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Solving Markov Chains

We have seen many (. . . well a few) techniques to derive a
mathematical model
Markov Chains are one of these, but how can we use them to
derive performance and prediction?
An MC can always be simulated . . . you will actually do that in
the second assignment, even if the MC is somehow “hidden”
within the code

Some (many?) MC can be solved analytically
Properties (or metrics, or rewards) associated to states or
transitions provide the means for PE & predictions
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Solving Markov Chains

There are different solutions of MCs, and DT or CT change
slightly the methodology

Steady State solution

Based on the regime distribution probability over states
Independent from the initial state
Gives insight on the “average” performance of the system

Transient solution

Function of the initial state
Describes the short-term temporal evolution of the system

We concentrate on steady state
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Solving a DTMC

We know that the evolution of a Markov Chain depends only
on the state . . . and we assume a time-homogeneous DTMC to
make things simpler
States are numerable, so without loss of generality we can set
S = {0, 1, 2, 3, 4, . . .}
pjk denotes the transition probability from state j to state k

The matrix

P = [pij ] =


p00 p01 p02 · ·
p10 p11 p12 · ·
p20 p21 p22 · ·
...

...
...

...
...


completely characterized a DTMC
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The Transition Probabilities Matrix

P is a stochastic matrix, i.e., it has the following properties

0 ≤ pij ≤ 1, ∀i , j ∈ S∑
j∈S

pij = 1, ∀i ∈ S

P elements are all non-negative
P rows must sum to 1 for the theorem of total probability
(i.e., the sum of the probabilities of disjoint events covering S
must be 1)

Representing a DTMC with P or with the state diagram
is exactly the same
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State Probabilities

Let p(n) = [p0(n), p1(n), . . . , pj(n), . . .] be the vector of the
probability of being in a given state at step n

Clearly
∑
i∈S

pi (n) = 1, ∀n

It is immediate to see that

p(n + 1) = p(n)P

If we have an initial state distribution (e.g.,
p(0) = [1, 0, 0, 0, . . .]) with a simple recursion we have

p(1) = p(0)P; p(2) = p(1)P = p(0)P2; . . . ; p(n) = p(0)Pn
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Chapman-Kolmogorov equations

Another way to see the evolution of a DTMC is computing the
transition probabilities in n steps ∀n
This imply computing the sum of the probabilities of all
possible paths to go from state i to state j in exactly n-steps

For n = 1 this is trivially pij entry of the transition matrix P

Recall that for a time-homogeneous DTMC by definition

pij(n) = P[Xm+n = j |Xm = i ], ∀m

so we can drop the dependence on m

pij(n) = P[Xn = j |X0 = i ]
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Chapman-Kolmogorov equations

The equation above tells us that we have to compute all the
conditional probabilities of going from state i to state k in h
steps times the probability of going from state k to state j in
n − h stpes

Formally

pij(n) =
n∑

h=1

∑
k∈S

pik(h)pkj(n − h)

which are the Chapman-Kolmogorov equations that can be
rewritten in the simple matrix form of

P(n) = P · P(n − 1) = Pn

in case of homogeneous DTMC
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Limiting Probabilities

We can ask the question if it is possible (and meaningful) to
compute

v = [v0, v1, . . . vi , . . .]

where
vi = lim

n→∞
pi (n)

As p(n) = p(0)Pn, it equivalent to ask if limn→∞ Pn exists
and is meaningful
If these limits exists and are meaningful, as P is a stochastic
matrix and v is a stochastic vector v is the left eigenvector of
P associated to the eigenvalue λ = 1 and can be found as

v = vP

Solving & Using Markov Chains - Renato Lo Cigno - Classifying and solving a DTMC 20



Limiting Probabilities

We can ask the question if it is possible (and meaningful) to
compute

v = [v0, v1, . . . vi , . . .]

where
vi = lim

n→∞
pi (n)

As p(n) = p(0)Pn, it equivalent to ask if limn→∞ Pn exists
and is meaningful

If these limits exists and are meaningful, as P is a stochastic
matrix and v is a stochastic vector v is the left eigenvector of
P associated to the eigenvalue λ = 1 and can be found as

v = vP

Solving & Using Markov Chains - Renato Lo Cigno - Classifying and solving a DTMC 21



Limiting Probabilities

We can ask the question if it is possible (and meaningful) to
compute

v = [v0, v1, . . . vi , . . .]

where
vi = lim

n→∞
pi (n)

As p(n) = p(0)Pn, it equivalent to ask if limn→∞ Pn exists
and is meaningful
If these limits exists and are meaningful, as P is a stochastic
matrix and v is a stochastic vector v is the left eigenvector of
P associated to the eigenvalue λ = 1 and can be found as

v = vP

Solving & Using Markov Chains - Renato Lo Cigno - Classifying and solving a DTMC 22



Stationary and Steady-State

Every vector v that satisfies

v = vP;
∑
i∈S

vi = 1

is called a stationary distribution (or probability) of the DTMC

If v exists, it is unique and independent from the initial state
p(0) of the DCMC, then it is called the steady-state of the
DTMC

Question: Under which conditions the steady-state of a DTMC
exists?
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DTMC States Classification

Definition: Transient State

A state i is said to be transient if there is a positive probability
that the process will never return to i after leaving it

Formally this is equivalent to state that

lim
n→∞

pji (n) = 0; ∀j ∈ S
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DTMC States Classification

Transient States (yellow)
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DTMC States Classification

Definition: Recurrent State

A non-transient state is said recurrent
A state is recurrent if the probability of visiting i after leaving
it for n→∞ is 1

∞∑
n=1

pii (n) =∞
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DTMC States Classification

Definition: Recurrent State

Let fij(n) be the conditional probability that the first visit to j
after leaving i occurs in exactly n steps
Then the probability of ever visiting state j (sooner or later)
starting from state i is

fij =
∞∑
n=1

fij(n)

A state is recurrent if fii = 1; if fii ≤ 1 it is transient
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DTMC States Classification

Recurrent States (yellow)
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DTMC States Classification

Definition: Recurrent Positive State

For a recurrent state i it is interesting to know the distribution
of the recurrence time, i.e., after how many steps the DTMC
returns to i after leaving it

We define the mean recurrence time of state i

µi =
∞∑
n=1

nfii (n)

A state is said recurrent positive (non-null) if µi ≤ ∞
A state is said recurrent null if µi =∞
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DTMC States Classification

Recurrent Null/Positive States

If p < q all states are recurrent positive
If p ≥ q all states are recurrent null

Solving & Using Markov Chains - Renato Lo Cigno - Classifying and solving a DTMC 35



DTMC States Classification

Definition: Periodic State

Let di be the greatest common divisor of the set of positive
integers n such that pii (n) > 0
A state is said periodic if di > 1; the value di is called the
period
A state is said aperiodic if di = 1
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DTMC States Classification

Periodic States (yellow)
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DTMC States Classification

Definition: Absorbing and Communicating States

A state i is said absorbing if pii = 1
Once the DTMC enters i it will never leave it
This notion can be extended to a set of states

Given two states i and j they are said communicating if
directed paths exist from i to j and viceversa pij(n) > 0 for
some n and pji (m) > 0 for some m
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DTMC States Classification

Absorbing States (yellow)
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DTMC States Classification

Communicating States
(yellow)

Non Communicating States
(yellow, 0 and 1 do not
communicate with 2)
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DTMC States Classification

DTMC with Transient States (yellow) and a set of absorbing states
(white) that do not communicate with the Transient ones
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Irreducible Markov Chain

A MC (not only DT) is said Irreducible if every state i is
reachable from any other state j in finite time: ∀i , j ∈ S there
exists n ≥ 1 such that pij(n) > 0
An irreducible MC does not have Transient or recurrent-null
states, i.e., they are all recurrent positive states
All states in an irreducible MC are of the same type: Periodic
or Aperiodic

Any Irreducible Aperiodic Markov Chain admits a
Steady-State that can be computed (for DTMCs) as

v = vP
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Infinite States DTMCs

If |S | is infinite, then the steady state can be found only if P
has some special structure that allows a recursive solution
Example: DT Birth-Death Process with p < q

P =


q p 0 0 0 · · ·
q 0 p 0 0 · · ·
0 q 0 p 0 · · ·
0 0 q 0 p · · ·
...

...
...

...
...

...
...

...
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DT Birth-Death Process

To solve the system we simply have to solve this system of
recursive equations

pv0 = q(v0 + v1)
(p + q)vi = pvi−1 + qvi+1 ∀i > 0∑∞

i=0 vi = 1

Whose solution yields the well known geometric distribution of
customers in a queue:

v0 =

(
1− p

q

)
; vi =

(
1− p

q

)(
p

q

)i

∀i > 0

The DT Birth-Death Process models any (single server, single
customer class) DT queueing system given that p is known
and q = (1− p) is a reasonable assumption
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Cache conflicts in multi-core processors

Consider a simple processor with two cores and a L1 cache
memory
If processes running on different cores need to access the cache
there is a conflict and one must wait slowing the processing
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Cache conflicts in multi-core processors

The state of the system is simply
S = {I ,C1,C2,W } = {0, 1, 2, 3}
Idle: no core is accessing the cache; C1 (C2) core 1 (or 2) is
accessing alone; or one is accessing and the other is Waiting
Assume the probability of accessing the cache are p1 and p2
respectively in any time slot and the time to retrieve the
content of the cash is exactly one slot time, while retrieving
the content the core is blocked and cannot generate other
requests. Requests are independent. Then the model is

PW =


1− (p1 + p2) p1 − 0.5p1p2 p2 − 0.5p1p2 p1p2

1− p2 0 p2 0
1− p1 p1 0 0

0 0.5 0.5 0



Solving & Using Markov Chains - Renato Lo Cigno - Classifying and solving a DTMC 47



Cache conflicts in multi-core processors

Is the model represented by the P matrix in the slide before
correct?

No, it cannot be: simply observing that for p1 + p2 > 1
(perfectly legitimate) then p00 < 0
The correct model is obviously

PC =


1− (p1 + p2 − p1p2) p1(1− p2) p2(1− p1) p1p2

1− p2 0 p2 0
1− p1 p1 0 0

0 0.5 0.5 0


Let’s see why
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Cache conflicts in multi-core processors

The state space
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Cache conflicts in multi-core processors

If no cores are accessing the cache, then we have four possibilities
C1 requests access and C2 does not: p01 = p1(1− p2)

C2 requests access and C1 does not: p02 = p2(1− p1)

C1 and C2 request together: p03 = p1p2

None of them request access: p00 = 1− (p1 + p2 − p1p2)
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Cache conflicts in multi-core processors

Here we already see the mistake in the model PW (W stands for
wrong, not wait . . . ); in PW the probability assignment was not
done considering correctly the independence of access from the two
cores, and then p00 was "twisted" to force the sum of the transition
probabilities to 1
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Cache conflicts in multi-core processors

After a block, either C1 or C2 are served first, with no reason to
assign different probabilities to this events

p31 = p32 = 0.5
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Cache conflicts in multi-core processors

And finally, after one core accessed the cache, either the other does
or the system goes back to idle

p12 = p2; p10 = (1− p2)

p21 = p1; p20 = (1− p1)
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Homework (not exam assignment!)

Solve the model
Extend the model to 4 cores and content retrieve time
uniformly distributed between 1 and 4 slots and solve it (if it is
too complex to solve it in close form, program the solution as
a function of p1 · · · p4)
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Rewards

The real performance of the system can be normally derived
from the state distribution (sometimes from transitions, but
we do not consider this case for the time being
We can associate rewards ri to any state that measure it
performance
The performance of the system is associated to the average
reward r

r =
∞∑
i=0

ri · vi

If we are interested in the transient reward until step K we can
compute

r(K ) =
K∑

k=0

∞∑
i=0

ri · pi (k)
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Homework (not exam assignment!)

Back to the cache memory model
The performance of the system is given by its efficiency, so we
can assume the following reward distribution:
r0 = 1, r1 = r2 = 0.5; r3 = 0

Compute the “surface” (p1, p2) that guarantees that r > rt ,
where rt is the target efficiency of your system
This result tells you what are the characteristics of the
workload that your 2-core processor can accept
Extend this result to the 4 cores case
Make a comparison between a 4 core processor and two 2-cores
one with the same processing power and cache capacity
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What if the time is Continuous

Some systems cannot be modeled in discrete time . . .
When “human time” is involved
When the evolution of the system is intrinsically analogic

. . . but we know there are CTMC
Classification of CTMC states is similar to DTMC, but
Periodic states do not exist
The condition for steady state existence is similar to DTMCs
(we do not make the whole analysis again)
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Representation of a CTMC

Recall that all transitions in a CTMS are exponentially
distributed (implied by the fact that dwell times must be
exponentially distributed)
A CTMC is fully described by a matrix

Q = [qij ] =


q0 q01 q02 · ·
q10 q1 q12 · ·
q20 q21 q2 · ·
...

...
...

...
...


called the infinitesimal generator
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Representation of a CTMC

qij are the transition rates from stat i to state j

qi = −
∞∑

j=0,j 6=i

qij

Neither qij , nor qi are probabilities, but the relation above
stems for a simple conservation law “on average whatever goes
in must come out”
State probabilities are normally called π and not v
. . .π(t) = [π0(t), π1(t), π2(t), . . .]
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Steady state of a CTMC

The steady state of a CTMC exists under the same conditions
(with the due changes!) of a DTMC
The Chapman-Kolmogorov equations can be found first
writing time-dependent probabilities and then taking the limit
for δt going to zero, obtaining differential equations
Finally, solving these equations we find that the steady-state
state probability vector π as solution of the linear system

πQ = 0;
∞∑
i=0

πi = 1
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