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Abstract— Analytical approaches for the performance investi-
gation of portions of the Internet often consider the behavior
of TCP over congested (or bottleneck) links. In several cases,
the analysis is based on an iterative Fixed Point Approximation
(FPA) to compute the equilibrium point, in terms of packet
loss rate and offered load, that represents the operating point
of the network. Almost invariably, the FPA is conjectured to
converge, but no proof of convergence is provided. This paper
proves that a general model of a reliable protocol (such as TCP)
over congested links converges to a unique stable solution under
mild regularity conditions. This provides a justification of the
convergence observed in the literature and a solid base for the
further development of analytical approaches based on FPAs.

I. INTRODUCTION

Literature on protocol and network performance concentrates
on heavy congestion conditions. There are obvious reasons to
this choice, specially when reliable protocol, whose aim is the
retransmission of lost or corrupted packets, come into play. In
recent years there has been a huge amount of work concerning
TCP (a reliable protocol with congestion control features)
over Internet congested links (the bottlenecks). Within this
framework the analysis under heavy congestion assumes a
critical importance, since many Internet links, specially access
links and peering connections, tend to exhibit long periods
of overload. Fig. 1 shows the utilization of a campus access
link measured with MRTG, a monitoring tool widely used
throughout the world [1]. This is a daily graph in which each
point is the result of a 5 minute average. The link capacity is
16 Mbits/s. These are the conditions where a reliable protocol
is most stressed, and hence those where its properties are most
interesting.

Concentrating on time periods in which the link is almost
saturated, a number of interesting questions, that go beyond
throughput analysis, arise: i) what are typical values for packet
loss rate when the link utilization is close to 100%? ii) is
it possible to push the link utilization to 100% with stable
network operation? iii) what are the sustainable values of link
utilization without the risk of network instability? The perfor-
mance analysis of TCP/IP networks, carried out with either
analytical approaches or simulations, often gives for granted
fundamental stability results, applying steady-state analysis
without properly checking its applicability. In this paper we
provide an answer to such fundamental questions in a general
framework, where only some very elementary properties of the
protocols and the network come into play. We give a formal
proof of the convergence of the Fixed Point Approximation

Fig. 1. Typical daily variations on a bottleneck link

(FPA) technique often adopted to find the operating point of
the network [3], [2]. Analytical predictions are confirmed by
simulation experiments with ns-2. We also briefly discuss the
implications of our results, suggesting original insights into
the effectiveness of the congestion control currently adopted
in the Internet to prevent network instability.

To the best of our knowledge, the convergence of the FPA
was proved only for the case of long-lived connections [2] with
AQM routers. Our work formally extends the applicability
of this technique to the important case of short-lived flows,
as well as relaxing the hypothesis that AQM techniques are
deployed at bottlenecks. The behavior of finite flows under
heavy congestion has been considered also in [5], [6] by means
of a different approach based on a processor sharing model.

II. MODELING ASSUMPTIONS

We focus on an access link that connects a LAN to the
Internet. Users inside the LAN request files from servers
around the world. We assume that all traffic traversing the
link is carried by TCP connections, and that losses happen
only on the access link, which is considered to be heavily
congested in the direction incoming into the LAN (the case
of Fig. 1). ACKs are never lost on the reverse path. Moreover,
the router responsible of dropping packets adopts a simple
drop-tail queuing discipline.

We recognize this as being a simplified scenario, but we
believe it contains much of the problem complexity that is
found in more complicated multi-bottleneck topologies: a deep
understanding of the behavior of a single congested link is the
fundamental first step before considering more complicated
scenarios.

Let µ be the channel capacity expressed in packets per
second and B the buffer size in packets. We assume that the
amount of data to be transferred by each connection, expressed
in number of constant-size packets (the connection size), is
taken from a known distribution with average S̄.

Let γ be the average connection establishment rate. A
realistic arrival process of new connections is complicated to
describe analytically. Statistical models for TCP start times
that have been proposed in the literature vary from simple
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Poisson processes to sophisticated models such as that pre-
sented in [7]. In this work we are only concerned with the
mean establishment rate of new connections. This value is not
constant over long time scales, because it follows the typical
daily variations shown in Fig. 1, which is essentially due to
the variable number of users accessing the Internet inside
the LAN at a given time of the day. Steady-state analysis
implies neglecting these slow traffic variations and assuming
that the system is at an operating point where the arrival of
new connections is described by a stationary random process.

We define as normalized goodput the quantity g = γ S̄
µ .

The notion of goodput for a single TCP connection normally
corresponds to the rate of packets delivered by the transport
layer to the upper layers. Here we consider the average
aggregate goodput of all connections traversing the link, and
we normalize it by the link capacity. Of course, in a stable
system g cannot exceed one.

Let λ be the arrival rate at the bottleneck router of packets
incoming into the LAN. The traffic intensity ρ is defined as
usual in queuing theory as ρ = λ/µ. We also introduce the
normalized throughput as the quantity t = ρ·(1−p) where p is
the average packet loss at the bottleneck router. The notion of
throughput for a single TCP connection normally corresponds
to the arrival rate of packets at the receiver. Here we consider
the average aggregate throughput of all connections traversing
the link, and we normalize it by the link capacity. Since we
assume that losses happen only at the bottleneck link, all
packets that are not dropped by the access router arrive at
the receivers inside the LAN.

In general g ≤ t, because TCP is not perfect, and sometimes
it performs some unnecessary retransmissions: a TCP source
sends again a segment of data that was already received by
the destination or that is still ‘in flight’ along the path toward
the destination.

Packets are dropped at the bottleneck router because of the
finite capacity of the buffer storing the packets going through
the link. If the buffer were infinite we would have g ≤ t = ρ,
since packets are never discarded. In this case the average
queue length would grow to infinity when ρ approaches 1.

Since in real networks it is not possible to guarantee that ρ is
always lower than one, it is necessary to limit the buffer size to
prevent intolerable delays caused by traffic peaks. With a finite
buffer, the packet loss probability is always greater than zero
(when ρ is small it is possible to run long simulations without
seeing any losses, but any analytical model of the queue with
non-deterministic traffic at the input predicts a non-zero packet
loss probability) so that we have g ≤ t < ρ for any finite value
B of buffer size.

In Section III we restrict the analysis to the simple case
of no unnecessary retransmissions, so that g = t. This corre-
sponds to an ideal protocol that provides a perfect selective
retransmission mechanism. This simplification is removed in
Section IV.

III. ABSENCE OF UNNECESSARY RETRANSMISSIONS

If no unnecessary retransmissions exist, we can establish a
simple exact relation for ρ as a function of g and p,

ρ =
g

1 − p
(1)

which follows immediately from the consideration that TCP is
a reliable protocol, and the throughput is equal to the goodput.
Unfortunately, p is unknown. Thus we need another relation
between ρ and p, that must be given by an analytical model
of the packet queue at the bottleneck router buffer. A simple
M/M/1/K queue provides a closed-form formula of p as a
function of ρ:

p =
ρB (1 − ρ)
1 − ρB+1

(2)

The M/M/1/K queue is known to be ill-suited to Internet
traffic, because it assumes a Poisson arrival process of packets
at the queue, that has been experimentally proved wrong [8].
The main reason is that a Poisson arrival of packets does not
account for the burstiness of TCP transmissions within the
same window of data. It has been shown instead [4] that an
M [X]/M/1/K, a queue with a Poisson arrival of batches of
packets distributed according to a batch size distribution [X]
closely related to the window size distribution of the senders,
provides a good estimate of the packet loss probability for a
wide range of values of ρ. Unfortunately, the M [X]/M/1/K
queue does not allow a closed-form expression of p as a
function of ρ. To carry on the analysis we can resort to an
approximation using the formula of the M/M/1/K: suppose
that all batches are of equal size b, and that a batch is
completely lost if it cannot be entirely received into the queue.
The probability of losing a batch is then given by (2) where
B is replaced with B∗ = B/b, and it is also equal to the loss
probability of individual packets. Actually, batches should be
variable in size, and not all packets are really lost if a batch
cannot be entirely received into the buffer, but we can always
find a suitable value B∗ to be used with (2) to obtain the
correct packet loss probability, at least in the neighborhood
of a given value of ρ. In general, B∗ = B provides a
lower bound to p, because TCP traffic is more bursty than
a Poisson process, while B∗ = WM , where WM is TCP
maximum window size, provides an upper bound that roughly
corresponds to the behavior of earlier versions of TCP [9]
before congestion control was introduced [10]. This implies
that the true behavior of TCP, whatever version we consider,
must be between the upper and lower bounds that can be
analyzed in closed form. Moreover, on a highly congested
link, the difference between the correct value of p and the
one obtained with a simple M/M/1/K becomes smaller and
smaller, so that an M/M/1/K queue alone indeed provides
a good approximation of the packet loss probability (this is
also due the fact that the burstiness of the traffic is reduced
because the TCP congestion window is small).

A stable network operating point can be reached only if
equations (1) and (2) admit a (single) joint solution. Indeed,
network operations closely resemble an FPA solution of the
system: new connections start assuming zero loss probability
(p = 0) and inject traffic in the network; the network provides
a new (different) value of p by dropping packets. Sources react
to this packet loss probability adjusting their sending rate until
convergence is reached.

In the rest of this Section we prove that the solution of
this fixed point algorithm (FPA) exists according to (1) and
(2), it is unique, and it is stable under the only condition that
g < 1. Note that g cannot be equal to one, because there is
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Fig. 2. Graphical solution of the FPA

always a non-zero probability that the buffer empties, so that
the inequality t < 1 holds strictly.

A graphical way to obtain the solution is shown in Fig. 2,
where we have plotted two families of curves on the plane
(p, ρ) according to (1) and (2) for different values of B and g.
An admissible solution is given by the intersection of a curve
of type (1) and a curve of type (2).

Theorem 1 — The system defined by (1) and (2), admits one
and only one solution, which is a stable operating point for a
network under the only condition g < 1.

Proof — We first prove the existence and uniqueness of the
solution for Poisson packet arrivals, then we extend the proof
to the general case of a traffic characterized by a burstiness
that decreases for increasing values of traffic intensity ρ.

Existence and uniqueness for Poisson packet arrivals —
Substituting p into (2) yields

f(ρ) =
ρB+1 (1 − g) − ρ + g

ρ(1 − ρB+1)
(3)

and we can study the zeroes f(ρ) = 0 in the interval ρ ≥
g (g < 1). f(ρ) is continuous over this range of values, as
ρ = 1 is an apparent singularity that can be factored out. We
simply need to find the zeroes of the polynomial

h(ρ) = 1 + (g − 1)(1 + ρ + ρ2 + ... + ρB) (4)

There exist one and only one solution since h(g) = gB+1 is
positive, h( g

1−g ) is negative and h′(ρ) < 0 for any ρ > 0. The
solution is also stable, because from any initial condition the
system converges to the equilibrium point given by the unique
solution (p̄, ρ̄), since both (1) and (2) are monotonic. �

As we said before, in order to obtain an accurate result using
the M/M/1/K queue model, it is necessary to account for
the burstiness of TCP traffic. This can be done using a suitable
value B∗ = B/b for the buffer size, where b is proportional to
the average window size of the flows traversing the link. Since
the above proof is valid for any buffer size, our result can be
immediately extended to the case of a bursty traffic modeled by
a constant factor b. However, one may question the uniqueness
of the solution in the case in which the traffic burstiness is not
constant. Now we will prove that the solution is unique under

Fig. 3. Example of convergence of the FPA to the only stable solution

the assumption that the burstiness is a decreasing function
of ρ. This assumption is reasonable, because if we increase
the load we increase the multiplexing of the packets, and we
also increase the packet loss probability, resulting in a reduced
congestion window size.

Uniqueness with bursty traffic — The proof is ab absurdo.
Suppose that there are two different solutions for the traffic
intensity ρ1 < ρ2. Since we assume that the burstiness,
modeled by the scaling factor b, is a decreasing function of ρ,
we have b1 > b2, and consequently B∗

1 < B∗
2 . Since ρ1 < ρ2

are both zeroes of h(ρ), we should have

1 + ρ1 + ρ2
1 + ... + ρ

B∗
1

1 = 1 + ρ2 + ρ2
2 + ... + ρ

B∗
2

2

but this is clearly impossible if ρ1 < ρ2 and B∗
1 < B∗

2 . �

IV. PRESENCE OF UNNECESSARY RETRANSMISSIONS

The presence of unnecessary retransmissions makes the prob-
lem more complex. To proceed in the analysis, we need a
model for the amount of unnecessary retransmissions produced
by TCP. Unfortunately, this phenomenon is not straightforward
and depends on a number of variables (average packet loss
probability, flow length, TCP parameters and protocol version).
Lacking a better approach we resorted to measure the amount
of unnecessary retransmissions in simulation for a few differ-
ent cases, and to model the phenomenon approximating the
points through a simple empirical law. We remark, however,
that the FPA convergence property is not sensitive to the
unnecessary retransmission law, and a different law would only
change the numerical result (operating point), not its existence.

We consider the New-Reno version of TCP, which seems
to be the most popular in the Internet nowadays [11]. The
SACK option is expected to reduce significantly the amount
of unnecessary retransmissions, but we did not consider it be-
cause it is still rarely adopted (only about 10% of connections
successfully negotiate this option, according to measurements
reported in [12]).

Let u be the normalized rate of unnecessary retransmissions
arriving at the bottleneck router, which is the rate of unneces-
sary packets sent by the sources, normalized with respect to
the link capacity. We also introduce l, the normalized rate of
necessary retransmissions, defined as

l =
g p

1 − p
(5)
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which is actually equal to the rate of ‘necessary packets’
dropped by the queue (a necessary packet, if lost, requires
a necessary retransmission). The unnecessary retransmissions
u are known to increase with the congestion and the drop rate
at the bottleneck. A linear relationship u = θ l, where θ is
some suitable coefficient, is the simplest relation making u
grow with l. Note that we assume u dependent only on the
loss rate of ‘necessary packets’ since dropped repeated packets
do not trigger any retransmission.

Fig. 4 reports several values of θ obtained with simulations,
plotted against the average drop rate p. Results refer to a
bottleneck capacity µ = 3500 packets/s, buffer size B =
128, maximum window size 32, and flow size taken from
a geometric distribution with average S̄ = 20, 60, 600 (all
parameters expressed in packets). The relationship between
θ and the average packet loss probability p is clearly not a
constant, but a reasonable approximation for high loads (the
most interesting situation) is 0.1. Using a constant value we
lose some residual dependency on the packet loss probability
and the average flow size, but the analysis is simplified.

The total traffic intensity arriving at the queue is given by

ρ = g + l + u =
g(1 + θ p)

1 − p
(6)

The normalized throughput t derives immediately from (6) as
t = g(1 + θ p). Since t must be less than 1 under stability, it
follows

g(1 + θ p) < 1 (7)

which defines a stability region on the plane (p, g) as shown
in Fig. 5. No stable point can exist above the curve defined
by (7), as confirmed by simulations (each simulation point
corresponds to an experiment in which the number of active
connections does not diverge for at least 1000 s).

Theorem 2 — The system defined by (6) and (2), admits
zero, one or two solutions, depending on the value of g.
When a single solution exist, it is a stable operating point
for a network; when two solutions exist, only one is a stable
operating point for a network, while the other it is not an
admissible operating point; in regions where no solution exists,
no stable operating point exists.

Proof — We follow the same approach used for the proof
of Theorem 1. Eliminating p from (6) and (2) yields a single
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Fig. 5. Stability region and simulation points on the plane (p, g)

equation, whose solutions are given by the zeroes of the
polynomial

h(ρ) = 1+(g−1)(1+ρ+ρ2+...+ρB−1)+ρB(g θ+g−1) (8)

in the interval ρ ≥ g, assuming 0 < g < 1. Note that if θ = 0
we obtain again (4); h(g) = gB+1(1 + θ) is definite positive.
The behavior for ρ → ∞ is given by the sign of the coefficient
(g θ+g−1) of the highest order term. We have that h(ρ) tends
to −∞ if the following inequality holds

g ≤ 1
1 + θ

(9)

otherwise it goes to +∞.
To determine the number of positive solutions it is conve-

nient to use Descartes’ rule of signs. If inequality (9) holds,
h(ρ) has only one change of sign in its coefficients, and we
conclude that it has exactly one positive solution. This is
actually the case considered in Section III. If inequality (9)
does not hold, h(ρ) has two changes of sign in its coefficients,
and therefore it has either zero or two positive solutions
(possibly coincident). More precisely, for 0 < g < 1/(1 + θ)
there is first a single solution. For g ≤ 1/(1+θ) there are two
solutions, initially far apart, that get closer to each other until
they coincide into one solution ρ̄1 = ρ̄2 = ρ̄ of multiplicity
equal to two, for g = g∗. When g > g∗ there is no solution,
and the system does not admit a stable operating point.

If there are two solutions ρ̄1 < ρ̄2, we have h′(ρ̄1) < 0,
and h′(ρ̄2) > 0, so that x̄1 (the solution corresponding to ρ1)
is always stable, while x̄2 is necessarily unstable. �

An example of this situation is shown in Fig. 6, where we
have used θ = 0.5 to increase the distance between the two
curves, for the sake of a better representation. Depending on
the starting point, the FPA converges to the stable solution or
diverges to infinity. Notice that this results is not dependent on
the modeling technique used to represent TCP behavior, but
only on the amount of additional traffic (retransmissions) that
TCP injects in the network when packets are lost, hence this
result implies also that the network itself becomes instable
if the initial operating conditions are beyond the unstable
solution of the system represented by (6) and (2).

The upper border of the stability region on the plane (p, g)
corresponds to the points (p̄, ḡ) for which the two solutions
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Fig. 6. Example of convergence or divergence of the FPA
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Fig. 7. Simulation trace of the number of connections, g = 0.986, S̄ = 20

x̄1 and x̄2 coincide. This border can be obtained numerically
by solving the following system of equations:

{
h(ρ) = 0
h′(ρ) = 0 (10)

where h(ρ) is given by (8). The packet loss probability p̄
follows from the solution (ρ̄, ḡ) using (6).

By varying the value of B∗ over the range [1, B], (B is
the actual buffer size) we implicitly account for all models of
traffic burstiness, so that the curve we obtained is indeed the
border of the stability region, independently of the burstiness
of the TCP flows (but assuming a constant value for θ). In the
case θ = 0.1 the resulting curve is shown in Fig. 5, together
with the looser stability bound already obtained using (7). We
observe that these curves do not coincide because (7) assumes
that the link utilization can be as high as 1, while this is not
true, since there always is a non-zero probability that the buffer
empties. The solution of (10) accounts for this fact because
it incorporates a model of the queue, thus producing a tighter
bound for the stability region of the system.

V. DISCUSSION AND CONCLUSIONS

In this paper we have proved the convergence of the Fixed
Point Approximation to obtain the operating point of a bottle-
neck link loaded by short-lived flows, and we have discovered
that there exists a stability region for the behavior not only
of TCP models and simulations, but also, under some circum-
stances, of real-life TCP.

The existence of an unstable region has significant conse-
quences. Even if the system tends to stabilize at the operating
point where the traffic intensity is equal to ρ̄1, statistical
fluctuations of the traffic load may bring the system beyond the
point ρ = ρ̄2. If this happens, the system will diverge. As we
mentioned before, this is not only a property of the FPA, but a
real case that can be observed by simply running a simulation
close to the region of instability. For example, Fig. 7 shows a
trace of the number of active connections in the case of average
flow size equal to 20 packets and g = 0.986. The system
keeps itself at the stable operating point for several thousands
of seconds, until at time 6000 a traffic peak brings the system
out of stability, and the number of active connections begins
to increase, quickly drifting toward infinity. It must be noted
that this phenomenon requires that the arrival process of new
connections is independent from the network load. In real
networks users would react to a condition of heavy overload
by aborting the existing connections and slowing down the
request of new file transfers. Even if human behavior is not
considered in this work, our analysis suggests that when the
link utilization is close to one, the system operates at a quite
unstable point, characterized by high packet loss probabilities
(around 10%) and thus rather poor performance is perceived
by the users.

Besides, the stability region represented in Fig. 5 clearly
defines an upper bound on the sustainable average loss prob-
ability. This has major consequences on the design of AQM
techniques, since increasing the drop rate beyond the upper
bound in the attempt of reducing the queue length may lead
the system to instability.

Further work is necessary to extend the analysis to the
case of multi-bottleneck scenarios, and to explicitly model the
effect of the user behavior in the control loop of the system.
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