
The Babel DV Routing Protocol

Leonardo Maccari

December 7, 2017

The Babel DV Routing Protocol - Leonardo Maccari 1

Primer on Distance Vector 1

Distance vector routing allows routers to automatically
discover the destinations reachable inside the network
Distance vector routing is completely distributed, meaning that
no node has the full knowledge of the whole network topology.
The shortest path is computed based on metrics or costs that
are associated to each link.

1http:
//cnp3book.info.ucl.ac.be/2nd/html/principles/network.htmlThe Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 2

http://cnp3book.info.ucl.ac.be/2nd/html/principles/network.html
http://cnp3book.info.ucl.ac.be/2nd/html/principles/network.html

RT definition:

Each router maintains a routing table R, for each destination d it
includes the following attributes :

R[d].link is the outgoing link for packets to destination d
R[d].cost is the sum of the metrics of the links that compose
the shortest path to reach destination d
R[d].time is the timestamp of the last distance vector
containing destination d

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 3

DV Principles

Each router regularly sends its distance vector over all its
interfaces.
The distance vector is a summary of the router’s routing table
including for each d, the cost of the path.
In principle, this is all that is required for DV routing to work

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 4

Sending DV Messages

Every N seconds:
v=Vector ()
for d in R[]:

add destination d to vector
v.add(Pair(d,R[d].cost))

for i in interfaces
send vector v on this interface
send(v,interface)

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 5

Bootstrap

When a router boots, it does not know any destination in the
network and its routing table only contains itself.
It thus sends to all its neighbours a distance vector that
contains only its address at a distance of 0.
When a router receives a distance vector on link l, it processes
it as follows.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 6

Processing a DV Message

When receiving a DV message on link l:
The router iterates over all addresses included in the distance
vector.
If the distance vector contains an address d that the router
does not know, it inserts d in its routing table, with:

R[d].link = l
R[d].cost = sum between the distance indicated in the distance
vector and the cost associated to link l.

If the destination was already known by the router, it only
updates the corresponding entry in its routing table if either :

the cost of the new route is smaller than the cost of the
already known route ((V[d].cost+l.cost) < R[d].cost)
the new route was learned over the same link as the current
best route towards this destination (R[d].link == l)

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 7

Processing a DV Message

The first condition ensures that the router discovers the
shortest path towards each destination.
The second condition is used to take into account the changes
of routes that may occur after a link failure or a change of the
metric associated to a link.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 8

Processing a DV Message

def received(V,l): # received vector V from link l
for d in V[]

if not (d in R[]): # new route
R[d].cost=V[d].cost+l.cost
R[d].link=l
R[d].time=now

else: # existing route
if (((V[d].cost+l.cost) < R[d].cost) or

(R[d].link == l)):
Better route or update existent route
R[d].cost=V[d].cost+l.cost
R[d].link=l
R[d].time=now

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 9

DV: Example

Assume that A is the first to send its distance vector [A=0].

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 10

DV: Example

A B C

D E

B and D process the received distance vector and update their
routing table with a route towards A.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 11

DV: Example

A B C

D E

D sends its distance vector [D=0,A=1] to A and E. E can now
reach A and D.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 12

DV: Example

A B C

D E

C sends its distance vector [C=0] to B and E

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 13

DV: Example

A B C

D E

E sends its distance vector [E=0,D=1,A=2,C=1] to D, B and C. B
can now reach D and E, C can reach D and A (with a 3-hop path)

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 14

DV: Example

A B C

D E

B sends its distance vector [B=0,A=1,C=1,D=2,E=1] to A, C and
E. A, B, C and E can now reach all destinations.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 15

DV: Example

A B C

D E

A sends its distance vector [A=0,B=1,C=2,D=1,E=2] to B and D.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 16

DV: Example

A B C

D E

At this point, all routers can reach all other routers

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 17

Update on Link Failures

As all routers send their distance vector every N seconds, the
timestamp of each route should be regularly refreshed
No route should have a timestamp older than N seconds,
unless the route is not reachable anymore
To cope with transmission errors, routers periodically check
the timestamp of each route and remove the routes that are
older than 3xN seconds

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 18

Update on Link Failures

When a route expires, the router must first associate an ∞
cost to this route and send its distance vector to its neighbours
to inform them.
The route can then be removed from the routing table after
some time (e.g. 3xN seconds), to ensure that the neighbouring
routers have received the bad news, even if some distance
vectors do not reach them due to transmission errors.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 19

DV: Example

A B C

D E

link between routers A and B fails.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 20

DV: Example

A B C

D E

A sends its distance vector [A=0,B=∞,C=∞,D=1,E=∞] D knows
that it cannot reach B anymore via A

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 21

DV: Example

A B C

D E

D sends its distance vector [D=0,B=∞,A=1,C=2,E=1] to A and
E. A recovers routes towards C and E via D.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 22

DV: Example

A B C

D E

B sends its distance vector [B=0,A=∞,C=1,D=2,E=1] to E and
C. C learns that there is no route anymore to reach A via B.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 23

DV: Example

A B C

D E

E sends its distance vector [E=0,A=2,C=1,D=1,B=1] to D, B and
C. D learns a route towards B. C and B learn a route towards A.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 24

DV: Example

A B C

D E

D sends its updated distance vector [A=1,B=2,C=2,D=1,E=1], A
recovers the route towards B

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 25

Count to Infinity

A B C

D E

Now also the link between D and E fails. The network is now
partitioned into two

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 26

Count to Infinity

A B C

D E

The routes towards B, C and E expire first on router D, D sends
[D=0,A=1,B=∞,C=∞,E=∞]

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 27

Count to Infinity

A B C

D E

A learns that B, C and E are unreachable and updates its routing
table.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 28

Count to Infinity

A B C

D E

If the distance vector sent to A is lost or if A sends its own distance
vector ([A=0,D=1,B=3,C=3,E=2]) at the same time as D sends
its distance vector, D updates its routing table to use the shorter

routes advertised by A towards B, C and E.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 29

Count to Infinity

A B C

D E

After some time D sends a new distance vector :
[D=0,A=1,E=3,C=4,B=4]. A updates its routing table and after

some time sends its own distance vector
[A=0,D=1,B=5,C=5,E=4], etc.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 30

Count to Infinity

Routers A and D exchange distance vectors with increasing costs
until these costs reach ∞. Count to Infinity!

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 31

Count to Infinity

DV may suffer from count to infinity problems in other scenarios if
there is a cycle in the network.

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 32

Split Horizon

This count to infinity problem occurs because router A
advertises to router D a route that it has learned via router D.
A possible solution is to that router A could create a distance
vector that is specific to D and contains the routes that have
not been learned via D

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 33

Split Horizon

one vector for each interface
for l in interfaces:

v=Vector ()
for d in R[]:

if (R[d].link != l) :
v=v+Pair(d,R[d.cost])

send(v)

With the Poison Reverse Variant, a route is sent with ∞ cost

The Babel DV Routing Protocol - Leonardo Maccari - Distance Vector Protocol 34

The Babel Protocol: RFC6126

Babel is a mostly loop-free distance vector protocol based on
the Bellman-Ford protocol
Babel includes a number of refinements that either prevent
loop formation altogether, or ensure that a loop disappears in
a timely manner and doesn’t form again.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 35

Babel, Concepts

A Babel node periodically broadcasts H messages to all of its
neighbours;
It also periodically sends an IHU ("I Heard You") message to
every neighbour from which it has recently heard a H.
From the information derived from H and IHU messages
received from its neighbour B, a node A computes the cost
C(A, B) of the link from A to B.
cost is normally ETX, but could be something different

The Babel DV Routing Protocol - Leonardo Maccari - Babel 36

Babel, Concepts

In the rest of the text, S is always the node on which we are
building the route for
Given a route between any two nodes, the metric of the route
is the sum of the costs of all the edges along the route: D(B)
is the cost of the path from B to S.
The goal of the routing algorithm is to compute, for every
source S, the tree of the routes of lowest metric to S.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 37

Feasibility Condition: DSDV

We have seen that with Bellman-Ford loops can be created,
and that split-horizon helps to solve them
In a wireless network you may not have one interface per link,
so you can not apply split-horizon
How do you prevent loops?
Babel uses a strict Feasibility Condition and sequence numbers
to ensure loop-freedom

The Babel DV Routing Protocol - Leonardo Maccari - Babel 38

Key observation: Loops

A looped route is created when a piece of information (a
route) travels from node A to B and then back from B to A.
The associated cost must be larger than the cost of the real
shortest path (if there is one)
Therefore, a routing loop can only arise after a router has
switched to a route with a larger metric than the route that it
had previously selected.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 39

Feasibility Condition: DSDV

A feasibility condition is a condition applied to accept a
routing update from a neighbor and helps preventing loops.
Due to the previous observation, one could decide that a route
is feasible only when its metric at the local node would be no
larger than the metric of the currently selected route
announcement carrying a metric D(B) is accepted by A when
C (A,B) + D(B) <= D(A).
If all routers obey this constraint, if A has selected B as its
successor, then D(B) < D(A), which implies that the
forwarding graph is loop-free.
This condition is used in the DSDV protocol

The Babel DV Routing Protocol - Leonardo Maccari - Babel 40

Babel Feasibility Condition

Babel uses a slightly more refined feasibility condition, used in
EIGRP
Call FD(A) the feasibility distance of A: the smallest metric
that A has ever advertised for S
An update sent by a neighbour B of A is feasible when D(B)
< FD(A).
It can be shown that this condition is no more restrictive than
the EIGRP one. . .

The Babel DV Routing Protocol - Leonardo Maccari - Babel 41

Babel Feasibility Condition

Suppose that A obeys DSDV-feasibility; then D(A) <= FD(A)
(actually D(A) = FD(A) most of the time, and D(A) < FD(A)
in the transitory phase when the route has changed but it was
not advertised yet)
Now A receives a feasible update with a metric D(B)
The update is DSDV-feasible → C(A, B) + D(B) <= D(A)
→ D(B) < D(A)
and since D(A) <= FD(A) then D(B) < FD(A).
Since the DSDV condition compares with D(B), then Babel
condition (that compares with FD(A)) is no more restrictive

The Babel DV Routing Protocol - Leonardo Maccari - Babel 42

Difference

A B

D E

1

1

4

1

E-B-A and E-D-A are both feasible for Babel, not for DSDV
E-B-A is the chosen one, but E-D-A can be used if the first
breaks
not in DSDV

The Babel DV Routing Protocol - Leonardo Maccari - Babel 43

Loop Freedom

when A accepts an update from B, D(B) < FD(A) and FD(B)
<= D(B)
then FD(B) < FD(A)
Since this property is preserved when A sends updates, it
remains true at all times
Metrics are non-incremental, thus, the loop condition can not
happen

The Babel DV Routing Protocol - Leonardo Maccari - Babel 44

Starvation

A

S

B

1

2

1 A

S

B

1

2

The feasibility condition produces starvation when a router
remains without feasible routes to choose from
A-B-S is not feasible!

The Babel DV Routing Protocol - Leonardo Maccari - Babel 45

Sequenced Routes

Babel solves this issue with sequenced routes, a technique
introduced by DSDV
In addition to a metric, every route in the DV message carries
a sequence number, a nondecreasing integer that is propagated
unchanged through the network and is only ever incremented
by the source;
a pair (s, m), where s is a sequence number and m a metric, is
called a distance.
A received update is feasible when either it is more recent than
the feasibility distance maintained by the receiving node, or it
is equally recent and the metric is strictly smaller.
More formally, if FD(A) = (s, m), then an update carrying the
distance (s’, m’) is feasible when either s’ > s, or s = s’ and
m’ < m.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 46

Sequenced Routes

A

S

B

1

2

A

S

B

1

2

Breakage Time

FD(A) = (137, 1)

D(B) = (137, 2)

FD(B) = (137, 2)

Unfeasible!

After S sent a message

FD(A) = (137, 1)

D(B) = (138, 2)

FD(B) = (138, 2)

Feasible!

The Babel DV Routing Protocol - Leonardo Maccari - Babel 47

Babel Requests

If the sequence number of a source is increased periodically,
the new sequence number may take a significant amount of
time to be propagated.
Babel instead sends requests when something seems to be
broken
When a node detects that it is suffering from a potentially
spurious starvation, it sends an explicit request to the source
for a new sequence number.
This request is forwarded hop by hop to the source (with no
regard to the feasibility condition).
Upon receiving the request, the source increases its sequence
number and broadcasts an update, which is forwarded to the
requesting node.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 48

Babel Requests

Note that not all such potentially parallel requests will, in
general, reach the source, as some will be sent over links that
are now broken.
However, if the network is still connected, then at least one
among the nodes suffering from spurious starvation has an
(unfeasible) route to the source;
hence, in the absence of packet loss, at least one such request
will reach the source. (Resending requests a small number of
times compensates for packet loss.)
Since requests are forwarded with no regard to the feasibility
condition, they may, in general, be caught in a forwarding
loop; this is avoided by having nodes perform duplicate
detection for the requests that they forward.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 49

Multiple Routers for one Prefix

There are cases in which the same prefix is originated by
different routers, i.e. the default prefix.
Babel treats routes for the same prefix as distinct entities
when they are originated by different routers: every route
announcement carries the “router-id” of its originating router
(a unique identifier)
feasibility distances are not maintained per prefix, but per
source, where a source is a pair (router-id, prefix).

The Babel DV Routing Protocol - Leonardo Maccari - Babel 50

Multiple Routers for one Prefix

In effect, Babel guarantees loop-freedom for the forwarding
graph to every source (pair router-id, prefix);
But IP packets are routed according to prefixes, not router-ids
Since the union of multiple acyclic graphs is not in general
acyclic, Babel does not in general guarantee loop-freedom
when a prefix is originated by multiple routers.
Anyway, any loop will be broken in a time at most proportional
to the diameter of the loop – as soon as an update has "gone
around" the routing loop.

The Babel DV Routing Protocol - Leonardo Maccari - Babel 51

Multiple Routers for one Prefix: Ex

S' ::/0BS::/0 A

If both gateways fail at the same time, A will switch to B, and
B will switch to A
Then A emits an update with the router-id of S’
When this propagates to B, B considers the route infeasible (B
already invalidated it)
Same things happen the other way around
Loops last for the time needed to travel once on the loop itself

The Babel DV Routing Protocol - Leonardo Maccari - Babel 52

ToS Extension2

The Type of Service (ToS) or Differentiated Services Code
Point (DSCP) is a field of the IPv4 (and IPv6) header.
It can be used to request different per-hop behaviour when
forwarding IP packets with identical source and destination.

2https:
//tools.ietf.org/html/draft-chouasne-babel-tos-specific-00The Babel DV Routing Protocol - Leonardo Maccari - Extensions to Babel 53

https://tools.ietf.org/html/draft-chouasne-babel-tos-specific-00
https://tools.ietf.org/html/draft-chouasne-babel-tos-specific-00

ToS Extension

Generally, based on the ToS field a node uses different
queueing policies (priority, drop probability, etc.).
It can also be taken into account in addition to the destination
address when performing a routing decision.
A router that has a low-latency default route with high
monetary cost might announce it with a “low- latency” ToS,
and thus avoid carrying ordinary best-effort traffic over the
expensive route.
This extension allows to use both ToS-specific routes and
non-ToS-specific routes handled by the original Babel protocol.

The Babel DV Routing Protocol - Leonardo Maccari - Extensions to Babel 54

ToS Routes

A router that performs ToS-specific routing maintains a
routing table which instead of being merely indexed by
destination prefixes is indexed by pairs of a prefix and a ToS
value.
The router adds a ToS TLV to the Routing Update packets.
Updates and Requests for ToS-specific routes will be ignored
by nodes implementing only the original protocol.
So the ToS TLV does not propagate on a path that is not
made of all ToS-enabled nodes

The Babel DV Routing Protocol - Leonardo Maccari - Extensions to Babel 55

ToS in Babel

This is important, because it guarantees that the wanted
quality is preserved along the whole path.
Similarly, a ToS-enabled node will add the ToS TLV also in
Requests packets
In order to be routed according to a given entry in the routing
table, a packet must match not only the destination prefix but
also the ToS value.

The Babel DV Routing Protocol - Leonardo Maccari - Extensions to Babel 56

Diversity Routing for Babel3

A wireless mesh network may use links with interfering
channels
Or, with non-interfering channels

3https://tools.ietf.org/html/
draft-chroboczek-babel-diversity-routing-01The Babel DV Routing Protocol - Leonardo Maccari - Extensions to Babel 57

https://tools.ietf.org/html/draft-chroboczek-babel-diversity-routing-01
https://tools.ietf.org/html/draft-chroboczek-babel-diversity-routing-01

Diversity Routing

A B

D E

1

1

1.1

1

Different colors implies different (possibly non-interfering)
channel
In this case, even if A-B-E has a lower cost than A-D-E, it may
be convenient to use the A-D-E since it passes through
non-interfering channels
This is especially true if the link metric does take into account
only loss (as ETX)

The Babel DV Routing Protocol - Leonardo Maccari - Extensions to Babel 58

	Introduction
	Distance Vector Protocol
	Babel
	Extensions to Babel

