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Maximum Likelihood Estimation

The basic idea of MLE is simple
m Given | observed event B, what is the probability the event A
occurred?

m Also: Given | have the sample {X;} what is the most likely
population / process that generated it?

m MLE under certain hypotheses can be shown to be
asymptotically optimum

m For small sample sets the estimation can be biased and give
wrong results

m Unless there are some additional strong constraints MLE can

be computationally very heavy if there are not closed form
solutions
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The idea of MLE

MLE is based on Bayes' Theorem

P[A[B/]P[B)]
P[A]

P[A[B/]P[B)]

FIEA = PIBA

P[A] =

m MLE maximizes the a-posteriori probability of a conditional
probability

m The maximization is done on some parameters of the
conditioning events
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», UNIVERSITY

The idea of MLE OF TRENTO

Let {Xi; i=1,2,...,n} be a sample set and © = {01,6>,...,0«}
be a set or vector of parameters to be estimated
Define a likelihood function L(©) as:

L(©) =P[X1 =x1,X2 = xp,..., Xy = x|©]

if the population is described by a discrete PMF
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The idea of MLE

Let {Xi; i=1,2,...,n} be a sample set and © = {01,6>,...,0«}
be a set or vector of parameters to be estimated
Define a likelihood function L(©) as:

L(©) =P[X1 = x1, X2 = x2,..., X = xn|©]

if the population is described by a discrete PMF

or

L(©) = x(x|©)

if the population is described by a continuous pdf
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UNIVERSITY
OF TRENTO

Now the problem is trivial: find © such that L(©) is maximum

In math

A

© : argmaxgL(©)
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S UNIVERSITY

MLE: Some observations 4 OF TRENTO

m We need to know the joint probability of n random variables

m If they are not i.i.d. ...game over!
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UNIVERSITY

MLE: Some observations OF TRENTO

m We need to know the joint probability of n random variables

m If they are not i.i.d. ...game over!
m If we know the sample set is i.i.d. then the likelihood functions
reduce to

L(®) = [[PIXi = xl€]

i=1
if the population is described by a discrete PMF, or

L(©) =[] (xil©)
i=1

if the population is described by a continuous pdf
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, UNIVERSITY
MLE: Some observations

m Depending on © the problem can still be computationally very

difficult
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UNIVERSITY
OF TRENTO

MLE: Some observations

m Depending on © the problem can still be computationally very

difficult

= Under some fairly general conditions of regularity of both the
distributions and the © parameter set, then the optimization,
in general an NP-complete problem, can be reduced to a set of
k joint partial differential equations, where finding the zeros
may be easy (?17)
5L(O).

— i=12,...k
59’ ! ! )= Y
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MLE: Some observations

m Depending on © the problem can still be computationally very
difficult

= Under some fairly general conditions of regularity of both the
distributions and the © parameter set, then the optimization,
in general an NP-complete problem, can be reduced to a set of
k joint partial differential equations, where finding the zeros
may be easy (7!7)

5L(0)
00; '

i=1,2,....k

m Really the only case where MLE is simple and works without
hassles is when 6; are (pseudo) orthogonal and the partial
differential equations either reduce to normal differential
equations or we can in any case apply the gradient algorithm
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MLE: Examples of problems

m For instance if {X;} is drawn from a gamma distribution and
01 and 05 are the parameters A\ and « of the distribution, then
the set of 2 partial differential equations have no closed form
solution and we have to resort to numerical methods (that's
why you find the function in Matlabl!!)

L
12
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%, UNIVERSITY
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MLE: 2015 assignment

m For another totally “casual” example, if {X;} is drawn from a
gamma distribution affected by random Gaussian noise
samples Y; distributed as N(0,c) and 61, 62 and 03 are the
parameters A, «, and o of the two distributions, then we have
to compute the distribution of

Zi=Xi+Y,
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UNIVERSITY

MLE: 2015 assignment F TRENTO

fz(z) = fx(x) * fy(y)
where * is the convolutional product so
oo )\ata—le—/\x 1 (x—2)2
fz(z) = e 202 dx
2(2) /_oo M) \V2ro

and there is no solution to the MLE, unless we resort to (complex)
numerical methods
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MLE: One Efficient Application

MLE is instead simple when © is a partition of a probability space
or a finite set of deterministic conditions. For example, it is the
base for optimal detection in digital communications

m The key “problem" of digital transmission is finding the best
strategy to decide what symbol S;(t) has been transmitted
given we have received a symbol R(t)

m Find the maximum over j of

P[RISIP[S)]

PISIR] = "o

Basic Notions of , Maximum Likelihood Estimation, and Regression - Renato Lo Cigno - MLE 15



%, UNIVERSITY
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2 % MLE: One Efficient Application

m R(t) can be modeled as R(t) = Si(t) + N(0,0)

PI(5i(t) + N(0,0))[S]P[S)]
P[(S;(t) + N(0,0))]

P[S;[(S5(t) + N(0,0))] =

m Thus the MLE problem is reduced to a minimum distance

problem
min(||S; ~ RI)

m More reasoning at the blackboard.
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, % Estimating relations between RVs

m Consider two joint RV X, Y and a dependence function d(-)
such that Y = d(X) + € where € is a residual error

m Our problem is finding d(-) such that d(X) is as close as
possible to Y in some appropriate sense, e.g., minimizing a
euclidean distance or a generic norm such as /., or any proper
measure
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Estimating relations between RVs

m Consider two joint RV X, Y and a dependence function d(-)
such that Y = d(X) + € where € is a residual error

m Our problem is finding d(-) such that d(X) is as close as
possible to Y in some appropriate sense, e.g., minimizing a
euclidean distance or a generic norm such as /., or any proper
measure

m Let D =Y — d(X) be the random variable that measures the
residual error done because we do not know fx y(x,y), and we
approximate the dependence with the function d(-)

m The most common measure of the difference is E[D?]
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Least-square regression curve

m The function d(x) that minimizes E[D?] is called the
Least-square regression curve
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X & UNIVERSITY
Least—square regression curve

m The function d(x) that minimizes E[D?] is called the
Least-square regression curve

m It is not difficult to show that this function is d(x) = E[Y|x]

= However the conditional distribution fy|(y|x) is normally very
difficult to find
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UNIVERSITY

Least-square regression curve OF TRENTO

m The function d(x) that minimizes E[D?] is called the
Least-square regression curve

m It is not difficult to show that this function is d(x) = E[Y|x]

= However the conditional distribution fy|(y|x) is normally very
difficult to find

m It is common practice to limit the structure of d(x) (e.g., to a
polynomial function) to make the problem more tractable

L
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Scatter diagram

A scatter diagram is nothing else than an (x, y) plot of the
outcome of n random experiments on the pair X, Y

—— original

-—- it

15 —
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X

Scatter diagram with the linear regression of the points and the
“true” linear relationship
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UNIVERSITY

Linear dependence OF TRENTO

m The simplest form of dependence is assuming that the function
is linear: d(x) = a+ bx

m Clearly this is a huge limitation to the dependence relationship,
but in many cases it is useful and it can be treated easily

m In this case the problem of finding the optimal fitting curve
reduces to minimize the following

G(a, b) = e[D?] = E[(Y — d(X))’] = E[(Y — a— bX)?]

L
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Linear dependence

UNIVERSITY

OF TRENTO

m Let ux,uy,a)%,a}z, be the mean and variance of X and Y
Cov(X,Y)
oxOy

respectively, and also p =
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UNIVERSITY

Linear dependence F TRENTO

m Let ux,uy,aﬁ,a}z, be the mean and variance of X and Y
Cov(X,Y)
oxOy

respectively, and also p =
m Then expanding G(a, b) yields

G(a,b) = o]+ b*0%+ (ny —a)* + b — 2bpoxo,
—2bp(py — a)
= 0}2, + b?02 + (uy — a — bux)? — 2bpoyo,
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Linear dependence

m Let ux,py,af,a}z, be the mean and variance of X and Y
_ Cov(X,Y)
respectively, and also p = —————*
oxOy
m Then expanding G(a, b) yields

G(a,b) = o]+ b*0%+ (ny —a)* + b — 2bpoxo,
—2bp(py — a)
= 0}2, + b?02 + (uy — a — bux)? — 2bpoyo,

m To find the minimum of G(a, b) we have to find the point
where the partial derivatives with respect to a and b are zero
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, UNIVERSITY

Optimal linear regression

0G(a, b)
5, = 2uy—a—bu) =0
0G(a, b
% = 2b02 — 2415 (pty — @ — bpx) — 2poyo, =0
Solving the equations we find that the optimal values of a and b are
b= pﬁ
Ox
a =, — buy

You normally find subroutines and function to perform a linear
regression in any statistical tool

Basic Notions of , Maximum Likelihood Estimation, and Regression - Renato Lo Cigno - Regression 27



Higher order relations

m If the relationship is not linear, then finding the regression can
be very difficult, even if the polynomial structure is given (it is
not like the deterministic case of fitting)

m The exception is the exponential relation
Y = aePX

where we can simply take the logarithm and do a linear fitting
of the logarithm
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