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tract This paper describes the verification of Secure Electronic Trans-
n (SET), an e-commerce protocol by VISA and MasterCard. The main
s are to comprehend the written documentation, to produce an accu-
formal model, to identify specific protocol goals, and finally to prove
. The main obstacles are the protocol’s complexity (due in part to its

of digital envelopes) and its unusual goals involving partial information
ing. Our verification efforts show that the protocol does not completely
fy its goals, although the flaws are minor. The primary outcome of the
ect is experience with verification of enormous and complicated proto-

troduction

last years have seen substantial progress in the formal verification
ecurity protocols. Detailed analysis of cryptographic primitives, ver-
tion of Internet standards, and substantial progress in the automa-
of model-checking and theorem-proving procedures for security ver-

tion have boosted a field which outsiders believe populated only by
-Another-Look-at-Needham-Schroeder” papers.
rotocol verification techniques fall into several categories. A general-
ose model-checker can verify protocols, as pioneered by Lowe and his
agues at Oxford [11]. A general-purpose proof tool can also be effec-
as in Paulson’s work [21]. Additionally, there exist several specialized

ocol analysis tools. Most perform an exhaustive search in the spirit of
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model checking; among the best is Meadows’ NRL [17], which has deductive
capabilities. Cohen’s TAPS processes the protocol specification and verifies
the desired properties using a resolution theorem prover [9]. Meadows [18]
presents an exhaustive survey of recent methods.

Formal proof is preferable for establishing properties, while model-
checking is best for finding attacks. Exhaustive search is only feasible if the
model is kept as small as possible, for example by minimizing the number
of permitted executions. If the assumptions are too strong, the absence of
an attack does not guarantee correctness. Interactive proof tools are not au-
tomatic, but offer flexibility in expressing specifications and proofs. Models
need not be finite and can therefore be more realistic.

Many practical industrial protocols have been formally verified using
interactive or semi-interactive proof tools. Protocols like Kerberos IV [7],
the Internet Key Exchange protocol [17], the Cybercash protocol [12], the
TLS/SSL protocol [22], all yielded to automatic or semi-automatic tools.
One particular protocol has proved to be particularly resistant to verifica-
tion: the SET (Secure Electronic Transaction) protocol by Visa and Mas-
tercard.

SET [14,15,16] has been proposed by a consortium of credit card com-
panies and software corporations to secure e-commerce transactions. When
a customer makes a purchase, the SET protocol guarantees authenticity of
the transaction while keeping the customer’s account details secret from
the merchant and his choice of goods secret from the bank. Its appeal to
researchers working in verification is the possibility of demonstrating that
one’s own verification technology is mature enough to cope with the de-
mands of a huge, complex, industrial protocol.

Indeed, many researchers have worked on the problem: for instance
Meadows and Syverson [19] have proposed a language for describing SET
specifications but have not actually verified the protocol. Kessler and Neu-
mann [10] have extended an existing belief logic with predicates and rules
to reason about accountability. Although accountability is not a stated goal
of SET, it is clearly desirable. They concentrate upon the merchant’s ability
to prove to a third party that the Order Information originated with the
cardholder. Using the calculus of the logic, they conclude by pen and paper
that the goal is met, so the cardholder cannot repudiate the transaction.
Stoller [26] has proposed a theoretical framework for the bounded analysis
of e-commerce protocols but has only considered an overly simplified de-
scription of the payment protocol of SET. Hui and Lowe [12] have proposed
a general theory to transform a complex protocol into a simpler protocol
while preserving any faults. However, they limited their actual analysis to
the Cybercash protocol. The claim “we plan to apply our verification tech-
nology to SET” was a frequent conclusion to talks and papers at the end of
the millennium. Yet, the protocol resisted most verification attempts.

Why is SET such a challenge for formal verification? The first obstacle is
its documentation [13,14,15,16] which takes over 1000 pages. However, the
main obstacle is the protocol itself. Protocols proposed in scientific journals
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are typically short, straight-line programs: they seldom go beyond two levels
of encryption and generate few secrets. Even more sophisticated protocols
such as Optimistic Fair Exchange [2] or Group Protocols can be described
in a few pages. Internet protocols such as IKE and TLS use cryptography
rather sparingly compared to SET. SET has many features that make its
verification unusual and hard.

The complex structure of SET makes it a benchmark for security proto-
col design and verification, whether or not it will be a commercial success.
Such a gigantic protocol cannot be convincingly verified without tool sup-
port. However, tools require formal models. Even the task of designing an
adequate formal model may be too much for human intuition.

We succeeded in analysing an abstract, but still highly complex, version
of SET: the registration phases [5] and the purchase phase [4]. The diffi-
culty consisted in digesting the specification and scaling up. This is a major
result: our method scales to a level of complexity where intuition falters.
Unfortunately, we discovered that the method, based on human interaction
with a semi-automatic but powerful prover, has reached a point where the
complexity of the proofs and the sheer size of the intermediate properties
will require further advances to scale further.

The paper begins by outlining the SET protocol (Sect. 2). It briefly in-
troduces the inductive approach and Isabelle (Sect. 3). It outlines our proofs
of the registration protocols (Sect. 5) and the purchase protocols (Sect. 6)
of SET. Finally, there are some general conclusions (Sect. 7).

2 The SET Protocol

People today pay for online purchases by sending their credit card details
to the merchant. A protocol such as SSL or TLS keeps the card details
safe from eavesdroppers, but does nothing to protect merchants from dis-
honest customers or vice-versa. SET addresses this situation by requiring
cardholders and merchants to register before they may engage in transac-
tions. A cardholder registers by contacting a certificate authority, supplying
personal account details and his proposed signature verification key (the
public half). Registration allows the authorities to vet an applicant, who if
approved receives a certificate confirming that his public key has been reg-
istered. All orders and confirmations bear digital signatures, which provide
authentication and could potentially help to resolve disputes.

A SET purchase involves three parties: the cardholder, the merchant,
and the payment gateway (loosely speaking a bank). The cardholder shares
the order information with the merchant but not with the payment gate-
way. He shares the payment information with the bank but not with the
merchant. A SET dual signature accomplishes this partial sharing of infor-
mation: the cardholder makes separate hashes of the order information and
the payment information and signs the pair of hashes. Each other party
receives the hash of the withheld information and the signature of the pair.
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Each party can confirm that the hashes in their possession agree with the
hash signed by the cardholder. In addition, cardholder and merchant com-
pute equivalent hashes for the payment gateway to compare. He confirms
their agreement on the details withheld from him.

All parties are protected. Merchants do not normally have access to
credit card numbers. Moreover, the mere possession of credit card details
does not enable a criminal to make a SET purchase1: he needs the card-
holder’s signature key and a secret number that the cardholder receives
upon registration.

SET is a family of protocols. The five main ones are cardholder registra-
tion, merchant registration, purchase request, payment authorization, and
payment capture. There are many additional minor protocols, for example
to handle errors. SET is enormously more complicated than SSL, which
merely negotiates session keys between the cardholder’s and merchant’s In-
ternet service providers.

Let us briefly review its interesting features:

– Security bootstrapping is unusual: the initiator possesses no digital proof
of identity and authenticates himself by filling in a registration form
whose format is not specified. Authentication takes place outside the
protocol, when the cardholder’s bank examines the completed form.

– The protocol uses multiple nested encryptions and several message fields.
These require abbreviations, make the manual unwinding of the speci-
fications impossible and restrict analysis to tools supporting equational
reasoning.

– SET uses digital envelopes. A digital envelope consists of two parts: one,
encrypted using a public key, contains a fresh symmetric key K and
identifying information; the other, encrypted using K, conveys the full
message text. Digital envelopes keep public-key encryption to a mini-
mum, but the symmetric keys complicate the reasoning. It hampers the
usual model-checking technique to limit the state space (limiting differ-
ent keys and nonces to an handful) as it would not even allow a single
execution to complete, let alone two or more parallel ones;

– The goal of the protocol is to protect the information about merchandise
from the bank and the information about credit from the merchant while
authenticating the entire transaction. The partial sharing of information
among the three peers leads to unusual protocol goals.

– SET has many alternative protocol paths that make it impossible to
single out the few key roles used either by manual analysis (as in the
strand space model) or by model-checkers to restrict the search space.

Are these features or bugs? Though some security experts may claim that
SET is badly designed because it was designed by a committee, others will

1 Some optional features of SET (presumably demanded by commercial or credit
practices) weaken these properties. A merchant can be authorized to receive credit
card numbers and has the option of accepting payments without digital signatures.



An Overview of the Verification of SET 5

rightly claim that many of these features are actually needed in any prac-
tical protocol. For example, alternative protocol paths are necessary in any
practical scenario: recall that the task of an e-commerce protocol is first do-
ing business, second doing it securely. Security-aware customers may have
pre-registered with a financial institution and thus secured their credit cards
from the merchant’s eyes. Other customers may decide to trust the merchant
and thus be content with a transaction secured against the outside world.
From a merchant’s perspective, all customers should be able to conclude a
purchase, whether they bothered to pre-register or not.

This paper is intended to summarize our work on the SET protocol:
the issues, the results and the lessons learned. Detailed descriptions of the
verification are published elsewhere [4,5,6].

3 Isabelle and Inductive Protocol Verification

We used the Isabelle theorem prover with the inductive approach to pro-
tocol verification, building on the previous experience on a wide range of
protocols, including industrial ones such as Kerberos [7] and TLS [22].

Isabelle/HOL [20] is an interactive proof tool for higher-order logic. Is-
abelle provides a simplifier, a predicate calculus theorem prover, a choice of
proof languages, and automatic generation of LaTeX documents. Isabelle’s
support for inductive definitions is particularly strong, both in its speci-
fication language and in its prover automation. However, other tools for
higher-order logic could be suitable, provided they fully support conditional
equational reasoning.

The inductive approach [21] verifies protocols using the standard tech-
niques of operational semantics. An inductive definition defines the possible
executions of a system consisting of the honest protocol participants and an
active attacker, the Spy. An execution comprises any number of attempted
protocol runs and is a trace of message transmissions and other events.

Authentication and agreement are expressed using safety properties over
traces and proved by induction over traces. For example, we can prove that
any trace containing a particular event x must also contain some other
event y. Secrecy properties are hardest to prove. For example, if we are
concerned with the secrecy of a certain key K, then we must prove K 6=
K ′ for each key K ′ that might be compromised. Every encrypted message
produces a case split, since we must prove that K is secure whether or
not the encrypting key is. Protocols with many steps or many options can
then generate a huge number of cases. Despite the difficulties, we can use
established techniques and tools in our attempt to prove secrecy.

Most protocols, even esoteric ones like non-repudiation and fair exchange
protocols, involve the standard cast of characters: Alice, Bob, possibly Char-
lie, and a trusted third party. SET is different: it has cardholders, merchants,
payment gateways, and a hierarchy of certificate authorities. Changing Is-
abelle’s theory of protocols to use SET’s cast of characters was easy.
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The model includes a set of honest agents, whose long-term keys can
never become compromised. (Arguably, our model is too optimistic.) For
typical protocols, where long-term keys are never transmitted, proving that
they remain secure is trivial. The Spy controls another set of agents, with
full access to their internal states. The Spy also controls the network and
retains every transmitted message. Session keys may become compromised,
for example if they are sent to compromised agents.

A standard theory of messages and their constructors underlies these
inductive models. Messages in our model form a recursive datatype (equiv-
alently, a free algebra). A nonce can never equal an agent name or a session
key, for example. Such assumptions are more realistic than one might ex-
pect: different kinds of items are likely to have different lengths and even a
different bit-wise encoding. Consider concatenation of messages, which may
seem to be inherently associative. The ISO-DER encoding of a sequence of
six random numbers has a bit-wise encoding different from the concatena-
tion of a pair of sequences of three numbers.

Encryption is injective in our theory. Only one key can decrypt a cipher-
text, which can yield only one plaintext. This assumption is plainly false
for low-level applications of encryption, where using the wrong key yields a
plaintext of random bits. However, it is correct provided “each encrypted
message contains sufficient redundancy to allow a principal who decrypts it
to verify that he has used the right key,” to quote Burrows et al. [8, p. 237].
Most research on protocol verification relies on this assumption.

Our model does not allow reasoning about exclusive-OR. Exclusive-OR
breaks down our representation of messages as a free algebra, since it sat-
isfies several equations. Exclusive-OR is associative, commutative and self-
cancelling. Intuitively, the problem is that the exclusive-OR of two messages
can potentially yield a message of any form. Fortunately, SET uses exclusive-
OR only in one place: at the end of Cardholder Registration, to compute the
so-called PANSecret. We do not attempt to prove the secrecy of the PANSe-
cret, merely of the two random numbers used in its calculation. Proving the
secrecy of the PANSecret would require additional assumptions in order
to exclude the possibility that the exclusive-OR could yield an existing se-
cret. As discussed in Sect. 5.4 below, SET’s use of exclusive-OR introduces
a vulnerability.

4 Modelling Issues

Researchers compete to produce the fastest automatic tools. However, the
main obstacle to protocol verification lies in digesting the documentation
and producing a formal model. Understanding hundreds of pages of text
is a massive undertaking. Meticulous care is essential to avoid defining an
incorrect model.

The main SET documents are the Business Description [14], the Pro-
grammer’s Guide [16], and the Formal Protocol Definition [15]. SET is de-



An Overview of the Verification of SET 7

fined using Abstract Syntax Notation One (ASN.1).2 The Programmer’s
Guide presents each message format as a figure based on the underlying
ASN.1 definition, augmented with a detailed English description of how to
process each message. The Formal Protocol Definition consists of the Pro-
grammer’s Guide with the ASN.1 notation inserted and the English text
removed. Since the ASN.1 adds little to the figures, the formal protocol
definition essentially consists of syntax without semantics. It describes the
message formats but says nothing about how messages are processed. For
that information, we had to rely on the Programmer’s Guide.

The enormous size and complexity of the SET message formats de-
manded simplification. As we have discussed elsewhere [6,3], this was not
always straightforward, forcing us to decide what constituted SET’s core
feature set. For example, we eliminated payment by instalments (since it
can be modelled by repeated transactions) and modelled only authorized
transactions (so unauthorized transactions were modelled by silent denial).
Other researchers can make other choices.

Attacks against protocols often arise from unclear assumptions about the
operating environment rather than from flaws in the protocols themselves.
Experts can dispute whether the formal model accurately reflects the real
world and thus whether the attack is realistic. Consider Lowe’s famous
attack [11] against the Needham-Schroeder public-key protocol: Alice talks
to Charlie, who happens to be dishonest and proceeds to fool Bob. In this
scenario, Charlie is a dishonest insider. However, Needham and Schroeder
designed the protocol with the express purpose of protecting the honest
insiders from outsiders.

SET has a much more complex environment and parts of its operation
are specifically left “out of band.” Our formal model has to make reasonable
assumptions about these parts which are sketched in the SET External
Interface Guide [13]. It also must specify which insiders can be compromised
and innumerable other details. It also has to define the protocol goals, since
the documentation outlines them only in general management terms.

5 Verifying The Registration Protocols

The cardholder registration protocol (Fig. 1) comprises three message ex-
changes between the cardholder and a certificate authority. In the first ex-
change, the cardholder requests registration and is given the certificate au-
thority’s public keys. In the second exchange, the cardholder supplies his
credit card number, called the PAN, or Primary Account Number; he re-
ceives an application form suitable for the bank that issued his credit card.
In the third exchange, the cardholder returns the completed application
form; in addition, he delivers his public signature key and supplies a 20-byte
secret number (the CardSecret). Finally, the cardholder receives a certificate
that contains his public signature key and another 20-byte secret number,

2 http://www.asn1.org

http://www.asn1.org
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Fig. 1 Cardholder Registration

the PANSecret. The registration protocol for merchants is simpler: it has
only two message exchanges and involves no credit card number.

Conceptually, cardholder registration is straightforward. Its chief pecu-
liarities are that the cardholder is authenticated by the registration form
containing the PAN, not by the knowledge of a secret key, and that long
term keys can be created on the fly. The first point is critical for modelling
and is discussed elsewhere [6]. The second point makes verification difficult.

5.1 Dynamic Creation of Long-Term Keys

Typical modelling of a public-private key pair associates each half to the
agent holding it: there is a function mapping each agent’s name to his public
key. Thus each agent has precisely one public key, and therefore one private
key. It simplifies the base step of all secrecy proofs: if the agent is not
compromised, its private key is by definition not compromised. Each time a
message is encrypted with a public key we can avoid the case split mentioned
in the previous section: if the agent is not compromised, then the Spy cannot
read messages encrypted using his public key. We can focus on the remaining
trace and apply the inductive hypothesis.

If agents have more than one private key, case splits arise also on en-
crypting with public keys: one particular key could be compromised, or a
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cardholder could use a key that is not compromised before step i but be-
comes compromised soon afterwards. Worse still, it is necessary to have a
complex background theory on keys. At present we only have a type key
where symmetric keys are distinguished by being self-inverse. As soon as
we allow for the creation of asymmetric keys on the fly we must specify a
lot more: one cannot generate the key of the root authority by chance, a
public half of a key cannot be equal to a secret half of another asymmetric
key, and so on and so forth. Also, a cardholder can, but is not obliged to,
register a fresh key each time. This uncertainty makes the proofs hard and
model checking simply impossible.

Indeed, in our first model of the cardholder registration protocol [6], we
modelled these possibilities successfully. In the version presented below [5]
we have reverted to the standard modelling approach, where one key pair
for signature and one for encryption are syntactically associated to each
agent, because it is more readable.

5.2 Key Dependency Chains

Another obstacle to verification—especially, proving secrecy—is SET’s
heavy use of digital envelopes. Digital envelopes can generate a trace where
in message 1 there is a key encrypting a key for message 2, and so forth. To
prove the secrecy of the last key one must prove the secrecy of all keys in
the chain. Yahalom [23] and Kerberos [7] have a dependency chain of length
one: one session key encrypts just one secret. With SET, the dependency
chain has length two, or three if signing keys are generated dynamically.
It may not sound like much of an increase, but it requires new proof tech-
niques. Now that we have found these techniques, we can easily apply them
to other protocols.

To cope with arbitrary dependency chains one needs to generalise the
technique used for the Yahalom protocol [23]. We define a transitive relation
specifying that in a given trace the loss of one key leads to the loss of another.
In brief, the first key was used to encrypt the second key in some messages
sent during that trace of events. This creates a dependency relation between
the second key and the first key. Then we prove some lemmas that rule out
dependencies or bound what can be lost. For instance, no key depends
on the cardholder’s secret key because no key is ever encrypted with the
cardholder’s public key. Another example: the secrecy of a key never used
in a trace cannot depend on the secrecy of another key previously used in
the trace. Also, if unused keys are lost to the Spy, then they must be held
by compromised agents.

We have chosen to define the key dependency chain specifically for the
protocol under verification. This approach is practical, though a protocol-
independent treatment may superficially seem more attractive. For example,
the generic Isabelle theory of protocol messages defines a relation yielding
the keys necessary to decrypt some message belonging to a given set of
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messages; the definition is independent of any particular protocol, and we
have used it extensively in the proofs about SET. But inductive proofs may
produce intermediate subgoals that span through many pages. Our current
choice improves simplification, avoiding some case splits. We define the re-
lation to refer to the specific protocol steps that produce the dependency
chain. The other protocol steps, no matter how complicates, are ruled out
by construction.

This treatment of the relation is safe, since the proofs will reveal any
errors. If our relation omits some dependency, then our lemma bounding the
possible losses will be useless for proving other secrecy theorems. Moreover,
the case that we are unable to prove will indicate which dependency was
missed.

In the current model of cardholder registration, the chain links only
three items: two symmetric keys and one nonce. If asymmetric keys can be
generated on-the-fly, the chain can become longer and the bounding lemmas
more complex. Having both on-the-fly generation of asymmetric keys and
digital envelopes adds more than the sum of their complexities.

5.3 Modelling the Fifth Message

Let us consider these points more precisely. Here is the fifth message, Card-
holder Certificate Request :

5. C → CA : CryptKC3(m, S),
CryptpubEKCA(KC3,PAN,CardSecret)

where m = C, NC3, KC2, pubSK C

and S = CryptpriSK C(Hash(m,PAN,CardSecret))

The cardholder chooses an asymmetric signature key pair. He gives the the
public key, pubSK C, and the number CardSecret to the certificate authority.
This message is a digital envelope, sealed using the key KC3; it contains
another key, KC2, which the certificate authority uses for encrypting the
Cardholder Certificate:

6. CA→ C : CryptKC2

(SignCA (C,NC3,CA,NonceCCA),
CertCA(pubSK C,PANSecret),
CertRCA(pubSKCA)))

where PANSecret = CardSecret⊕NonceCCA

The certificate authority returns a certificate for the cardholder’s public sig-
nature key. The certificate also includes the cryptographic hash of PANSe-
cret. This 20-byte number is the exclusive-OR of the CardSecret and Non-
ceCCA: a nonce chosen by the certificate authority. The purpose of these
nonces is twofold: CardSecret will be used by the cardholder to confirm
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purchases on top of the digital signature (the hash of CardSecret must be
added for each payment instruction), PANSecret as a whole will be used to
generate the “name” of the cardholder in the X.509 certificate format. In a
nutshell, the name of the public key holder in the certificate will not be C
but Hash(PANSecret,PAN).

The secrets KC3, KC2, NonceCCA form a dependency chain, requiring
the new proof technique mentioned above. Removing the digital envelopes
here would shorten the dependency chain—as would disposing with Non-
ceCCA, as we recommend below.

Figure 2 presents the Isabelle specification of message 5. It is hard to
read, but comparing it with the informal notation above conveys an idea of
the syntax. The inductive definition consists of one rule for each protocol
message, which extends a given trace. (Note that # is Isabelle syntax for
the list “cons” operator. In the rule for message 5, the current trace is
called evs5.) One of the rule’s preconditions is that CardSecret must be
fresh:

Nonce CardSecret /∈ used evs5

The nonce NC3 and the two symmetric keys (KC2 and KC3) must also be
fresh. Other preconditions check that the cardholder has sent an appropriate
instance of message 3 to the certificate authority and has received a well-
formed reply. If the preconditions are satisfied, then C can generate the
corresponding instance of message 5.

5.4 Security of the PANSecret

We did not discover any attacks against cardholder registration. However,
we did discover a modification that would improve the protocol. Under rea-
sonable assumptions, the PAN, PANSecret and other sensitive information
remain secure. Among the reasonable assumptions is that certificate au-
thorities are not compromised. Though this might be argued about a finan-
cial institution as such, it might be false about the institution’s outsourced
software. Here is a flaw: the PANSecret is computed as the exclusive-OR of
CardSecret and NonceCCA, which gives the certificate authority full control
over its value. One would like to be able to trust the certificate authorities,
but banks have issued insecure Personal Information Numbers [1, p. 35]:

One small upper-crust private bank belied its exclusive image by giv-
ing all its customers the same PIN. This was a simple programming
error; but in another, more down-market institution, a programmer
deliberately arranged things so that only three different PINs were
issued, with the idea that this would provide his personal pension
fund.

The remedy is trivial: compute the PANSecret by hashing instead of
exclusive-OR. Another remedy is to leave its choice entirely to the card-
holder’s computer—after all, it exists for the cardholder’s protection. If two
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[[evs5 ∈ set cr; C = Cardholder k;

Nonce NC3 /∈ used evs5; Nonce CardSecret /∈ used evs5;

NC3 6= CardSecret;

Key KC2 /∈ used evs5; KC2 ∈ symKeys;

Key KC3 /∈ used evs5; KC3 ∈ symKeys; KC2 6=KC3;

Gets C {|sign (invKey SKi) {|Agent C, Nonce NC2, Nonce NCA |},
cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |}
∈ set evs5;

Says C (CA i)

{|Crypt KC1 {|Agent C, Nonce NC2, Hash (Pan (pan C)) |},
Crypt EKi {|Key KC1, Pan (pan C),

Hash {|Agent C, Nonce NC2 |}|}|}
∈ set evs5 ]]

=⇒ Says C (CA i)

{|Crypt KC3

{|Agent C, Nonce NC3, Key KC2, Key (pubSK C),

Crypt (priSK C)

(Hash {|Agent C, Nonce NC3, Key KC2,

Key(pubSK C), Pan(pan C), Nonce CardSecret |}) |},
Crypt EKi {|Key KC3, Pan (pan C), Nonce CardSecret |}|}

# evs5 ∈ set cr

Fig. 2 Cardholder Registration in Isabelle (Message 5)

nonces are needed, one (PANSecret) disclosed to the Payment Gateway and
another (CardSecret) disclosed only to a certificate authority, then let the
cardholder generate both of them.

This modification would eliminate NonceCCA, and with it, the need to
encrypt message 6, which would contain only public-key certificates. We
could dispense with the key KC2 and eliminate the dependency chain KC3,
KC2, NonceCCA. These changes would make the protocol simpler and more
secure against a compromised certificate authority.

6 Verifying the Purchase Protocols

A SET purchase can involve three protocols: purchase request, payment
authorisation, and payment capture. The first two of these often behave as
a single protocol, which is how we model them. (We have yet to investigate
payment capture.) The protocol is too complex to present here in full. Even
the means of identifying the transaction is complicated. The cardholder and
merchant may each have an identifying number; sometimes a third number
is chosen. The choice of method is actually left open by SET designers. For
the sake of simplicity, we discard all but one of the identification options,
and use the merchant’s transaction identifier.

The essential parameters of any transaction are the order description
(presumably a text string) and the purchase amount. The cardholder forms



An Overview of the Verification of SET 13

a dual signature on the order information and payment information, as
outlined in Sect. 2, and sends it to the merchant. The merchant forwards
the payment information, under his signature, to the payment gateway. Only
the payment gateway can read the account details, which include the PAN
and the PANSecret. If they are acceptable, he replies to the merchant, who
confirms the transaction with the cardholder.

Other details of our model include an event to model the initial shopping
agreement, which lies outside SET. Our model includes also the possibility of
unsigned purchases. These allow unregistered cardholders to use SET using
a credit card number alone and offer little protection to merchants. SET
perhaps offers this option in order to provide an upgrade path from SSL.
The leanest execution, in which everything is signed, runs for 6 messages.

An example illustrates the complexity of the dual signature. Message 3
is the actual purchase request from the cardholder to the merchant.

3. C →M : PIDualSign,OIDualSign

Here, the cardholder C has computed

HOD = Hash(OrderDesc,PurchAmt)
PIHead = LID M,XID,HOD,PurchAmt,M,

Hash(XID,CardSecret)
OIData = XID,Chall C,HOD,Chall M

PANData = PAN,PANSecret
PIData = PIHead,PANData

PIDualSign = SignpriSK C(Hash(PIData),Hash(OIData)),

CryptpubEK P (PIHead,Hash(OIData),PANData)

OIDualSign = OIData,Hash(PIData)

LID M and XID are unique (but guessable) transaction identifiers generated
by the merchant’s software; Chall C and Chall M are nonces; the remaining
fields are all derived from PAN, PANSecret, and CardSecret.

Because of the hashing, all the information appears repeatedly. Although
in the real world the hash of any message is a short string of bytes, in the
formal model the hash of message X is literally HashX: a construction
involving X. The formal model of message 3 involves massive repetition.
Most digital envelopes involve hashing, causing further repetition. Figure 3
presents this message using Isabelle syntax.

The SET documentation did not specify what properties to prove. We
specified them ourselves, based on our interpretation of the Business De-
scription. Obviously, the PAN and PANSecret must remain secure. Each
party to a purchase must be assured that the other parties agree on all the
essential details: the purchase amount, the transaction identifier, the order
description, and the names of the other agents.
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[[evsPReqS ∈ set pur; C = Cardholder k; CardSecret k 6= 0;

Key KC2 /∈ used evsPReqS; KC2 ∈ symKeys;

Transaction = {|Agent M, Agent C, Number OrderDesc, Number PurchAmt |};
HOD = Hash{|Number OrderDesc, Number PurchAmt |};
OIData = {|Number LID M, Number XID, Nonce Chall C, HOD, Nonce Chall M |};
PIHead = {|Number LID M, Number XID, HOD, Number PurchAmt, Agent M,

Hash{|Number XID, Nonce (CardSecret k) |}|};
PANData = {|Pan (pan C), Nonce (PANSecret k) |};
PIData = {|PIHead, PANData |};
PIDualSign = {|sign (priSK C) {|Hash PIData, Hash OIData |},

EXcrypt KC2 EKj {|PIHead, Hash OIData |} PANData |};
OIDualSign = {|OIData, Hash PIData |};
Gets C (sign (priSK M){|Number LID M, Number XID,

Nonce Chall C, Nonce Chall M,

cert P EKj onlyEnc (priSK RCA) |})
∈ set evsPReqS;

Says C M {|Number LID M, Nonce Chall C |} ∈ set evsPReqS;

Notes C {|Number LID M, Transaction |} ∈ set evsPReqS ]]
=⇒ Says C M {|PIDualSign, OIDualSign |} # evsPReqS ∈ set pur

Fig. 3 The Signed Purchase Request Message

We proved most of these properties, and some proofs were easy. Indeed,
there were few theorems whose proofs were intrinsically difficult. The sheer
number of theorems and supporting lemmas was an obstacle—many results
had separate versions for signed and unsigned purchases. The complexity of
theorem statements, caused by the complicated SET message formats, was
an obstacle. Not knowing precisely what to prove was a major obstacle: if
we had problems proving an assertion, we had to decide whether to weaken
it somehow, to look harder in the SET documentation for some omitted
field, or to try harder with the proof itself.

A typical agreement guarantee states that when the merchant sees a
dual signature (in a Purchase Request), he is assured that it originated with
the cardholder. The formal proof, like the intuitive one, argues that only
the cardholder knows his private signature key. The proof uses induction,
as usual, and applies three easily-proved technical lemmas. This theorem
is important: by verifying the dual signature, specifically the transaction
identifier XID, the merchant can be assured that he and the cardholder
agree on the details of the purchase. The agreement guarantees between
other pairs of agents are also easy to prove. However, the total effort, with
the obstacles mentioned above, is considerable.

Secrecy proofs are always difficult. Simplification has to be set up care-
fully, or the subgoals will blow up exponentially. Lemmas of a peculiar form
must be proved by induction. Fortunately, the necessary techniques appear
to be similar for all protocols. We proved the secrecy of the session keys
used in the digital envelopes and of nonces such as PANSecret. Secrecy of
the PAN involves two theorems, depending upon whether the Purchase Re-
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quest is signed or unsigned. We did not have to introduce new relations, as
we did for Cardholder Registration.

A concern that emerged from our proof efforts is that many guarantees
for cardholders and payment gateways depend upon the assumption that
merchants are not compromised. This is not due to lack of effort on our
side, but to an apparently unrelated feature of the design: the payment
gateway is chosen by the merchant alone during the SET initiation process.
His public and private keys are often used but his name is not confirmed (for
example in a digital signature) either by the cardholder or by the merchant
at any later stage. Thus, the payment gateway cannot be certain that the
cardholder intended him to take part in the transaction. Message 3 involves
six copies of the field XID (transaction identifier) and nine copies of the
field PurchAmt (purchase amount), but it never mentions the identity of
the intended payment gateway.

If the merchant is dishonest, there cannot be any guarantee that the right
payment gateway has been selected. Furthermore, it is impossible to prove
the agreement between the name and key of the payment gateway used by
the cardholder and the name and key of the payment gateway authorizing
the transaction. Although the failure of this property is disappointing, it
does not appear to allow a significant attack. It could only be exploited
by a rogue payment gateway, who could induce an anomalous execution on
another gateway. However, presumably a rogue gateway would prefer the
silent harvesting of credit card numbers to causing visible SET malfunctions.
Thus, we reject the dualistic view that every protocol is either correct or
vulnerable to attack. Anomalous executions that do little harm cannot be
called attacks.

Digital envelopes complicate the statements of many guarantees. Agree-
ment among principals obviously refers to important fields such as the order
description and purchase amount. While we certainly hope the two parties
will agree on which session key was used in a digital envelope, that prop-
erty does not seem to be essential. We decided not to prove agreement on
session keys because the value of this result did not justify the effort needed
to prove it. Loosely speaking, we have proved that the keys on all locks
(symmetric keys in digital envelopes) remained secret, that the contents of
the luggage remained secret and unchanged, that the sender was authentic,
but we have not proved that the luggage arrived with the same locks with
which it was packed.

7 Conclusions

Our study demonstrates that enormous protocols such as SET are amenable
to formal analysis. Such work is challenging, however. Understanding the
documentation and defining a formal model can take months. Unfortunately,
we did not record how much time we devoted to the various tasks and have
to rely on memory. A student, Piero Tramontano, devoted about 28 weeks
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to understanding SET under our supervision. While he concentrated on
Cardholder Registration, much of this time was devoted to understanding
the fundamentals of SET in general. Completing the Cardholder Registra-
tion proofs required the dependency relation described in Sect. 5.2 and took
perhaps two weeks. Merchant Registration is simpler than Cardholder Reg-
istration and may have needed two weeks for its modelling and verification.
For the Purchase phase, we may have devoted eleven weeks. These numbers
are very approximate. We recall that modelling took longer than proof.

The proofs are still difficult. Isabelle may present the user with subgoals
that are hundreds of lines long. Diagnosing a failed proof requires meticu-
lous examination of huge and unintuitive formulae, where all abbreviations
have been fully expanded. Such monstrosities impose a heavy burden on the
computer too. A simplification step can take 10 or 20 seconds on a 1.8GHz
processor. The bar chart shows the runtime required to execute the proofs
for several protocols on a 1.8GHz machine. There are three SET protocols
(dark shading) and three others (light shading). This data is suggestive
rather than compelling, because minor changes to a proof script can cause
substantial changes to the required runtime. It suggests that merchant reg-
istration is very simple. Cardholder registration requires more effort, partly
because it is longer and partly because it demands more secrecy proofs. The
purchase protocol is by far the most difficult one.

0s 50s 100s 150s 200s 250s 300s 350s

Purchase

Cardholder Reg

Merchant Reg

Kerberos

TLS

Otway-Rees

It is not clear whether model checking could cope with this protocol’s
complexity. Specialized verification tools are more powerful than Isabelle,
but they are less flexible. Even for Isabelle, the burden on the human verifier
is too high to be increased further.

The single greatest advance would be a method of abstraction allowing
constructions such as the digital envelope to be verified independently. We
could then model these constructions abstractly in protocol specifications.
In the case of SET, we could replace all digital envelopes by their abstract
version. Assertions would become more concise; proofs would become much
simpler. Unfortunately, abstraction in the context of security is ill under-
stood and can mask grave flaws [25].

The other advance depends on protocol designers: they should provide a
Formal Protocol Definition worthy of the name. It should precisely specify
several things:

1. a version of the message flow comprising the security features only,
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2. a clear separation of features necessary to patch real-word cryptography
(such as salt, which thwarts dictionary attacks) from abstract primitives
(such as perfect hashing, encryption and signature),

3. the protocol’s precise objectives, expressed as operational guarantees to
each party,

4. the protocol’s operating environment, including the threat model.

Notice that we are not advocating that formal verification should be used
during the design (though it might be desirable eventually), nor that the
Formal Protocol Definition should employ a logical formalism (designers
would disagree on which one to use). We merely insist that the protocol
documentation should clearly specify the items mentioned above. The im-
plementers and maintenance staff would also benefit from a clear and precise
specification. At present, we are forced to reverse engineer the protocol’s core
design from its documentation, and we have to guess what the protocol is
supposed to achieve.
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