

SIMULATION AND PERFORMANCE EVALUATION

Renato Lo Cigno

ANS Group – DISI – University of Trento, Italy

with the help of

Michele Segata and Leonardo Maccari

http://disi.unitn.it/locigno/spe

- Scope of the course
- The program at large
- Knowing each other
- Exam rules & Homeworks
- More material & the assignments are on Google Classroom

- Systems: what are they?
 - Hardware systems
 - Software systems
- Performance: how can we define it?
 - Is performance only "speed" (whatever it means)?
- Understanding the behaviour of a system through its performance
 - Is it suitable for its Goals?
 - Is it Reliable?
 - Is it Dependable?
 - Will it be Better than Others?

Program I

- Learning how to evaluate the performance of systems
 - Definition of systems (not all of them, those that we treat)
 - Examples of systems we can evaluate
- PE methodologies
 - Measures
 - Simulations
 - Analytical Models
- The ties to probabilities
 - Understand our common knowledge
 - Some basics and exercises to warm up

Program II

- Stochastic Processes
 - Continuous time
 - Discrete time
- Measure noise as a stochastic process (or RVs)
- Memory and correlation
 - Auto Correlation in a process
 - Memoryless property

Program III

- Measures as a noisy stochastic process
 - Evaluating means and moments
 - Estimating confidence intervals
 - Estimating transient behaviours (if present)
 - Understanding stationarity and ergodicity
 - Evaluating auto-correlation and measuring it

Program IV

- Event Driven Simulation a Computer Science View
 - Discrete Event Simulation
 - Implementing a DV Simulator
 - Collecting results & presenting them
 - Understanding the result of a simulation

Program IV

- Evolving (stochastic) processes
 - Continuous time
 - Discrete time: Chains
- Markov Chains
- Semi-Markov Chains (discrete time SMC)

Program IV

- Event Driven Simulation a Mathematical Perspective
 - Interpretation as a an SMC
 - Importance of the interpretation
 - Monte Carlo Techniques
 - Understanding the estimation of the results reliability & confidence

Program V

- Analytical models
 - Generalities and importance for asymptotic behaviour & rare events
- Markovian modelling
 - Birth Death processes
- Formal descriptions beyond Markov chains (a quick overview)
 - Queuing systems

Knowing Each Other

• Me ...

• You ...

Google Classroom

- A Google Classroom is associated with this course
- The Classroom is closed
 - Part of the material and assignments are posted there
- Access is granted (by me) with your University Credentials
- Send me (locigno@disi.unitn.it) and e-mail
 - from your unitn account (the others will not be considered)
 - with subject: SPE 2016 Classroom Access
- And you will be invited
 - Don't "share" the access, it's personal

Homeworks I

- During the course we will assign two mandatory individual homeworks
 - The first one is about manipulation and interpretation of measure results
 - The second one is about simulating a simple communication network and then finding an analytical model that approximate it
- Homeworks are assigned and collected through Google Classroom
- They are (the largest) part of the final evaluation: no homeworks, no exam!!!

Homeworks II → Exam

- An indicative maximum length will be assigned to each homework report
 - e.g., 1 page double column, 11pt, 2 plots
- They must be in English and easily readable, e.g.:
 - if a plot need magnification \rightarrow -1 point
 - If there are tons of English errors \rightarrow -1 point
- Overall they will sum up to 33 points (11 for the first one, 22 for the second) ... to be confirmed with the oral colloquium
- Homeworks can be delivered at any time
 - Those delivered within the "assigned deadline" will be corrected and in some cases there will be the possibility of re-doing them
 - Those delivered after the assigned deadline will be corrected before the oral exam, but there will be no possibility of improving a positive one, only re-do the wrong ones

Final Exam

- In general you will have the possibility of taking the final oral upon appointment ... within sessions and with some reasonable constraints
 - i.e., we "agree" the date, you do no "choose" it
- It will consist of a general "chat" on the homeworks, and on all the topics and material we touched in class
 - If you cannot come to classes find a colleague who is willing to share his notes with you!
 - The slides and other material posted on-line may not contain all discussions done in class
 - slides are a "trace" for the lesson
 - other materials are "vertical" insight on a specific topic, not a complete coverage