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A little bit of background

DISCRETE EVENT SIMULATION
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What is a discrete simulation? S 3.1 OF TRENTO

* Simulation: reproducing the behavior of a real-world system

— mathematical
* a(t)=al
* v(t)=a0 *t+v0
* x(t)=a0/2 *t2+v0 * t+x0
— numerical
* alk] =a0
* v[k] =v[k-1] + a0 * Ts, with v[0] = vO
o x[k] = x[k-1] + (v[k] + v[k-1])/2 * Ts, with x[0] = x0
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What is a discrete simulation?

Engineering and Computer Science

* Discrete simulation: simulation “exists” only in specific time
moments
— time driven: sampled with a certain frequency (e.g., 10 Hz)

—0—0—0—0—0—0— 00— 00— 00—

— event driven: evolution by the generation and the consumption of events

I e e
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DES: Notions

» State: represents the state of the system
— Ina G/G/1 queue: a single integer (number of clients in the queue)
— In a chain of N queues: N integers (number of clients in each queue)
— In a wireless network with N nodes: a complex set of variables
* X, Y, and z position of each node
* Radio status (e.g., IDLE, TXing, RXing)
* Protocol-dependent variables (e.g., backoff counter in a WiFi card)
* Events: change (or might not) the state of the system
— In a G/G/1: queue: the arrival or the departure of a client

— In a wireless network: the generation of a packet at the application, the
beginning and the end of a transmission, the beginning and the end of a

reception, ...
— Events evolve the simulation by changing the state and/or generating new
events

* Time: updated according to events
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DES simulator structure

* Components and variables:
— A queue of events
— Current time
— Variables for performance monitoring (e.g., # of events)
— Modules implementing the behavior of system components (models)
* Working principle:
— Initialize simulation modules
— Pick the first (in terms of time) event from the queue
— Update current time and check for terminating condition
— Invoke the event handling of the destination module
— Repeat
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DES — A generic view

init simulation

finalize time >
simulation max time?

pick next event
NO more events

process event
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* \Very easy example: two nodes communication

on init:
scheduleEvent(sendMsg, now + exp(1l))
messageCount = 0

Node 1
on event(event):

if (event == sendMsg) {
send(packet)
scheduleEvent(sendMsg, now + exp(1l))
 else { Node 2
if (random() > 0.5)
messageCount++

}

on finish:
saveToFile(messageCount)
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DES philosophy

* Be careful: philosophy change needed

— EVERYTHING is an event
* schedule events

* handle events

— events are atomic
* no duration

WRONG! CORRECT!

onStartRx: onStartRx:
beginRx = now beginRx = now
wait(endOfTransmission)
rxDuration = now - beginRx onEndRx:
rxDuration = now - beginRx
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An Example: Queue Simulator

* |nput parameters:
— arrival rate distribution A (e.g., exp(1/A))
— service rate distribution B (e.g., U(n-1, u+ 1), u>1)
— queue length L (O for infinite)
— single server
* Output:

— queue length over time

— jobs dropped over time N
* Possible events: ‘®_>

— arrival of a job

— service of a job
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on init: * Input parameters:
jobId = © — arrival A
arrival.jobId = jobId — service B
scheduleEvent(arrival, now + A)

queue = emptyQueue()

— queue length L
*  Output:

— queue length over time

— jobs dropped over time
* Possible events:

— arrival of a job
CAREFUL! This is the queue we are —  service of a job
simulating, NOT the event queue of
the simulator.

The event queue is managed by the
simulator, you don't see it.
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An Example: Queue Simulator

on event(event): * Input parameters:
if (event == arrival) { — arrival A
if (queue.length() < L OR L == 0) {
queue.add(arrival.jobId)
if (queue.length() == 1)

— service B
— queue length L

scheduleEvent(service, now + B) *  OQOutput:
} else { — queue length over time
} logDrop(now, arrival.jobId) — jobs dropped over time
logQueueLength(now, queue.length()) * Possible events:
jobId++ — arrival of a job

arrival.jobId = jobId
scheduleEvent(arrival, now + A)

} else if (event == service) {
queue.removeFirst()
logQueuelLength(now, queue.length())
if (queue.length() != 0)

scheduleEvent(service, now + B)

— service of ajob
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An Example: Queue Simulator

*  Simplest possible implementation
— except for logging of job drops (why?)
— number of drops can be derived from queue length log
e search the right balance!
* Can be done in other ways
— e.g.,: you can compute the service time beforehand
— it requires you to store additional information
— on arrival:
* queue.add({jobId=arrival.jobId, serviceTime=B})
— onh service:
* scheduleEvent(service, queue[0@].serviceTime)
* Question:
— what if | want to sample queue length with a constant sampling time?
— e.g., t=0s length=0, t=1s length=0, t=2s length=1, t=3s length=4, ...
— without post-processing the current output file
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An Example: Queue Simulator

Engineering and Computer Science

on init: * Input parameters:
jobId = © — arrival A
arrival.jobId = jobId — service B
scheduleEvent(arrival, now + A) — queue length L
queue = emptyQueue() — sampling time Ts
logQueuelLength(now, queue.length()) *  Output:
schedu]_eEvent(]_ogQueue) now + TS) — queue length over time

— jobs dropped over time
* Possible events:

— arrival of a job
— service of a job
— log queue length
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An Example: Queue Simulator

on event(event): * Input parameters:
if (event == arrival) { — arrival A
if (queue.length() < L OR L == 0) {
if (queue.length() == 0)
scheduleEvent(service, now + B)

— service B
— queue length L

queue.add(arrival.jobId) — sampling time Ts
} else { ¢ Output:

logDrop(now, arrival.jobId) _ queue length over time
iegQHeHefeﬁg;h4ﬂewT_qﬂeHe74eﬁg%h%9% — jobs dropped over time
jobId++ * Possible events:

arrival.jobId = jobId

scheduleEvent(arrival, now + A)
} else if (event == service) {

queue.removeFirst() — log queue length

togGuevetensthtrow,—eaueve—tength >

if (queue.length() != 0)

scheduleEvent(service, now + B) What are the d|ﬁ:erences

} else if (event == logQueue) {

logQueuelLength(now, queue.length()) t)E;t\A/E}EBr] tr]fe t\A/()

scheduleEvent(logQueue, now + Ts)

) approaches?

— arrival of a job
— service of ajob
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What Are We Doing?

* In practice, we are performing a random walk through the states of
a Discrete Time (Semi-Markov) Chain

* For the queue example, the state is the number of jobs in the
queue

* Transition probabilities depend on the distributions of arrival and

service times
— Might be simply unfeasible to compute for some distributions

Finite queue length Infinite queue length
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* Consider again a network simulation
— managing collisions: when two packets overlap, they both can’t be received

Packet 1 Packet 2 Packet 3 Packet 4
onInit: onStartRx(packet): onEndRx(packet):
state = IDLE recvPackets.add(packet) if (not packet.islLost())
recvPackets = {} if (state == IDLE) sendUp (packet)
state = RX recvPackets.del(packet)
else if (|recvPackets| == 0)
for p in recvPackets state = IDLE
p.setLost()
startRx
startRx/endRx
endRx

17

Practical Discrete Event Simulation and The Python Simulator



Repeatability and PRNGs

* Running the SAME simulation twice MUST give the same result
— Statistical confidence is obtained through repetitions
— Change the seed of PRNGs to obtain different runs

— NEVER use a really random number to seed PRNGs (e.g., seed(time()) )
* Cannot reproduce results
* Cannot reproduce bugs

— Common practice: use repetition number as seed

* In general, use different PRNG instances for different random
processes (see next slide)

Practical Discrete Event Simulation and The Python Simulator
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Repeatability and PRNGs

* Example: imagine simulating a communication system where
— One node is static, one randomly moves around
— In one scenario the moving node sends one message per second
— In the other it uses a random interval

* Assume we use a single PRNG extracting
- 0.2,0.5,0.3,0.1,0.6,0.9,0.1,0.8,0.4,0.7

4/

Scenario 1 Scenario 2 '
roion ittt i sion b el
(0.2, 0.5) 1 (0.2, 0.5)
(0.3,0.1) 1 (0.1, 0.6) 0.9
(0.6, 0.9) 1 (0.1, 0.8) 0.4
(0.1, 0.8) 1 (0.7, ...)
(0.4,0.7) 1
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PYTHON NETWORK SIMULATOR
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First SPE DES assignment

* Build a small discrete event network simulator
— implementing a simple ALOHA protocol
— given network topology (10 nodes)

* Assignment
— draw the flow chart
— write the simulator (with some characteristics)
— run simulations
— analyze system behavior (throughput, collisions)

* Problems discovered
— not reading the assignment (e.g., config file, README text file)
— programming!?!?
— what is a flow chart???
— too many concepts in one single assignment: easy to mess it up

Practical Discrete Event Simulation and The Python Simulator
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This year assignment

* We give you a small, home-made network simulator

* Goal:
— extend the simulator to implement a protocol feature
— analyze and compare the results w.r.t. standard implementation
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The ALOHA protocol

* Very simple medium access protocol:
— when you have a packet to send, send it!
— no carrier sensing
— if two (or more) packets overlap at a SPECIFIC receiver, they collide

Packet 1 Packet 2 Packet 3 Packet 4

* In the simulator we also make additional assumption(s):
— while receiving a packet (or more), we do not transmit (somewhat CSMA 1p)
— some others (see later)

‘ Receiving “ Transmitting | N
arrival T

Practical Discrete Event Simulation and The Python Simulator 23



Events

* arrival: a new packet to be sent is generated by a node

* end_tx: used by a node to know when it’s done transmitting

* start_rx: notifies the node the beginning of an incoming packet
* end_rx: notifies the node the end of an incoming packet

* end_proc: used by a node to know when processing is over

— used to avoid channel capture
— example: imagine two nodes having always a packet to transmit

| Transmitting | Transmitting | Transmitting | I Transmitting
— @

—

Receiving J Receiving Receiving |Transmitting

@ >

) s
~

* rx_timeout: used to avoid getting stuck into reception (see later)

Practical Discrete Event Simulation and The Python Simulator 24



Nodes’ state and variables

* Each node in the simulator has a current state, plus some variables

— States:
* |IDLE: the node THINKS the channel is free
* TX:the node is currently transmitting a packet

* RX: the node is currently receiving one (or more!) packets. It is aware that there
is something being transmitted in the channel

* PROC: the node is performing a little processing after a TX or an RX
— Variables:

* queue: queue of packets that needs to be sent

* recv count: number of packets in the air

* current packet: either the packet being TXed or trying to be RXed

CP=NULL CP=P1 CP=NULL CP=P2 CP=P2 CP=NULL CP=NULL
recv=90 recv=1 recv=0 recv=1 recv=2 recv=1 recv=0
| Recv P1 | | Recv P2 Recv P3 %
— L., g —' » (.) (. >
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State transitions

start_rx

arrival start rx
recv count > © -

end_rx

start_rx

IDLE \ recv count

end_rx
recv count > ©

.q@ Q%y rx_timeout
¢,
e Non

Oc

arrival
end rx

recv count = ©

end_rx start_rx

start_rx

X

end_proc end_rx

queue not empty

arrival arrival
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end_rx while being IDLE

* We assume base ALOHA, performing no carrier sensing

— while transmitting, we assume a node is not able to detect an incoming
packet. In this condition, a new packet is also not detected

TXing . RXing

state | TX PPROC]| IDLE

— while receiving multiple packets, we assume a node does not know when
the first packet ends, but we consider an RX timeout corresponding to the
maximum packet size (plus a small delta)

‘ RXing ‘ | RXing ‘ N

state | RX PROC| IDLE

rx_timeout

THESE ARE ALL ASSUMPTIONS!
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init simulation

finalize time >
simulation max time?

pick next event
NO more events
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Flow chart: arrival event
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yes

no
yes

queue packet drop packet

l

> schedule next arrival <€

set state TX

2

tx packet

2

current packet = packet

2

schedule end_tx

-
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Flow chart: end_tx
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set state PROC

Y

current packet = NONE

v

schedule end_proc
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Flow chart: end_proc

|

on end_proc:

no

iS queue empty? set state TX

Y

tx packet

Y

set state IDLE current packet = packet

2

schedule end_tx

Practical Discrete Event Simulation and The Python Simulator
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on start_rx(packet):

is state IDLE?

recv count = 0?

Y
no i
urré;tsroa:itfk’:i( |a=ndN0N set state RX set packet CORRUPTED
Y
set current packet CORRUPTED set packet RECEIVING
Y Y
> set packet CORRUPTED current packet = packet
Y
schedule rx_timeout
Y

j—l

schedule end_rx(packet)

Y

recv count ++

Y

D
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on end_rx(packet):

is packet RECEIVING?

no

set packet RECEIVED

current packet = packet?
no

current packet = NONE

yes

set state PROC > cancel rx_timeout

no

schedule end_proc |«

A

recv count --

-

Y
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Flow chart: on_rxtimeout
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on rx_timeout:

set state PROC

schedule end_proc
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The simulator: Files

*  Written in Python

— no need to compile

— cross platform

— one of the most known scripting languages
* Files

— main.py: script to actually run the simulator
* ./main.py -l : get the list of all runs
* ./main.py -L : list of all runs with associated parameters

— sim.py: event manager and scheduler that runs the simulation

— channel.py: class that, when beginning transmission, schedules the start_rx

event to all nodes within communication range
— node.py: implements the logic of a node (all the flow charts so far)
— distribution.py: random distributions used in the simulator
— other files, not at the core

* Qutput: csv file with list of packet events

Practical Discrete Event Simulation and The Python Simulator
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* Downloading a zip file
— The zip file is (will be) published in classroom
* Cloning the git repository

— git clone https://ans.disi.unitn.it/redmine/spe-network-simulator.git

— master branch: simulator only
— plot branch: simulator plus process.R script
— exploit git to track your changes, maybe in different branches

* Updated today (13 May 2019)
— some bugfixes
— python 2 and 3 compatibility

Practical Discrete Event Simulation and The Python Simulator
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Configuring the simulator: config.json

{ "simulation" : {
// seed(s) to initialize PRNGs
"seed" : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
// duration of each simulation in seconds
"duration" : 30,
// communication range in meters
"range" : 10,
// physical layer datarate in bits per second
"datarate" : 8000000,
// packet queue size. set to © for infinity

"queue" : 2,
// packet inter-arrival distribution in 1/seconds
"interarrival" : [
{"distribution" : "exp", "lambda" : 10},
[...]
{"distribution" : "exp", "lambda" : 1510}
1P
// packet size distribution in bytes
"size" : {"distribution"” : "unif", "min" : 32, "max" : 1500, "int" : 1},
// maximum packet size in bytes to compute the RX timeout
"maxsize" : 1500,
// processing time after end of reception or transmission before starting operations again
"processing" : {"distribution" : "const", "mean" : ©0.000001},
// position of nodes, list of x,y pairs
"nodes" : [
[[1,1], [2,3], [e, @]]
1P
// log file name using configuration parameters
"output" : "output_{interarrival.lambda} {seed}.csv"
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Coding style

* Coding follows Python style guide:
— https://www.python.org/dev/peps/pep-0008/

— indentation: 4 spaces

— width 80 characters

— some more things

— try to keep the same style as much as possible

* Code is well documented:
— function purpose
— function parameters
— reason for particular choices
— DOCUMENT YOUR CODE AS WELL
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U
\\ 7‘ Some results
o 10

Simulation setup:

* set of nodes transmitting packets
— size uniformly distributed within 32 and 1460 B

— exponentially distributed inter-arrival times with lambda from 10 to 1510
arrivals/s

— 8 Mbps physical layer bitrate
— queue size: 2 packets

DISCLAIMER

The following plots are given as an example. They
might not be suitable for a formal report!
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Metrics

* Total offered load: sum of the offered load from all stations
— lambda * (32+1500)/2 * N * 8 / 102472 (Mbps)
* Throughput at receiver: correctly received bytes over simulation
time
— sum the size of all the packets marked as “RECEIVED” and divide it by the
simulation time

* Collision rate at receiver: ratio of collided packets over total
incoming packets

— N.CORRUPTED / (N.CORRUPTED + N.RECEIVED)
* Drop rate at sender: ratio of packet dropped at the queue over
total generated
— N.DROPPED / N.GENERATED
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Some results: 2 nodes
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Some results: 2 nodes
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= Q 0.75-
o 2- © .
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8 o
o = 0.50- - 1
® i)
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> Q
e %
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total offered load (Mbps) total offered load (Mbps)
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Some results: 3 nodes
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Some results: 6 nodes
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Some results: 6 nodes
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Some results: 3 nodes
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Some results: 3 nodes
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For the time being

* Download the simulator from classroom

* Play around with it
— ./main.py -h
— run some simulations
— try to get some plots
— get familiar with the code

* Isthe code 100% bug free?

— thoroughly tested, but can’t never be sure ®
— if you find something strange, let me know!!

Practical Discrete Event Simulation and The Python Simulator
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