is true, then
clauses.sat is 1, hence the carry-in of the module cor-
responding to the most internal variable is 1. Mod-
ules for existential variables just pass the carry over
to the next module, so modules for universal variables
act as a standard binary counter (see [HR00]). This
satisfies Condition 1. of Definition 1. Moreover, if
π1,...,k(πUNIVS(P )(s1)) = π1,...,k(πUNIVS(P )(s2)), then
carry-in of the modules 1–k must be 0. But then, the
existential modules just replicate in si+1 the value of
v that was set in si, hence π1,...,k(πEXISTS(P )(s1)) =
π1,...,k(πEXISTS(P )(s2)). This satisfies Condition 2. of
Definition 1. In conclusion, si ; si+1.

⇐ Follows easily from the definition of a consistent
sequence of assignments. The infinite path goes from
s1 through sm and then back to s1.

2

Simply combining Theorem2 and Theorem1, we can
now state our main theorem.

Theorem 3 Given a QBF F , let PF be the corre-
sponding SMV Program. Then, the specification in PF

is false if and only if F is true.

As for the size of the encoding, it is clear that modules
forall and exists have constant size. The module
formula has the same size of E, while main has size
linear in the number of variables of F . The size of the
specification is also constant (it does not depend on
the QBF F ). Moreover, it is easy to show that this
encoding can be computed using additional logarith-
mic workspace.

Obviously this doesn’t mean that the final expanded
model would have size O(poly(n,m)). However, we

are only interested in mapping a QBF into an SMV-
specification of polynomial size. This result implies
that model-checking in SMV is PSPACE-hard even for
specifications of constant size.

6 Experimental Results

In this section we present the most important ex-
perimental results on randomly generated QBF in-
stances. All instances are obtained using the 2QBF-
5CNF FCL2 model [CSGG00], we now recall.

In the early QBF work by Cadoli et al. [CGS97], ran-
dom kQBF instances were generated according to the
Fixed Clause Length (FCL) model [SML96]. The FCL
model for QBFs has the following parameters:

• the number k of distinct sets of
propositional variables in formula
Q1X1 · · · ∃Xk . E(X1, . . . , Xk),

• the cardinalities |X1|, . . . , |Xk|,

• the number m of clauses in E,

• the number h of literals per clause.

In this model each formula is generated so that every
clause contains h literals. If V is the set X1∪X2∪· · ·∪
Xk, then a clause is produced by randomly choosing
h distinct variables in V and negating each one with
probability 0.5. The FCL model for QBF directly ex-
tends the FCL model for SAT.

The model also constraints the m clauses to be differ-
ent to each other, and that none of them includes both
a literal and its complement. Moreover, to avoid gen-
erating trivially false kQBF instances, a clause cannot
contain universally quantified variables only.

Gent and Walsh [GW99] noted that with the FCL
model the probability of generating instances contain-
ing two clauses such that in each clause all variables
except one are universally quantified and the remainig
variabla also appears in the other clause with the op-
posite sign increases very quickly when m increases.
Such instances are therefore false. This is why the
FCL2 model has been introduced. In this model, if a
clause contains a literal l and another clause contains
¬l, then one of the clauses is removed and replaced.
FCL2 is similar to two models (named A and B) in-
vestigated by Gent and Walsh [GW99], the difference
being that the selection criterion of FCL2 is more pre-
cise: for example, in model A a clause with less than
two existential variables (which does not necessarily
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Figure 8: Evaluate vs. SMV (2QBF-5CNF, 14 variables, FCL2 model)

make the formula false) is disallowed. Extensive test-
ing has been done on FCL2 [CSGG00].

Figure 8 reports the result of a comparison between di-
rect QBF solving with Evaluate and solving by reduc-
tion to SMV. This test has been done with 14 variables
(of which 7 are universally quantified and 7 are existen-
tially quantified). Two facts are quite evident: first,
the performance of the two algorithms are comparable,
showing that SMV is a viable alternative to direct QBF
solving; second, hard QBF instances remain hard after
the translation to SMV, which implies that hard ran-
dom SMV instances can be obtained from hard QBF
instances by reduction. Finally, while the shape of the
curves are more or less the same, their precise values
are quite different. Namely, the peak generated by
SMV is moved to the left, and the increase before the
peak is less steep. All these observations confirm the
usefulness of the proposed translation in practice. Sig-
nificant differences in the relative efficiency of BDD-
based and Davis-Putnam -based solvers for SAT prob-
lems have also been reported by Giunchiglia et. al. in
[GNT01] and Vardi et al. in [CDSMA+00].

Figure 9 shows the comparison with formulae of ten
variables. Some more experiments have been run using
NuSMV instead of SMV. The results are reported in
Figure 10, 11, 12. Experiments are still running at
the time of this writing; other ones suggested by an
anonymous reviewer are planned.

7 Conclusions

In this paper we have shown that the evaluation of
a QBF can be reduced to model-checking of a simple
(constant) formula over an SMV model. The theoret-
ical implication of this result is that CTL and LTL
model checking are PSPACE-hard in the size of the
structure, when the structure is written using a prac-
tical language like the SMV input language. More im-
portantly, the reduction can be exploited to generate
challenging benchmarks for model-checking systems.
This is useful, as recent results in the QBF literature
[CSGG00, EETW00] show that it is possible to gener-
ate very hard instances for QBF in a controlled way.

A significant result of the performed test is that the
overall QBF algorithm composed of the translation
and the solution by SMV has computational proper-
ties comparable with those of direct QBF solvers. It is
also interesting how some properties, like the position
of the peak, that were believed to be intrinsic of the
QBF problem, do not appear, suggesting that they are
related to the specific solving algorithm.
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