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Samples and Population

Whenever we take a measure we “extract” samples out of a
(potentially infinite) population
Population: It is the entire set of possible results of an
experiment, normally it is not completely known, thus one of
the goals of the experiment is to “learn and understand” the
population (have insight into a problem)
Sample: It is the complete outcome of the experiment,
necessarily finite, possibly repeated many times
The sample is normally raw data, and we have to manipulate it
to gain insight
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Good & Bad Samples

Not all samples are equivalent to evaluate a population
Having some a-priory knowledge on both the problem and the
population can help crafting the correct experiment
Often some pre-experiment can help gaining some insight to
better design the “true” experiment
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Are all balls red?

You have a black bowl with 1000 balls and you have to tell if they
are all red or not

Bad Experiment: Pick a ball, look at the color, then put it
back, shake to randomize and pick the next one
Good Experiment: Pick a ball, look at the color, set it aside,
shake to randomize and pick the next one
Why is the second experiment better?
Homework: suppose 990 balls are red and 10 are blue, thus
the correct answer is NO, not all balls are red.
Compute the probability of giving the correct answer after
extracting 100 balls in the bad and the good experiments
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Presenting experimental data

Given a dataset (sample) {xi}, what is the best way of visualizing
it?

The numbers?

Straight plots of the indexed data?

The plot ordered by the Xi values?

The cumulative distribution: Experimental CDF (ECDF)?

Or histograms of the relative frequency of data?
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Numbers

1.35976969874364
1.59431277979215
0.981219343895978
1.37933187884847
0.259440011862454
1.65806836346625
1.11261933869171
0.980250563088334
0.0783774189765842
2.08917702766969
1.54797818279134
0.550765177138121
1.67971900635026
-1.93547784711214
-0.0269931353634314
0.864489892299465
1.82027881068408
0.939980335400623
-1.26817987739339
0.701869007956606
1.38576668328979
2.05755445265121
1.09434340121316
1.43801384879194
1.6531848612294
1.13875441255562

. . . . . . . . .
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Plotting xi versus i
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Ordering samples can give a better idea
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Experimental CDF
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Histogram, bin=0.001
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Histogram, bin=0.01

Histogram with bin width  0.01
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Histogram, bin=0.1

Histogram with bin width  0.1
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Can we distinguish distributions?

Given two datasets {xi}, say A and B, are straightforward
visualizing means enough to distinguish or understand them?

Straight plots of the indexed data?

The plot ordered by the Xi values?

The cumulative distribution: Experimental CDF (ECDF)?

Or histograms of the relative frequency of data?
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Plotting xi versus i

Can we distinguish different distributions?
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Ordering samples can give a better idea

Can we distinguish different distributions?
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Experimental CDF

Can we distinguish different distributions?
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Histogram, bin=0.001

Can we distinguish different distributions?
Histogram with bin width  0.001
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Histogram, bin=0.01

Can we distinguish different distributions?
Histogram with bin width  0.01
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Histogram, bin=0.1

Can we distinguish different distributions?
Histogram with bin width  0.1
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Simple Data Analysis

It is clear that straightforward visualization can help, but is it
is not enough to understand characteristics of the population
given a sample from an experiment

Histograms are in general more informative than other plots
ECDFs can help comparing different samples “quickly”
They are “quick & dirty” means to have a first insight in the
problem and in devising better data collection for a deeper
analysis

Computing parameters and functions of the sample, as the
means, variance, etc. is a further step to understand our
measures

Measured Data Analysis - Renato Lo Cigno - Visualizing raw data 20



Estimators and bias

Given a sample {xi} we want to gain insight in the population that
generated it

The population can be normally described with a SP
{X (t, s)|s ∈ S , t ∈ T}
Insight is given by parameters of the population as the mean,
variance, etc.
Let be θ the parameter to be evaluated
We are interested in computing an estimate Θ̂({xi}), which is
representative of the real function Θ({X (t)}) that compute θ
We call the estimator Θ̂ unbiased if

E [Θ̂({xi})] = θ
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Average of a dataset

The mean of the sample is

X =
n∑

i=1

xi
n

=
1
n

n∑
i=1

xi

X is an unbiased estimator of the population mean µ (if the
SP representing the population is wide-sense stationary and µ
exists), i.e.

E [X ] = µ

Homework: Prove that that X̄ is unbiased
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Batch means or repeated experiments

Thanks to the linearity of the average operator we can
compute X in batches splitting the sample of dimension n in k
smaller subsets (or take k smaller measures)

X =
1
k

k∑
i=1

k
n

n/k∑
j=1

x(ki+j)

 =
1
k

k∑
i=1

[
k

n
Xi

]

This “trick” can greatly reduce numerical problems
This method is very useful to compute the “reliability” of the
estimation, i.e., compute confidence intervals and levels
because the Xi are by construction Gaussian RVs with good
approximation if k/n is sufficiently large
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Accuracy of X

What is the accuracy of the estimator X as the sample size
increases?

Let’s compute the variance of X

Var[X ] =
n∑

i=1

Var[Xi/n] =
nVar[Xi ]

n2

=
Var[X ]

n
=
σ2

n

The quality of the estimation improves hyperbolically with the
sample size
As usual σ must exist and be finite
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Variance of a dataset

We define the variance of a dataset {xi} of size n

S2 =
1

n − 1

n∑
i=1

(xi − X )2

Why n − 1? Basically because we have used one degree or
freedom to estimate X , if we can use the true mean µ then we
should use n to have an unbiased estimator . . .
but µ is normally not known . . .
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Proof that S2 is unbiased

Expanding the square binomial we have

S2 =
1

n − 1

n∑
i=1

(x2
i − 2xiX + X

2
)

=
1

n − 1

(
n∑

i=1

x2
i

)
− 2n

n − 1

(
1
n

n∑
i=1

xi

)
X +

n

n − 1
X

2

=
1

n − 1

n∑
i=1

x2
i −

n

n − 1
X

2
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Proof that S2 is unbiased

Taking the average of S2 results in

E [S2] =
1

n − 1

n∑
i=1

E [X 2
i ]− n

n − 1
E [X

2
] (1)

but we also have that

E [X 2
i ] = Var[Xi ] + (E [Xi ])

2 = σ2 + µ2 (2)

E [X
2
] = Var[X ] + (E [X ])2 =

σ2

n
+ µ2 (3)

and substituting (2) and (3) in (1)

E [S2] =
1

n − 1
n(σ2 + µ2)− n

n − 1

(
σ2

n
+ µ

)
= σ2 (4)
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Variance for finite populations

If the population is known to be finite of size M, and assuming
sampling without replacement the variance of a dataset {xi}
of size n is

S2 =
1− 1

M

n − 1

n∑
i=1

(xi − X )2

Also this estimator is unbiased, but we do not prove it . . .
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Additional parameters

Mean and variance already tell much about a system
But how can we distinguish between different populations with
the same mean and variance?
Functions of higher moments can help
The third moment estimates how asymmetric is a distribution
(at least for mono-modal ones)
The fourth moment is a good estimator of how “peaked” is our
population around the mean
There are many functions of third and fourth moment
. . . normally all called skewness and kurtosis . . . we give here
two definitions taken from the NIST Statistical Handbook
http://www.itl.nist.gov/div898/handbook/index.htm
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Skewness of a dataset

We define skewness Sk(·) of a sample {xi}

G = Sk({xi}) =
1

nS3

n∑
i=1

(xi − X )3

S here should be computed as S2 =
1
n

n∑
i=1

(xi − X )2

to ensure that G is normalized to 1, but the difference with
the computation of S with n − 1 at denominator is marginal if
n is sufficiently large
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Kurtosis of a dataset

We define kurtosis Ku(·) of a sample {xi}

K = Ku({xi}) =
1

nS4

n∑
i=1

(xi − X )4 − 3

Also in this case S should be computed with n − 1 at
denominator for normalization reasons
The “−3” is a normalization: the non-normalized kurtosis of a
Gaussian with σ = 1 is exactly 3, thus with this definition of
kurtosis we have a quick comparison with a normal distribution
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Properties of G and K

A dataset with G{xi} > 0 indicates that the mode is larger
than the mean (skewness right)
A dataset with G{xi} < 0 indicates that the mode is smaller
than the mean (skewness left)

A dataset with K{xi} > 0 indicates that the population
(distribution) is “peaked” (compared to a Gaussian with
σ = 1), i.e., it is more concentrated around the mode
A dataset with K{xi} < 0 indicates that the that population
“flat”, i.e., it is less concentrated around the mode than a
standard Gaussian

Notice that with the same variance a more peaked
distribution has a slower decay of the distribution tails
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Back to our A & B datasets

How can we distinguish these two distributions?
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Mean, Variance, Skew, and Kurtosis . . .

Distribution A Distribution B
X +0.954 +1.064 ?
S2 +1.043 +1.021 ??
G -0.035 +0.026 ???
K +0.017 +1.393 !!!!!!

A and B datasets differs for some shape parameter related to the
fourth and possibly higher moments, with set B being more peaked,
thus also with longer tails . . . which however may be difficult to see
with just 1000 samples
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A is Gaussian (maybe) . . . and B?

Indeed even with 4 parameters it is not possible to identify
with precision the population distribution
We can make “educated guess” and then make some
hypothesis testing (coming later)
For the time being accept that it is a logistic distribution with
µ = 1 and σ = 1

fX (x) =
e−

x−µ
s

s(1 + e−
x−µ
s )2

And the logistic distribution is very different form the
Gaussian as it has longer tails; σ2 = π2s2

3
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Memory and independence

The analysis so far is fine and correct, but tells us nothing
about the memory of the underlying process
We can use the autocorrelation function . . . but how we
compute it on a dataset {xi}?
Let’s assume for the time being that the underlying process is
wide-sense stationary and recall that

R(τ) = E [X (t) · X (t + τ)]

If we let τ sweep all the samples, then we have just products
of samples of RVs . . . too noisy!
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Sample autocorrelation

Given a dataset {xi} of size n

Limit τ variation to a reasonable limited value τmax << n,
which is the “window” where we estimate the autocorrelation
Then we can evaluate the sample covariance as the average of
all the n − τmax possible couples of samples at distance
0 ≤ τ ≤ τmax

Covs(xi , xi+τ ) =
1

n − τmax

n−τmax∑
j=1

(xj − X ) · (xj+τ − X )

and normalizing with respect to S2 we obtain the sample

normalized autocovariance R ′(τ) =
Covs(xi , xi+τ )

S2
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Autocorrelation of A & B datasets
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Autocorrelation of A & B datasets

We can state that both datasets A and B derive from SPs that
are independent
The variations of R ′(τ) around 0 for τ > 0 are random
variations that decay as n grows
To ensure perfect normalization of the autocorrelation function
it is customary to compute it as

R ′(τ) =
Covs(xi , xi+τ )

Covs(x2
i )

Another test that is often useful is verifying that X is time
independent, e.g., with a sliding window or batch means
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Is independence common?

One might ask what are the systems and SPs that contain
memory
We already know that Markovian processes do have memory
An example (CSDT because we sample) is the position
estimated by a GPS receiver
Each sample contains additive noise which is roughly Gaussian,
but it is added on the previous estimate of the position not to
the true position
Hence the position error contains memory, which can be
successfully modeled as a Markov-Gauss process
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GPS error: Markov-Gauss process

The position error of a GPS receiver is successfully modeled by
the following process

Indeed one independent process for (x , y , z), with the vertical
error (z) larger than the horizontal error, but we model only
one

{Xt : t ∈ T}; fXt |Xt−1(x) = e
∆t
T xt−1 + N(0, σn)

where ∆t is the sampling time, T the actual memory of the
process and N(0, σn) a Gaussian RV σn depends on the quality
of the receiver, but also on ∆t

The mean of the process is µ = 0, the variance is

σ2 =
σ2
n

1− e−2 ∆t
T
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Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s

Visualization of the
samples
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Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s

Ordered samples
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Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s
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Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s

Histogram:
bin = 0.001

Histogram with bin width  0.001
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Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s

Histogram:
bin = 0.01

Histogram with bin width  0.01

values

F
re

qu
en

cy

−2 −1 0 1 2

0
2

4
6

8

Measured Data Analysis - Renato Lo Cigno - Computing Means and Moments 46



Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s

Histogram:
bin = 0.1
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Markov-Gauss Process

σn = 1
T = 0.2s
∆t = 0.01s

Autocorrelation
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What is a Confidence Interval?

Once we have estimated some parameter, for instance the
mean X , of a dataset, what is the confidence we have in this
estimation, how much is it representative of the real value?
We know that if the estimator is unbiased, then “on average”
our estimation is correct
We also know that if we have an estimator σ̂ of the population
standard deviation σ then

Var[X ] =
σ̂2

n

where n is the number of samples
This is a very strong knowledge . . . let’s see why
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What is a Confidence Interval?

We define confidence interval around the estimated value θ̂
the interval (θl , θu) such that the true value θ falls within the
interval (θl , θu) with a given probability Pl that we call the
confidence level

P[θl ≤ θ ≤ θu | θ̂] ≥ Pl

Often (θl , θu) is expressed as a fraction (percentage) of θ̂
around θ̂, assuming symmetry (which is not necessarily true)
E.g., a confidence interval of ±5% with a confidence level
Pl = 99%
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CI and Simulation

Confidence Intervals (CI) are fundamental in measure-based
analysis
If possible they are even more important in simulations

When do I finish a simulation?
Once I have “numbers” from a simulation how much I can
trust them?

Even more than measures results of simulations can be
correlated
Care must be put to understand the correlation structure and
to derive independent measures to estimate the reliability of
results
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Chebychev inequality

Relates the probability of the outcome of any RV to fall within
a given boundary as a function of the RV variance
Gives by definition a symmetric interval ε, as it is a function of
a single parameter
It states that given and RV X with mean µ and standard
deviation σ

P[µ− ε < X < µ+ ε] ≥ 1− σ2

ε2

In other words it relates the probability of an outcome being
farther than a given amount from the average value as a
function of the RV variability (σ) and the amount itself
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Chebychev inequality

It is possible to express ε as a function of σ: ε = kσ

P[µ− kσ < X < µ+ kσ] ≥ 1− σ2

k2σ2 = 1− 1
k2

Clearly this inequality can be used to state confidence in an
estimation . . . it expresses both a confidence interval and a
confidence level, but to have a high level with a small interval
it is necessary to have a very small σ
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Back to Confidence

X can in itself be interpreted as an RV
Other measures from the same population would yield different
values of X

We also know that the variance of the RV X is Var[X ] = σ2

n
(n is the size of the sample)
Thus we can estimate it using the estimate s of σ computed
on the sample and rewrite the Chebycheff inequality as

P[µ− ks < X < µ+ ks] ≥ 1− 1
k2

Letting ε = ks; k =
ε

s
' nε

σ

P[µ− ε < X < µ+ ε] ≥ 1− s2

ε2
' 1− σ2

nε2
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Going beyond Chebychev inequality

We have used Chebychev inequality to compute a CI for the
average X of a dataset of size n given only its experimental

variance s2 and exploiting the fact that Var[X ] =
σ2

n

P[µ− ks < X < µ+ ks] ≥ 1− 1
k2

Letting ε = ks; k =
ε

s
' nε

σ

P[µ− ε < X < µ+ ε] ≥ 1− s2

ε2
' 1− σ2

nε2
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Going beyond Chebychev inequality

The strength of Chebychev inequality is that it is completely
independent from the distribution of X
We can compute a CI without having any a-priori knowledge
about the population we are measuring (or simulating)
The limit is that it is a loose bound, so that a high level of
confidence (normally Pl ≤ 90% is unacceptable for any
practical purpose, while Pl ≥ 95− 99% is highly desirable if
not necessary for most applications) imply a very large CI
Can we do better than this?
Yes, if we know something about the distribution of the
population we’re measuring/simulating, or if we have large
datasets of independent samples
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Gaussian populations

Let’s suppose we know that the population is normally distributed:

fX (x) = N(µ, σ2)

In this case it is not difficult to show that the distribution of the
sample mean X of a dataset with n independent points is also
normally distributed

fX (x) = N(µ, σ2/n)

and finally

Z =
X − µ

(σ/
√
n)

is standard normal: fZ (z) = N(0, 1)
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Gaussian populations

Assuming a symmetric interval of normalized half-width a and a
confidence level Pl = γ it is clear that for Z we have

P[−a < Z < a] = γ

and that given γ, a can be found on tables. Denormalizing to find
the CI of our estimate X we have

P
[
X − aσ√

n
< µ < X +

aσ√
n

]
= γ

so the interval (
X − aσ√

n
,X +

aσ√
n

)
is a 100γ% CI for µ.
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Gaussian populations

Let γ = 1− α for convenience. Since the normal distribution is
symmetric we have that

P[Z < −a] = P[Z > a] =
α

2

normally this specific value of a is called zα
2
and can be found in

tables as the following one, derived from the normal standard
distribution N(0, 1)

1− α 0.90 0.95 0.99
zα
2

1.645 1.96 2.576
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Gaussian populations: How many samples?

As we have a 100(1− α)% CI given by(
X −

zα
2
σ
√
n
,X +

zα
2
σ
√
n

)
it is immediate to compute the number of samples n that we need
to measure or simulate to have an estimate X that deviates less
than

ε =
zα
2√
n

from the true value µ

n =

⌈(
zα
2
σ

ε

)2
⌉
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Non Gaussian population

What if the population is not Gaussian?
Easy if we have many samples and they are i.i.d.

What if the measures/simulations are not i.i.d.?
More complex, but we can still “survive” with batch means
(sometimes)
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Large i.i.d. Sample Sets

Given any set of i.i.d. RV, the central limit theorem
guarantees that under fairly mild assumptions the statistics of

Z =
X − µ

(σ/
√
n)

is N(0, (σ/
√
n))

This means that we can still use the improved technique
described above to compute the CI given that we have enough
samples (say more than 30–50) of the estimator X
In general (also for Gaussian populations) we do not know σ
so we have to use its dataset estimation s
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Large i.i.d. Sample Sets

If the sample set is small (say n < 30–50), then we should use
the Student-t distribution with n − 1 degree of freedom

With modern simulation techniques having enough samples is
normally not a problem, so the Student-t use is limited to
“difficult” experiments, where getting many measures is
difficult (e.g., medical studies)

See the distributions at the end of the slides to have a better
idea of the t-Student distribution

Measured Data Analysis - Renato Lo Cigno - Estimating Confidence Intervals 63



Correlated Datasets

In simulations it is not easy to guarantee that the output is
i.i.d.
In general we are exploring a DTMC, where the evolution is
controlled by the states, so that the “next” sample cannot be
independent from the previous one
Consider once more a queuing station, anyone, we do not care
of details now

Let N(t) be the process describing the number of customers in
the queue sampled whenever a customer leaves
N(t + 1) is obviously very dependent (not only correlated) on
N(t)

Batch means techniques can help in these cases
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Recall the Batch Means

Thanks to the linearity of the average operator we can
compute X in batches splitting the sample of dimension n in k
smaller subsets

X =
1
k

k∑
i=1

k
n

n/k∑
j=1

x(ki+j)

 =
1
k

k∑
i=1

[
k

n
Xi

]

This was originally meant to reduce numerical problems with
large datasets . . .
. . . so how can we exploit this to our advantage in computing
CI with correlated processes and simulations in particular?
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Back to a queuing example

Consider a generic queue

Let’s define a new process N ′(k) defined as the average
number of customers in the queue between two successive time
instances k when a leaving customer leaves the queue empty

N ′(k) =
1
ns

ns∑
i=1

N(i)

where ns is the number of customers arrived (and served)
between two instances that left the queue empty
It is not difficult to realize that when the queue empties it loses
all its memory so that N ′(k) is by construction an i.i.d. process
Moreover N = N ′, so we can compute not only the average
value of N, but also its confidence interval based on N ′
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Use of Batch Means

Whenever we can identify a renewal process (back to processes
definition for it)
Whenever we can estimate some parameters with a subset of
the samples we have and we can use/define at least 30–50
subsets
With this method we can estimate CIs also for parameters that
are not the mean (including variance, general parameters of a
distribution, . . . )
If the process identified is not strictly renewal

Make all efforts to guarantee that it is identically distributed
Verify that the output samples are reasonably independent

A powerful verification tool is checking that the process of the
errors is actually Gaussian
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The Γ (gamma) distribution

It is a distribution of the exponential family with the following pdf

fX (x) =
λαxα−1e−λx

Γ(α)
; α, λ, x > 0

Γ(α) =

∫ ∞
0

yα−1e−y dy
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The Γ distribution

fX (x) in linear scale for various λ, α
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The Γ distribution

fX (x) in log scale for various λ, α
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The Logistic distribution

It is a distribution of the exponential family with the following pdf

fX (x) =
e−

x−µ
s

s
(
1 + e−

x−µ
s

)2
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The Logistic distribution

fX (x) in linear scale for various µ, s
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The Logistic distribution

fX (x) in log scale for various µ, s
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The Weibull distribution

It is a distribution with the following pdf and CDF

fX (x) =
k

λ

(x
λ

)k−1
e−(x/λ)k ; x ≥ 0

FX (x) = 1− e−(x/λ)k ; x ≥ 0

For k = 1 it is an exponential; for k = 2;λ = σ
√
2 it is a Raileigh

distribution.
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The Weibull distribution

fX (x) in linear scale for various k , λ
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The Weibull distribution

fX (x) in log scale for various k, λ
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The Pareto distribution

It is a power law distribution with the following pdf and CDF

fX (x) =
α

xm

(xm
x

)α+1

FX (x) = 1−
(xm
x

)α
It is the “prototype” of heavvy-tail distributions. For α < 1 it has
infinite mean, while for α < 2 it has infinite variance. In general it
has a non-vanishing probability of having a value larger than any
finite number.
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The Pareto distribution

fX (x) in linear scale for various xm, α
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The Pareto distribution

fX (x) in log scale for various xm, α
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The t-Student distribution

It is a distribution with the following pdf where ν = df are the
degrees of freedom. For ν →∞ it converges to N(0, 1)

fX (x) =
Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

) (1 +
x2

ν

)− ν+1
2
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The t-Student distribution

If we take i.i.d. samples from any population, with sample mean x
and sample variance s2 and we “split” the sample set in df subsets
so that we can assume the values of the sample mean of each
subset to be independent from the others, then the random variable

t =
x − µ

s√
df +1

has a t-Student distribution with df degrees of freedom, and this
explain why it can be used to evaluate confidence intervals with the
technique of the batch means, and it can be applied to (almost)
any parameter of a population provided its estimation yields i.i.d
samples.
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The t-Student distribution

fX (x) in linear scale for various df
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The t-Student distribution

fX (x) in log scale for various df
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