
Practical Discrete Event Simulation
and

The Python Simulator
Michele Segata, Renato Lo Cigno

ANS Group – DISI – University of Trento, Italy

http://disi.unitn.it/locigno/index.php/teaching-duties/spe

DISCRETE EVENT SIMULATION
A little bit of background

Practical Discrete Event Simulation and The Python Simulator 2

What is a discrete simulation?

• Simulation: reproducing the behavior of a real-world system

– mathematical

• a(t) = a0

• v(t) = a0 * t + v0

• x(t) = a0/2 * t2 + v0 * t + x0

– numerical

• a[k] = a0

• v[k] = v[k-1] + a0 * Ts, with v[0] = v0

• x[k] = x[k-1] + (v[k] + v[k-1])/2 * Ts, with x[0] = x0

Practical Discrete Event Simulation and The Python Simulator 3

What is a discrete simulation?

• Discrete simulation: simulation “exists” only in specific time
moments
– time driven: sampled with a certain frequency (e.g., 10 Hz)

– event driven: evolution by the generation and the consumption of events

Practical Discrete Event Simulation and The Python Simulator 4

DES: Notions

• State: represents the state of the system
– In a G/G/1 queue: a single integer (number of clients in the queue)
– In a chain of N queues: N integers (number of clients in each queue)
– In a wireless network with N nodes: a complex set of variables

• x, y, and z position of each node
• Radio status (e.g., IDLE, TXing, RXing)
• Protocol-dependent variables (e.g., backoff counter in a WiFi card)

• Events: change (or might not) the state of the system
– In a G/G/1: queue: the arrival or the departure of a client
– In a wireless network: the generation of a packet at the application, the

beginning and the end of a transmission, the beginning and the end of a
reception, …

– Events evolve the simulation by changing the state and/or generating new
events

• Time: updated according to events

Practical Discrete Event Simulation and The Python Simulator 5

DES simulator structure

• Components and variables:
– A queue of events
– Current time
– Variables for performance monitoring (e.g., # of events)
– Modules implementing the behavior of system components (models)

• Working principle:
– Initialize simulation modules
– Pick the first (in terms of time) event from the queue
– Update current time and check for terminating condition
– Invoke the event handling of the destination module
– Repeat

Practical Discrete Event Simulation and The Python Simulator 6

DES – A generic view

init simulation

time >
max time?

pick next event

process event

no

finalize
simulation

yes

Practical Discrete Event Simulation and The Python Simulator 7

no more events

Discrete Event Simulation: An example

• Very easy example: two nodes communication

Node 1

Node 2

on init:
scheduleEvent(sendMsg, now + exp(1))
messageCount = 0

on event(event):
if (event == sendMsg) {
send(packet)
scheduleEvent(sendMsg, now + exp(1))

} else {
if (random() > 0.5)
messageCount++

}

on finish:
saveToFile(messageCount)

Practical Discrete Event Simulation and The Python Simulator 8

DES philosophy

• Be careful: philosophy change needed
– EVERYTHING is an event

• schedule events
• handle events

– events are atomic
• no duration

onStartRx:
beginRx = now
wait(endOfTransmission)
rxDuration = now - beginRx

onStartRx:
beginRx = now

onEndRx:
rxDuration = now - beginRx

WRONG! CORRECT!

Practical Discrete Event Simulation and The Python Simulator 9

An Example: Queue Simulator

• Input parameters:
– arrival rate distribution A (e.g., exp(1/λ))
– service rate distribution B (e.g., U(µ - 1, µ + 1), µ > 1)
– queue length L (0 for infinite)
– single server

• Output:
– queue length over time
– jobs dropped over time

• Possible events:
– arrival of a job
– service of a job

Practical Discrete Event Simulation and The Python Simulator 10

An Example: Queue Simulator

• Input parameters:
– arrival A
– service B
– queue length L

• Output:
– queue length over time
– jobs dropped over time

• Possible events:
– arrival of a job
– service of a job

Practical Discrete Event Simulation and The Python Simulator 11

on init:
jobId = 0
arrival.jobId = jobId
scheduleEvent(arrival, now + A)
queue = emptyQueue()

CAREFUL! This is the queue we are

simulating, NOT the event queue of

the simulator.

The event queue is managed by the

simulator, you don't see it.

An Example: Queue Simulator

• Input parameters:
– arrival A
– service B
– queue length L

• Output:
– queue length over time
– jobs dropped over time

• Possible events:
– arrival of a job
– service of a job

Practical Discrete Event Simulation and The Python Simulator 12

on event(event):
if (event == arrival) {

if (queue.length() < L OR L == 0) {
queue.add(arrival.jobId)
if (queue.length() == 1)

scheduleEvent(service, now + B)
} else {

logDrop(now, arrival.jobId)
}
logQueueLength(now, queue.length())
jobId++
arrival.jobId = jobId
scheduleEvent(arrival, now + A)

} else if (event == service) {
queue.removeFirst()
logQueueLength(now, queue.length())
if (queue.length() != 0)

scheduleEvent(service, now + B)
}

}

An Example: Queue Simulator

• Simplest possible implementation
– except for logging of job drops (why?)
– number of drops can be derived from queue length log

• search the right balance!

• Can be done in other ways
– e.g.,: you can compute the service time beforehand
– it requires you to store additional information
– on arrival:

• queue.add({jobId=arrival.jobId, serviceTime=B})
– on service:

• scheduleEvent(service, queue[0].serviceTime)

• Question:
– what if I want to sample queue length with a constant sampling time?
– e.g., t=0s length=0, t=1s length=0, t=2s length=1, t=3s length=4, …
– without post-processing the current output file

Practical Discrete Event Simulation and The Python Simulator 13

An Example: Queue Simulator

• Input parameters:
– arrival A
– service B
– queue length L
– sampling time Ts

• Output:
– queue length over time
– jobs dropped over time

• Possible events:
– arrival of a job
– service of a job
– log queue length

Practical Discrete Event Simulation and The Python Simulator 14

on init:
jobId = 0
arrival.jobId = jobId
scheduleEvent(arrival, now + A)
queue = emptyQueue()
logQueueLength(now, queue.length())
scheduleEvent(logQueue, now + Ts)

An Example: Queue Simulator

• Input parameters:
– arrival A
– service B
– queue length L
– sampling time Ts

• Output:
– queue length over time
– jobs dropped over time

• Possible events:
– arrival of a job
– service of a job
– log queue length

Practical Discrete Event Simulation and The Python Simulator 15

on event(event):
if (event == arrival) {

if (queue.length() < L OR L == 0) {
if (queue.length() == 0)

scheduleEvent(service, now + B)
queue.add(arrival.jobId)

} else {
logDrop(now, arrival.jobId)

}
logQueueLength(now, queue.length())
jobId++
arrival.jobId = jobId
scheduleEvent(arrival, now + A)

} else if (event == service) {
queue.removeFirst()
logQueueLength(now, queue.length())
if (queue.length() != 0)

scheduleEvent(service, now + B)
} else if (event == logQueue) {

logQueueLength(now, queue.length())
scheduleEvent(logQueue, now + Ts)

}
}

What are the differences
between the two

approaches?

What Are We Doing?

• In practice, we are performing a random walk through the states of
a Discrete Time (Semi-Markov) Chain

• For the queue example, the state is the number of jobs in the
queue

• Transition probabilities depend on the distributions of arrival and
service times
– Might be simply unfeasible to compute for some distributions

Practical Discrete Event Simulation and The Python Simulator 16

Finite queue length Infinite queue length

DES philosophy

• Consider again a network simulation
– managing collisions: when two packets overlap, they both can’t be received

Packet 1 Packet 2 Packet 3 Packet 4

onInit:
state = IDLE
recvPackets = {}

onEndRx(packet):
if (not packet.isLost())
sendUp(packet)

recvPackets.del(packet)
if (|recvPackets| == 0)
state = IDLE

onStartRx(packet):
recvPackets.add(packet)
if (state == IDLE)
state = RX

else
for p in recvPackets
p.setLost()

Practical Discrete Event Simulation and The Python Simulator 17

IDLE RX

startRx

startRx/endRx

endRx

Repeatability and PRNGs

• Running the SAME simulation twice MUST give the same result
– Statistical confidence is obtained through repetitions
– Change the seed of PRNGs to obtain different runs
– NEVER use a really random number to seed PRNGs (e.g., seed(time()))

• Cannot reproduce results
• Cannot reproduce bugs

– Common practice: use repetition number as seed

• In general, use different PRNG instances for different random
processes (see next slide)

Practical Discrete Event Simulation and The Python Simulator 18

Repeatability and PRNGs

• Example: imagine simulating a communication system where
– One node is static, one randomly moves around
– In one scenario the moving node sends one message per second
– In the other it uses a random interval

• Assume we use a single PRNG extracting
– 0.2, 0.5, 0.3, 0.1, 0.6, 0.9, 0.1, 0.8, 0.4, 0.7

Practical Discrete Event Simulation and The Python Simulator 19

Position (x, y) Interval (s)
(0.2, 0.5) 1

(0.3, 0.1) 1

(0.6, 0.9) 1

(0.1, 0.8) 1

(0.4, 0.7) 1

Position (x, y) Interval (s)
(0.2, 0.5) 0.3

(0.1, 0.6) 0.9

(0.1, 0.8) 0.4

(0.7, …) …

Scenario 1 Scenario 2

PYTHON NETWORK SIMULATOR

Practical Discrete Event Simulation and The Python Simulator 20

First SPE DES assignment

• Build a small discrete event network simulator
– implementing a simple ALOHA protocol
– given network topology (10 nodes)

• Assignment
– draw the flow chart
– write the simulator (with some characteristics)
– run simulations
– analyze system behavior (throughput, collisions)

• Problems discovered
– not reading the assignment (e.g., config file, README text file)
– programming!?!?
– what is a flow chart???
– too many concepts in one single assignment: easy to mess it up

Practical Discrete Event Simulation and The Python Simulator 21

This year assignment

• We give you a small, home-made network simulator
• Goal:

– extend the simulator to implement a protocol feature
– analyze and compare the results w.r.t. standard implementation

Practical Discrete Event Simulation and The Python Simulator 22

The ALOHA protocol

• Very simple medium access protocol:
– when you have a packet to send, send it!
– no carrier sensing
– if two (or more) packets overlap at a SPECIFIC receiver, they collide

• In the simulator we also make additional assumption(s):
– while receiving a packet (or more), we do not transmit (somewhat CSMA 1p)
– some others (see later)

Practical Discrete Event Simulation and The Python Simulator 23

Packet 1 Packet 2 Packet 3 Packet 4

Receiving Transmitting

arrival

Events

• arrival: a new packet to be sent is generated by a node
• end_tx: used by a node to know when it’s done transmitting
• start_rx: notifies the node the beginning of an incoming packet
• end_rx: notifies the node the end of an incoming packet
• end_proc: used by a node to know when processing is over

– used to avoid channel capture
– example: imagine two nodes having always a packet to transmit

• rx_timeout: used to avoid getting stuck into reception (see later)

Practical Discrete Event Simulation and The Python Simulator 24

Transmitting

Receiving

Transmitting

Receiving

Transmitting

Receiving

Transmitting

Transmitting

Nodes’ state and variables

• Each node in the simulator has a current state, plus some variables
– States:

• IDLE: the node THINKS the channel is free

• TX: the node is currently transmitting a packet

• RX: the node is currently receiving one (or more!) packets. It is aware that there
is something being transmitted in the channel

• PROC: the node is performing a little processing after a TX or an RX

– Variables:
• queue: queue of packets that needs to be sent

• recv count: number of packets in the air

• current packet: either the packet being TXed or trying to be RXed

Practical Discrete Event Simulation and The Python Simulator 25

Recv P1 Recv P2 Recv P3

CP=P1
recv=1

CP=NULL
recv=0

CP=P2
recv=1

CP=P2
recv=2

CP=NULL
recv=1

CP=NULL
recv=0

CP=NULL
recv=0

State transitions

• CAREFUL: this is NOT the state machine of the whole simulator

Practical Discrete Event Simulation and The Python Simulator 26

???

end_rx while being IDLE

• We assume base ALOHA, performing no carrier sensing
– while transmitting, we assume a node is not able to detect an incoming

packet. In this condition, a new packet is also not detected

– while receiving multiple packets, we assume a node does not know when
the first packet ends, but we consider an RX timeout corresponding to the
maximum packet size (plus a small delta)

Practical Discrete Event Simulation and The Python Simulator 27

TXing RXing

TXstate PROC IDLE

RXing RXing

RXstate PROC IDLE

THESE ARE ALL ASSUMPTIONS!

RXing

rx_timeout

Recall: DES Flow chart

init simulation

time >
max time?

pick next event

process event

no

finalize
simulation

yes

Practical Discrete Event Simulation and The Python Simulator 28

no more events

Flow chart: arrival event

Practical Discrete Event Simulation and The Python Simulator 29

Flow chart: end_tx

Practical Discrete Event Simulation and The Python Simulator 30

Flow chart: end_proc

Practical Discrete Event Simulation and The Python Simulator 31

Flow chart: start_rx

Practical Discrete Event Simulation and The Python Simulator 32

Flow chart: end_rx

Practical Discrete Event Simulation and The Python Simulator 33

Flow chart: on_rxtimeout

Practical Discrete Event Simulation and The Python Simulator 34

The simulator: Files

• Written in Python
– no need to compile
– cross platform
– one of the most known scripting languages

• Files
– main.py: script to actually run the simulator

• ./main.py -l : get the list of all runs
• ./main.py -L : list of all runs with associated parameters

– sim.py: event manager and scheduler that runs the simulation
– channel.py: class that, when beginning transmission, schedules the start_rx

event to all nodes within communication range
– node.py: implements the logic of a node (all the flow charts so far)
– distribution.py: random distributions used in the simulator
– other files, not at the core

• Output: csv file with list of packet events

Practical Discrete Event Simulation and The Python Simulator 35

The simulator: Downloading

• Downloading a zip file
– The zip file is (will be) published in classroom

• Cloning the git repository
– git clone https://ans.disi.unitn.it/redmine/spe-network-simulator.git
– master branch: simulator only
– plot branch: simulator plus process.R script
– exploit git to track your changes, maybe in different branches

• Updated today (13 May 2019)
– some bugfixes
– python 2 and 3 compatibility

Practical Discrete Event Simulation and The Python Simulator 36

https://ans.disi.unitn.it/redmine/spe-network-simulator.git

Configuring the simulator: config.json

Practical Discrete Event Simulation and The Python Simulator 37

{ "simulation" : {

// seed(s) to initialize PRNGs

"seed" : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

// duration of each simulation in seconds

"duration" : 30,

// communication range in meters

"range" : 10,

// physical layer datarate in bits per second

"datarate" : 8000000,

// packet queue size. set to 0 for infinity

"queue" : 2,

// packet inter-arrival distribution in 1/seconds

"interarrival" : [

{"distribution" : "exp", "lambda" : 10},

[...]

{"distribution" : "exp", "lambda" : 1510}

],

// packet size distribution in bytes

"size" : {"distribution" : "unif", "min" : 32, "max" : 1500, "int" : 1},

// maximum packet size in bytes to compute the RX timeout

"maxsize" : 1500,

// processing time after end of reception or transmission before starting operations again

"processing" : {"distribution" : "const", "mean" : 0.000001},

// position of nodes, list of x,y pairs

"nodes" : [

[[1,1], [2,3], [0, 0]]

],

// log file name using configuration parameters

"output" : "output_{interarrival.lambda}_{seed}.csv"

}

}

Coding style

• Coding follows Python style guide:
– https://www.python.org/dev/peps/pep-0008/
– indentation: 4 spaces
– width 80 characters
– some more things
– try to keep the same style as much as possible

• Code is well documented:
– function purpose
– function parameters
– reason for particular choices
– DOCUMENT YOUR CODE AS WELL

Practical Discrete Event Simulation and The Python Simulator 38

https://www.python.org/dev/peps/pep-0008/

Some results

Simulation setup:

• set of nodes transmitting packets
– size uniformly distributed within 32 and 1460 B

– exponentially distributed inter-arrival times with lambda from 10 to 1510
arrivals/s

– 8 Mbps physical layer bitrate

– queue size: 2 packets

DISCLAIMER
The following plots are given as an example. They

might not be suitable for a formal report!

Practical Discrete Event Simulation and The Python Simulator 39

Metrics

• Total offered load: sum of the offered load from all stations
– lambda * (32+1500)/2 * N * 8 / 1024^2 (Mbps)

• Throughput at receiver: correctly received bytes over simulation
time
– sum the size of all the packets marked as “RECEIVED” and divide it by the

simulation time

• Collision rate at receiver: ratio of collided packets over total
incoming packets
– N.CORRUPTED / (N.CORRUPTED + N.RECEIVED)

• Drop rate at sender: ratio of packet dropped at the queue over
total generated
– N.DROPPED / N.GENERATED

Practical Discrete Event Simulation and The Python Simulator 40

Some results: 2 nodes

Practical Discrete Event Simulation and The Python Simulator 41

1 2

Some results: 2 nodes

Practical Discrete Event Simulation and The Python Simulator 42

Some results: 3 nodes

Practical Discrete Event Simulation and The Python Simulator 43

1 2 3

Some results: 3 nodes

Practical Discrete Event Simulation and The Python Simulator 44

Some results: 6 nodes

Practical Discrete Event Simulation and The Python Simulator 45

1 2 3

4

5

6

Some results: 6 nodes

Practical Discrete Event Simulation and The Python Simulator 46

Some results: 3 nodes

Practical Discrete Event Simulation and The Python Simulator 47

1 2 3

Some results: 3 nodes

Practical Discrete Event Simulation and The Python Simulator 48

For the time being

• Download the simulator from classroom

• Play around with it
– ./main.py -h
– run some simulations
– try to get some plots
– get familiar with the code

• Is the code 100% bug free?
– thoroughly tested, but can’t never be sure L
– if you find something strange, let me know!!

Practical Discrete Event Simulation and The Python Simulator 49

