
A flexible security architecture to support third-party
applications on mobile devices

Dries Vanoverberghe, Pieter Philippaerts, Lieven Desmet, Wouter Joosen, Frank Piessens
DistriNet Research Group

Katholieke Universiteit Leuven, Belgium

Katsiaryna Naliuka, Fabio Massacci
Università di Trento, Italy

ABSTRACT
The problem of supporting the secure execution of poten-
tially malicious third-party applications has received a con-
siderable amount of attention in the past decade. In this
paper we describe a security architecture for mobile de-
vices that supports the flexible integration of a variety of
advanced technologies for such secure execution of applica-
tions, including run-time monitoring, static verification and
proof-carrying code. The architecture also supports the ex-
ecution of legacy applications that have not been developed
to take advantage of our architecture, though it can provide
better performance and additional services for applications
that are architecture-aware. The proposed architecture has
been implemented on a Windows Mobile device with the
.NET Compact Framework. It offers a substantial security
benefit compared to the standard (state-of-practice) security
architecture of such devices, even for legacy applications.

1. INTRODUCTION
Mobile phones and PDA’s have evolved over the past years

to become general purpose computation platforms. Many of
these devices support downloading third party applications
built on either the .NET Compact Framework, or Java Micro
Edition. However, supporting applications from potentially
untrustworthy sources comes with a serious risk: malicious
or buggy applications on a phone can lead to denial of ser-
vice, loss of money, leaking of confidential information on
the device and so forth.

Current devices already provide certain countermeasures
against these threats, with support for sandboxing and code
signing. The key idea is that unsigned code is severely lim-
ited in what it can do on the device, i.e. it runs in a strict
sandbox. Code that is signed by a trusted party can break
out of the sandbox. The device has a keystore that can be
configured with the public keys of trusted parties.

This security model has a number of serious shortcomings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

First, it is not flexible: applications either run in a restricted
sandbox, or have full power. Second, there is no clear mean-
ing associated with the signatures of trusted third parties: a
signature means the application is “well-behaved”, but there
is no clear definition of what this means. Hence, device own-
ers trust the third party both for (a) appropriate vetting of
applications, and (b) using a suitable notion of good behav-
ior. Incidents [10] show that the current security model is
inappropriate.

The project Security of Software and Services for Mobile
Systems (S3MS) [11] is a research project under the 6th
Framework Programme of the European Commission that
addresses the shortcomings of the current security model,
by integrating a variety of existing and newly-developed se-
curity technologies into all the phases of the mobile applica-
tions lifecycle. In this paper, we describe the architecture of
the run-time environment on the mobile device. It has been
developed in the context of the S3MS project.

A key ingredient in the S3MS approach is the notion of
“security-by-contract” to protect mobile applications . Mo-
bile applications can possibly come with a security contract
that specifies their security-relevant behavior. Technically,
a contract is a security automaton in the sense of Schneider
and Erlingsson [3], and it specifies an upper bound on the
security-relevant behavior of the application: the sequences
of security-relevant events that an application can generate
are all in the language accepted by the security automa-
ton. Mobile devices are equipped with a security policy, a
security automaton that specifies the behavior that is con-
sidered acceptable by the device owner. The key task of
the S3MS device run-time environment is to ensure that all
applications will comply with the device security policy. To
achieve this, the run-time can make use of the contract as-
sociated with the application (if it has one), and of a variety
of policy enforcement technologies. This paper describes the
architecture, design and implementation of this run-time en-
vironment, and discusses its advantages and disadvantages
with respect to the current security model for mobile de-
vices.

The remainder of the paper is structured as follows. Sec-
tion 2 provides some background information on policy lan-
guages and on policy enforcement techniques. Next, our
flexible security architecture is presented in section 3, and
section 4 highlights some of the design decision in our pro-
totype implementation. In section 5, the advantages and
disadvantages of the presented architecture are discussed,

and the presented work is related to existing research in
section 6. Finally, section 7 summarizes the contributions
of this paper.

2. BACKGROUND
The research community has developed a variety of flex-

ible countermeasures to addressing the threat of untrusted
mobile code. These countermeasures are typically based on
run-time monitoring [3, 1, 4], static analysis [8], or a combi-
nation of both [15, 5, 13]. Our run-time environment builds
on this pre-existing research. This section briefly describes
the most important building blocks: policy languages and
policy enforcement techniques.

2.1 Policy languages
Device policies and application contracts are security au-

tomata, and such automata have to be specified by means
of a policy language. Our system is designed to support
multiple policy languages, and the actual prototype imple-
mentation supports the following two languages.

2.1.1 The ConSpec language
ConSpec is based on the semantics of security automata [12].

The ConSpec specification includes the scope of the policy,
the definition of state variables (that provide a set of states
of the automaton) and security-relevant events.

The scope specifies whether the policy applies to a sin-
gle run of each application (scope Session), saves informa-
tion between multiple runs of the same application (scope
Multisession) or gathers events from the entire system
(scope Global). If the scope of the policy is Global or
Multisession then persistent state variables can be defined
that are accessible from different processes.

Security-relevant events are defined by a full signature
of an API method and a time modifier, which indicates
whether the monitor must be notified about the event before
or after the execution of the method call. In the latter case
the return value of the method can be considered in further
reasoning.

Each event is accompanied with a sequence of guards that
specify the conditions, under which the event is allowed.
These conditions can involve state variables or parameters
of the event itself. Each guard triggers an update block that
may assign new values to the state variables. If no updates
are required this must be specified by using keyword skip.
If no guard condition is satisfied and there is no ELSE block
to handle this case then the security-relevant event violates
the policy, and the program must be terminated.

For an example of a ConSpec policy see Fig. 2.1.1.

2.1.2 The 2D-LTL language
An alternative to ConSpec is the 2D-LTL policy language [6],

a temporal logic language based upon a bi-dimensional model
of execution. One dimension is a sequence of states of execu-
tion inside each run (session) of the application, and another
one is formed by the global sequence of sessions themselves
ordered by their start time.

Correspondingly, the temporal operators of the language
can be split into two categories: local and global ones. Local
operators apply to the sequence of states inside the session,
for instance, “previously local” operator (YL) refers to the
previous state in the same session, while “previously global”
(YG) points to the state in a previous session. Other tempo-

SCOPE Session

SECURITY STATE

bool opened=FALSE

AFTER System.IO.File.OpenRead(string filename)

PERFORM

TRUE -> opened=TRUE

BEFORE System.Net.WebRequest.Create(string url)

PERFORM

not (url.StartsWith("http")) -> skip;

not opened -> skip;

Figure 1: ConSpec policy “No creating HTTP con-
nections after a local file has been accessed”

LET StartHTTPConnection DEF

BEFORE System.Net.WebRequest.Create(string url)

WITH url.StartsWith("http://")

END

LET FileOpen DEF

AFTER System.IO.File.OpenRead(string filename)

END

Figure 2: Definition of 2D-LTL predicates

ral operators are “once locally” (OL) – in some past state of
this session, “once globally” (OG) – in some previous session,
“historically local” (HL) – in all past states of this session,
“historically global” (HG) – in all previous sessions etc.

To write a 2D-LTL formula, propositional and tempo-
ral operators are applied to the predicates. Predicates are
arbitrary boolean functions depending on states of execu-
tion. They give us some information about the state. In
our framework we support two kinds of predicates: those
that become true when a security-relevant API call has just
executed or is about to execute (close to ConSpec security-
relevant events), and those that depend on environmental
parameters.

For instance, the policy “Application is not allowed to
start a connection if it has opened the local files in this
session” can be expressed as

HG (StartHTTPConnection→ ¬OL (FileOpen))

where predicate StartHTTPConnection corresponds to start-
ing a connection and FileOpen – to opening file for reading
(for an example of how predicates are linked to the actual
API see Fig. 2.1.2). Another example: to express the pol-
icy “Application is not allowed to start a connection if it
has opened the local files in any session” one needs the
following formula:

HG (StartHTTPConnection) → ¬OGOL (FileOpen) .

2.2 Policy enforcement techniques

Our system supports a wide variety of policy enforcement
techniques, and is designed to be extensible with new tech-
niques. The prototype implementation supports the follow-
ing enforcement techniques:

2.2.1 Inlined reference monitoring
With Inline Reference Monitoring [3], a program rewriter

inserts security checks inside an untrusted application. When
the application is executed, these checks monitor the be-
havior of the application and prevent it from violating the
policy.

The key advantage of this approach is that it does not
require changes in the runtime system or the trusted system
libraries. It is an easy way to secure an application when
it has not been developed with a security policy in mind or
when all other techniques have failed.

2.2.2 Proof carrying code
An alternative way to enforce a security policy is to stat-

ically verify that an application does not violate this policy.
On the one hand, static verification has the benefit that
there is no overhead at runtime. On the other hand, it
often needs guidance from a developer (e.g. by means of
annotations) and the techniques for performing the static
verification (such as theorem proving) can be too heavy for
mobile devices.

Therefore, with Proof Carrying Code [8], the static ver-
ification produces a proof that the application satisfies a
policy. In this way, the verification can be done by the de-
veloper, or by an expert in the field. The application is
distributed together with the proof. Before allowing the ex-
ecution of an application, a proof-checker verifies that the
proof is correct for the application. Because proof-checking
is usually much more efficient than making the proof, this
step becomes feasible on mobile devices.

2.2.3 Cryptographically signed code
Applications transmitted over unsecure connections can

not be trusted. Cryptographic signatures are an easy way
to solve this problem. The application is signed, and is
distributed along with this signature. After receiving this
application, the signature can be used to verify the source
and integrity of application.

Traditionally, when a third party signs an application, it
means that this third party claims the application is well-
behaved. Adding the notion of a contract, as is done in the
S3MS approach, allows us to add more meaning to claims
on well-behavior. A signature on the application and the
contract means that the third party claims that the applica-
tion respects the supplied contract. In addition, the decision
whether the contract is acceptable or not remains with the
end user.

2.2.4 Contract matching
Matching the application contract with the device policy

is a straightforward approach to decide whether or not the
contract is acceptable. When deploying an application with
a contract, the contract acts as an intermediate between the
application and the security policy of the device. First, con-
tract matching checks whether all security-relevant behavior
allowed by the contract is also allowed by the policy. If this
is the case, all other enforcement techniques can be used to
make sure that the application complies to the contract.

Besides decoupling the application from the policy, the
contract matching allows the contracts to be much simpler
than the policy. Therefore, it may be easier to technically
enforce the contract on a particular application instead of
enforcing the entire policy.

3. SYSTEM ARCHITECTURE

3.1 Overview
The S3MS security architecture is built upon the notion of

“security-by-contract”. Mobile devices are configured with
a security policy, specifying an upper bound on the security-
relevant behavior of mobile applications. In addition, appli-
cations can be distributed with a security contract, specify-
ing their security-relevant behavior. Our security architec-
ture supports the notion of application contracts and device
policies, and provides an extensible framework for on-device
policy enforcement.

Three key scenarios are identified: policy management
and distribution, application deployment and loading, and
execution monitoring and run-time enforcement.

Policy management and distribution This scenario is
responsible for the management of different device poli-
cies, and their distribution and deployment onto mo-
bile devices.

Application deployment and loading This scenario is
responsible for verifying the compliance of a partic-
ular application with the mobile device policy before
this application is executed.

Execution monitoring and run-time enforcement This
scenario is responsible for monitoring and enforcing the
adherence of a running application to the policy of the
mobile device.

3.2 Deployment view
The three scenario’s operate on two different platforms:

on the platform of the policy provider and on the mobile
device.

Policy provider. Within the S3MS security architec-
ture, the policies are managed off-device by the Policy Provider
and a specific policy can be pushed to a particular device.
The policy provider could for instance be a company that
supplies its employees with mobile devices, but wishes to en-
force a uniform policy on all these devices. Or it could be an
advanced end-user that owns his own device and manages
the policy using a PC that can be connected to his device.

Mobile device. The mobile device stores the policy and
is responsible for deploying and loading applications. If nec-
essary, the mobile device also applies execution monitoring
and run-time enforcement to achieve secure execution of the
application, i.e. conforming the device policy.

A classical security infrastructure that supports secure
communication is underpinning the policy provider and the
mobile devices. The policy provider, for instance, is con-
nected to mobile devices through secure links, which guar-
antee the authenticity and integrity of the communication.
Similarly, if the mobile device is using external, trusted ser-
vices for more intensive computations, these trusted services
are also contacted through secure links.

The underlying security infrastructure does however not
provide trust relationships between the application provider

and the mobile device, nor do provider and mobiles devices
necessarily share a trusted third party. The presented secu-
rity architecture therefore is also applicable to legacy appli-
cations.

Figure 7 in the appendix shows an architectural overview
of the device, and of the software entities that are involved
in the three scenarios. In the following sections, each of
the scenarios is discussed in more detail, and the different
software entities are identified.

3.3 Scenario 1: Policy management and dis-
tribution

The domain administrator manages device policies off-
device on the policy provider platform. To configure a par-
ticular device with a given policy, the policy is pushed to the
mobile device over a secure channel. This policy distribution
is initiated by the domain administrator and executes par-
tially on the policy provider platform and partially on the
mobile device. As a result, the policy is stored on the mobile
device by the Policy Manager and the policy is activated.

Figure 3: Distribution of a policy to a mobile device

3.4 Scenario 2: Application deployment and
loading

The second scenario executes after downloading or in-
stalling the application and before the first execution of the
application. The Deployer verifies the compliance of the
application with the given device policy, and it enables the
execution of the application in case of compliance. By de-
fault, the execution of an application is disabled in order to
ensure that only compliant applications are executed on the
mobile device. Compliant applications are recorded in the
Certified Application Database.

To verify the compliance of the application with the de-
vice policy, this scenario applies a flexible combination of
the different policy enforcement techniques discussed in sub-
section 2.2. For example, when an application contract is
provided, the compliance can be verified by matching the
application contract and the device policy, and by verifying
the compliance of the application with the supplied applica-
tion contract. As shown in figure 4, each of the configured
policy enforcement techniques is applied sequentially until
the compliance is ensured.

In case of applying an inlined reference monitor, which
is the typical fallback scenario in our architecture, this sce-
nario is also responsible for instrumenting the application
to enforce the policy at run-time by means of an execution
monitor. The execution monitor and run-time enforcement
are further explained in scenario 3.

3.5 Scenario 3: Execution monitoring and run-
time enforcement

Figure 4: Verifying application/policy compliance

Monitoring the application and enforcing the device policy
at run-time is completely executed on the device, as shown in
figure 5. The application initiates this scenario by attempt-
ing to perform a security-relevant operation. By definition,
any operation that occurs in the device policy is a security-
relevant operation. In this scenario, the inlined Execution
Monitor makes sure that the execution of the application
is halted before and after each security-relevant operation.
Based on the policy, the Policy Decision Point decides to
continue with the execution or to terminate the application.
To do so, the Policy Decision Point uses stored policy state,
system information parameters (such as the battery level)
and parameters supplied with the security-relevant opera-
tion. In addition, the Policy Decision Point can also update
the policy state.

Figure 5: Execution monitoring

4. DESIGN AND IMPLEMENTATION
We have implemented a first prototype of this security

architecture in the .NET Compact Framework on Windows
Mobile 5. In this section, the most important design deci-
sions are briefly highlighted.

Support for a variety of policy enforcement tech-
niques. In order to achieve a powerful security architec-
ture that can incorporate a variety of state-of-the-art policy
enforcement techniques, a very configurable and extensible
compliance engine is constructed as depicted in figure 8.

Each compliance verification technology is encapsulated in
a ComplianceModule. To verify the compliance of an appli-
cation with a policy, the Process(Application app) method is
executed on such a compliance module. The boolean result
of the method indicates whether or not the compliance veri-
fication is successful. As a side effect of executing the process
method, the application can be altered (e.g. instrumented
with an inline reference monitor). The compliance engine
instantiates the different compliance modules and applies
them sequentially until the compliance of the application
with the policy is ensured.

Given the limited resources of mobile devices, it is also
important to choose an optimal representation of the policy
to do the compliance verification. However, the differences
between the technologies make it hard to find one optimal

representation that is suitable for each technique.
For instance, in a runtime monitor, the decision whether

an event is allowed or aborted relies only on the current state
of the policy. Therefore, the representation for runtime en-
forcement only contains the current state, and methods for
each event that check against the state, and update it. On
the other hand, contract/policy matching checks whether or
not the behavior allowed by the contract is a subset of the
behavior allowed by the policy. For this task, a full graph
representation is required.

To counter this problem, we decided to provide a set of op-
timized representations, called a policy package. The policy
provider is responsible to distribute the policy packages to
the mobile devices, including suitable representations for the
variety of policy enforcement techniques. To do so, we have
developed a compiler to transform a given policy specifica-
tion in ConSpec or 2D-LTL to a policy package (figure 6).
Similarly, to use optimized representations to do compliance
verification based on the application contract, the contract
must be supplied in the form of a consistent policy package.

Figure 6: Compilation of a policy package

In addition to the flexibility in policy enforcement tech-
niques, our security architecture also supports a variation of
the policy specification language. In our prototype, we sup-
port both ConSpec, a policy specification language based
on security automata, as well as 2D-LTL, a bi-dimensional
temporal logic language. Although both policy specifica-
tions are necessarily transformed into a different implemen-
tation of the Policy Decision Point, the execution monitor
uses the same Policy Decision Point interface irrespectively
of the policy specification language used. In addition, we
are able to reuse the same inlined reference monitor and
instrumentation support with both specification languages.

A final decision in our prototype was the way we ensure
that only compliant applications can be executed on the mo-
bile device, i.e. only after the application successfully passes
the deployment scenario. Instead of maintaining and enforc-
ing a Certified Application Database, we decided to rely on
the underlying security model of Windows Mobile 5.0 in our
prototype. The Locked or Third-Party-Signed configuration
in Windows Mobile allows a mobile device to be locked so
that only applications signed with a trusted certificate can
run [7]. By adding a policy-specific certificate to the trusted
key store, and by signing applications with that certificate
after successfully passing the deployment scenario, we en-
sure that non-compliant applications will never be executed
on the protected mobile device.

5. DISCUSSION
In this section, we shortly discuss the advantages and dis-

advantages of the presented security architecture. In partic-
ular, we discuss the improved semantics of signatures, the

concurrency challenges with inline reference monitoring and
the difference between caller side and callee side inlining.

Semantics of signatures. Our security architecture re-
lies on cryptographic signatures in several places. But a key
difference with the use of cryptographic signatures in the
current .NET and Java security architectures is the fact that
the semantics of a signature in our system are always clearly
and unambiguously defined. A signature on an application
with a contract means that the trusted third party attests
to the fact that the application complies with the contract,
and this is a formally defined statement. Similarly, a signa-
ture on a policy package attests to the fact that the different
policy representations in the package all represent the same
security automaton, again a formally defined statement.

Concurrency and inlined reference monitoring. In-
lined reference monitoring has been developed in a single-
threaded context. State of the art systems such as Poly-
mer [1] explicitly leave dealing with concurrency as future
work. Since basically all mobile device applications are
multi-threaded, our implementation had to deal with the
concurrency issues. The conceptually simple solution is to
lock the entire security state for the complete duration of
a security-relevant method call. However, the performance
penalty of this simple solution can be devastating if blocking
calls, for instance listening on a socket, are security-relevant.
Our current implementation is semantically equivalent to
the simple solution, but performs more fine grained locking
based on a simple analysis of the policy.

Caller side versus callee side inlining. When security
relevant events are method calls, the security checks can be
inlined in the calling code or in the called code. Both ap-
proaches have advantages and disadvantages. With callee
side inlining, it is easier to obtain complete mediation, i.e.
the assurance that every call is monitored. But callee side
inlining typically requires modification of the platform li-
braries, as some of the method calls that need to be mon-
itored are implemented in these libraries. On some mobile
devices, the platform libraries are in ROM, essentially rul-
ing out callee side inlining. Moreover, callee side inlining
can cause a cyclic dependency between the library and the
policy enforcement assembly.

Our current implementation thus uses caller side inlin-
ing. Because caller side inlining needs to find the target of
a method call statically, it is harder to ensure complete me-
diation. Therefore, we impose some restrictions on the pro-
grams that are monitored: in the current prototype we dis-
allow for instance the use of delegates when these delegates
cross the boundary of the untrusted application, and the
use of reflection. In addition, to deal with virtual methods,
our inliner inserts an additional run-time check to dispatch
a security-relevant call to the appropriate Policy Decision
Point method, based on the dynamic type of the object.

6. RELATED WORK
There is a huge body of related work that deals with

specific policy enforcement technologies for untrusted ap-
plications. This research area is too broad to discuss here.
Some of the key technologies were briefly discussed in section
2.2. A more complete survey of relevant technologies can be
found in one of the deliverables of the S3MS project [14].

Even more closely related are those research projects that
have designed and implemented working systems building on
one or more of the technologies discussed above. Naccio [4]

and PoET/PSlang [2] were pioneering implementations of
run-time monitors. Polymer [1] is also based mainly on run-
time monitoring, but the policy that is enforced can depend
on the signatures that are present on the code. Model-
carrying code [13] is an interesting application of proof car-
rying code in the domain of untrusted mobile code security.
Mobile [5] is an extension to the .NET Common Intermedi-
ate Language that supports certified inline reference moni-
toring. Certifying compilers [9] use similar techniques like
proof carrying code, but they include type system informa-
tion instead of proofs.

We are not aware of any other research projects that are
designing and implementing a code security architecture on
a mobile device. So our system seems to be the first evidence
that a flexible combination of code security technologies can
be supported on todays mobile phones and PDA’s.

7. CONCLUSION
This paper proposed a flexible security architecture for

mobile devices built upon the notion of “security-by-contract”.
In a very extensible way, the architecture integrates a variety
of state-of-the art technologies for secure execution of mobile
applications, and supports different policy specification lan-
guages. In addition, the proposed architecture also supports
the secure execution of legacy applications, although a bet-
ter run-time performance is achieved for architecture-aware
applications.

In addition, the paper reports on the experiences with a
working prototype implementation of the proposed architec-
ture. The prototype has been implemented on a Windows
Mobile 5 device with the .NET Compact Framework, and
includes already several compliance verification techniques
and two policy specification languages. This paper high-
lights the most important design decisions that have been
taken in this prototype implementation. It discusses the ad-
vantages of the proposed security architecture relative to the
standard security architecture of mobile devices.

8. REFERENCES
[1] L. Bauer, J. Ligatti, and D. Walker. Composing

security policies with Polymer. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
305–314, June 2005.

[2] U. Erlingsson. The inlined reference monitor approach
to security policy enforcement. PhD thesis, Cornell
University, 2004. Adviser-Fred B. Schneider.

[3] U. Erlingsson and F. B. Schneider. Irm enforcement of
java stack inspection. In SP ’00: Proceedings of the
2000 IEEE Symposium on Security and Privacy, page
246, Washington, DC, USA, 2000. IEEE Computer
Society.

[4] D. Evans and A. Twyman. Flexible policy-directed
code safety. In IEEE Symposium on Security and
Privacy, pages 32–45, 1999.

[5] K. W. Hamlen, G. Morrisett, and F. B. Schneider.
Certified in-lined reference monitoring on .net. In
PLAS ’06: Proceedings of the 2006 workshop on
Programming languages and analysis for security,
pages 7–16, New York, NY, USA, 2006. ACM Press.

[6] F. Massacci and K. Naliuka. Multi-session security
monitoring for mobile code. Technical Report

DIT-06-067, UNITN, 2006.

[7] MSDN. Windows mobile 5.0 application security.
http://msdn2.microsoft.com/en-
us/library/ms839681.aspx, May
2005.

[8] G. C. Necula. Proof-carrying code. In POPL ’97:
Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 106–119, New York, NY, USA, 1997. ACM
Press.

[9] G. C. Necula and P. Lee. The design and
implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference
on Prgramming Language Design and Implementation
(PLDI), pages 333–344, 1998.

[10] B. Ray. Symbian signing is no protection from spyware.
http://www.theregister.co.uk/2007/05/23/symbian signed spyware/,
May 2007.

[11] S3MS. Security of software and services for mobile
systems. http://www.s3ms.org/, 2007.

[12] F. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, 2000.

[13] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar,
and D. DuVarney. Model-carrying code: A practical
approach for safe execution of untrusted applications,
2003.

[14] D. Vanoverberghe, F. Piessens, T. Quillinan,
F. Martinelli, and P. Mori. D4.1.0/d4.2.0 - run-time
compliance state of the art, November 2006.

[15] D. Walker. A type system for expressive security
policies. In Symposium on Principles of Programming
Languages, pages 254–267, 2000.

APPENDIX
The appendix includes two additional overview figures. Fig-
ure 7 shows the overview of the flexible security architec-
ture for mobile device as presented in section 3. Figure 8
shows the detailed design of the deployment-time compli-
ance verification. The class diagram includes, among other,
the extensible set of compliance modules and policy repre-
sentations as discussed in section 4.

Figure 7: Architecture overview

Application
Class

Properties

FullPath

Nam e

Param eters

Methods

Application

ComplianceEngine
Class

Properties

Configuration

Methods

Com plianceEngine

Initialize

Process

Abstract Class

Properties

Type

Methods

Com plianceModule

Create

ContractComplianceModule

Com plianceModule

Class

Methods

ContractCom plianceModule

Process

Abstract Class

Methods

Create

HashContractPolicyMatcher

ContractPolicyMatcher

Class

Methods

HashContractPolicyMatcher

IsMatch

I nlineComplianceModule

Com plianceModule

Class

Methods

InlineCom plianceModule

Process

PolicyPackage
Class

Properties

ID

Nam e

Methods

FindRepresentation

PolicyPackage

PolicyRepresentation
Class

Properties

ContentType

RepresentationType

Methods

Create

PolicyRepresentation

PolicyDecisionPointRepresentation

PolicyRepresentation

Class

Properties

PolicyDll

Methods

PolicyDecisionPointRepresentation

SignaturePolicyRepresentation

PolicyRepresentation

Class

Properties

Certificate

Methods

SignaturePolicyRepresentation

ProofCarryingRepresentation

PolicyRepresentation

Class

Properties

Proof

Methods

ProofCarryingRepresentation

SignatureComplianceModule

Com plianceModule

Class

Properties

Certificate

Methods

Process

SignatureCom plianceModule

ProofCheckingComplianceModule

Com plianceModule

Class

Methods

Process

ProofCheckingCom plianceModule

I denticalContractPolicyMatc…

ContractPolicyMatcher

Class

Methods

IdenticalContractPolicyMatcher

IsMatch

GraphRepresentation

PolicyRepresentation

Class

Properties

Graph

Methods

GraphRepresentation

ContractPolicy

Com plianceModules

Policy

Modules

Matchers

Representations

Figure 8: Design of the deployment-time compliance verification

