Practical Discrete Event Simulation
and
The Python Simulator

Michele Segata, Renato Lo Cigno
ANS Group — DISI — University of Trento, Italy

http://disi.unitn.it/locigno/index.php/teaching-duties/spe

528, UNIVERSITY
2% OF TRENTO

Department of Information
Engineering and Computer Science

A little bit of background

DISCRETE EVENT SIMULATION

Practical Discrete Event Simulation and The Python Simulator 2

. . . . Stk UNIVERSITY
What is a discrete simulation? S 3.1 OF TRENTO

* Simulation: reproducing the behavior of a real-world system

— mathematical
* a(t)=al
* v(t)=a0 *t+v0
* x(t)=a0/2 *t2+v0 * t+x0
— numerical
* alk] =a0
* v[k] =v[k-1] + a0 * Ts, with v[0] = vO
o x[k] = x[k-1] + (v[k] + v[k-1])/2 * Ts, with x[0] = x0

Practical Discrete Event Simulation and The Python Simulator 3

Eade. UNIVERSITY
OF TRENTO

\OuaZ Ay Department of Information
(Y QQ

What is a discrete simulation?

Engineering and Computer Science

* Discrete simulation: simulation “exists” only in specific time
moments
— time driven: sampled with a certain frequency (e.g., 10 Hz)

—0—0—0—0—0—0— 00— 00— 00—

— event driven: evolution by the generation and the consumption of events

I e e

Practical Discrete Event Simulation and The Python Simulator 4

DES: Notions

» State: represents the state of the system
— Ina G/G/1 queue: a single integer (number of clients in the queue)
— In a chain of N queues: N integers (number of clients in each queue)
— In a wireless network with N nodes: a complex set of variables
* X, Y, and z position of each node
* Radio status (e.g., IDLE, TXing, RXing)
* Protocol-dependent variables (e.g., backoff counter in a WiFi card)
* Events: change (or might not) the state of the system
— In a G/G/1: queue: the arrival or the departure of a client

— In a wireless network: the generation of a packet at the application, the
beginning and the end of a transmission, the beginning and the end of a

reception, ...
— Events evolve the simulation by changing the state and/or generating new
events

* Time: updated according to events

Practical Discrete Event Simulation and The Python Simulator

DES simulator structure

* Components and variables:
— A queue of events
— Current time
— Variables for performance monitoring (e.g., # of events)
— Modules implementing the behavior of system components (models)
* Working principle:
— Initialize simulation modules
— Pick the first (in terms of time) event from the queue
— Update current time and check for terminating condition
— Invoke the event handling of the destination module
— Repeat

Practical Discrete Event Simulation and The Python Simulator

UNIVERSITY
OF TRENTO

Depariment of Information
Engineering and Computer Science

DES — A generic view

init simulation

finalize time >
simulation max time?

pick next event
NO more events

process event

Practical Discrete Event Simulation and The Python Simulator 7

* \Very easy example: two nodes communication

on init:
scheduleEvent(sendMsg, now + exp(1l))
messageCount = 0

Node 1
on event(event):

if (event == sendMsg) {
send(packet)
scheduleEvent(sendMsg, now + exp(1l))
 else { Node 2
if (random() > 0.5)
messageCount++

}

on finish:
saveToFile(messageCount)

Practical Discrete Event Simulation and The Python Simulator 8

NIVERSITY
F TRENTO

1 Computer Science

DES philosophy

* Be careful: philosophy change needed

— EVERYTHING is an event
* schedule events

* handle events

— events are atomic
* no duration

WRONG! CORRECT!

onStartRx: onStartRx:
beginRx = now beginRx = now
wait(endOfTransmission)
rxDuration = now - beginRx onEndRx:
rxDuration = now - beginRx

Practical Discrete Event Simulation and The Python Simulator 9

An Example: Queue Simulator

* |nput parameters:
— arrival rate distribution A (e.g., exp(1/A))
— service rate distribution B (e.g., U(n-1, u+ 1), u>1)
— queue length L (O for infinite)
— single server
* Output:

— queue length over time

— jobs dropped over time N
* Possible events: ‘®_>

— arrival of a job

— service of a job

Practical Discrete Event Simulation and The Python Simulator

10

. %
An Example: Queue Simulator q

>
Z
\f]uo\@% Engineering and Computer Science

on init: * Input parameters:
jobId = © — arrival A
arrival.jobId = jobId — service B
scheduleEvent(arrival, now + A)

queue = emptyQueue()

— queue length L
* Output:

— queue length over time

— jobs dropped over time
* Possible events:

— arrival of a job
CAREFUL! This is the queue we are — service of a job
simulating, NOT the event queue of
the simulator.

The event queue is managed by the
simulator, you don't see it.

Practical Discrete Event Simulation and The Python Simulator 11

An Example: Queue Simulator

on event(event): * Input parameters:
if (event == arrival) { — arrival A
if (queue.length() < L OR L == 0) {
queue.add(arrival.jobId)
if (queue.length() == 1)

— service B
— queue length L

scheduleEvent(service, now + B) * OQOutput:
} else { — queue length over time
} logDrop(now, arrival.jobId) — jobs dropped over time
logQueueLength(now, queue.length()) * Possible events:
jobId++ — arrival of a job

arrival.jobId = jobId
scheduleEvent(arrival, now + A)

} else if (event == service) {
queue.removeFirst()
logQueuelLength(now, queue.length())
if (queue.length() != 0)

scheduleEvent(service, now + B)

— service of ajob

Practical Discrete Event Simulation and The Python Simulator 12

An Example: Queue Simulator

* Simplest possible implementation
— except for logging of job drops (why?)
— number of drops can be derived from queue length log
e search the right balance!
* Can be done in other ways
— e.g.,: you can compute the service time beforehand
— it requires you to store additional information
— on arrival:
* queue.add({jobId=arrival.jobId, serviceTime=B})
— onh service:
* scheduleEvent(service, queue[0@].serviceTime)
* Question:
— what if | want to sample queue length with a constant sampling time?
— e.g., t=0s length=0, t=1s length=0, t=2s length=1, t=3s length=4, ...
— without post-processing the current output file

Practical Discrete Event Simulation and The Python Simulator

13

An Example: Queue Simulator

Engineering and Computer Science

on init: * Input parameters:
jobId = © — arrival A
arrival.jobId = jobId — service B
scheduleEvent(arrival, now + A) — queue length L
queue = emptyQueue() — sampling time Ts
logQueuelLength(now, queue.length()) * Output:
schedu]_eEvent(]_ogQueue) now + TS) — queue length over time

— jobs dropped over time
* Possible events:

— arrival of a job
— service of a job
— log queue length

Practical Discrete Event Simulation and The Python Simulator 14

An Example: Queue Simulator

on event(event): * Input parameters:
if (event == arrival) { — arrival A
if (queue.length() < L OR L == 0) {
if (queue.length() == 0)
scheduleEvent(service, now + B)

— service B
— queue length L

queue.add(arrival.jobId) — sampling time Ts
} else { ¢ Output:

logDrop(now, arrival.jobId) _ queue length over time
iegQHeHefeﬁg;h4ﬂewT_qﬂeHe74eﬁg%h%9% — jobs dropped over time
jobId++ * Possible events:

arrival.jobId = jobId

scheduleEvent(arrival, now + A)
} else if (event == service) {

queue.removeFirst() — log queue length

togGuevetensthtrow,—eaueve—tength >

if (queue.length() != 0)

scheduleEvent(service, now + B) What are the d|ﬁ:erences

} else if (event == logQueue) {

logQueuelLength(now, queue.length()) t)E;t\A/E}EBr] tr]fe t\A/()

scheduleEvent(logQueue, now + Ts)

) approaches?

— arrival of a job
— service of ajob

Practical Discrete Event Simulation and The Python Simulator 15

What Are We Doing?

* In practice, we are performing a random walk through the states of
a Discrete Time (Semi-Markov) Chain

* For the queue example, the state is the number of jobs in the
queue

* Transition probabilities depend on the distributions of arrival and

service times
— Might be simply unfeasible to compute for some distributions

Finite queue length Infinite queue length

Practical Discrete Event Simulation and The Python Simulator 16

/) ST#dfe, UNIVERSITY
DES philosophy ([OF TRENTO
SRS it

* Consider again a network simulation
— managing collisions: when two packets overlap, they both can’t be received

Packet 1 Packet 2 Packet 3 Packet 4
onInit: onStartRx(packet): onEndRx(packet):
state = IDLE recvPackets.add(packet) if (not packet.islLost())
recvPackets = {} if (state == IDLE) sendUp (packet)
state = RX recvPackets.del(packet)
else if (|recvPackets| == 0)
for p in recvPackets state = IDLE
p.setLost()
startRx
startRx/endRx
endRx

17

Practical Discrete Event Simulation and The Python Simulator

Repeatability and PRNGs

* Running the SAME simulation twice MUST give the same result
— Statistical confidence is obtained through repetitions
— Change the seed of PRNGs to obtain different runs

— NEVER use a really random number to seed PRNGs (e.g., seed(time()))
* Cannot reproduce results
* Cannot reproduce bugs

— Common practice: use repetition number as seed

* In general, use different PRNG instances for different random
processes (see next slide)

Practical Discrete Event Simulation and The Python Simulator

18

Repeatability and PRNGs

* Example: imagine simulating a communication system where
— One node is static, one randomly moves around
— In one scenario the moving node sends one message per second
— In the other it uses a random interval

* Assume we use a single PRNG extracting
- 0.2,0.5,0.3,0.1,0.6,0.9,0.1,0.8,0.4,0.7

4/

Scenario 1 Scenario 2 '
roion ittt i sion b el
(0.2, 0.5) 1 (0.2, 0.5)
(0.3,0.1) 1 (0.1, 0.6) 0.9
(0.6, 0.9) 1 (0.1, 0.8) 0.4
(0.1, 0.8) 1 (0.7, ...)
(0.4,0.7) 1

Practical Discrete Event Simulation and The Python Simulator 19

(% UNIVERSITY
OF TRENTO

VIS, :
4y Department of Information

Engineering and Computer Science

'''''

PYTHON NETWORK SIMULATOR

Practical Discrete Event Simulation and The Python Simulator 20

First SPE DES assignment

* Build a small discrete event network simulator
— implementing a simple ALOHA protocol
— given network topology (10 nodes)

* Assignment
— draw the flow chart
— write the simulator (with some characteristics)
— run simulations
— analyze system behavior (throughput, collisions)

* Problems discovered
— not reading the assignment (e.g., config file, README text file)
— programming!?!?
— what is a flow chart???
— too many concepts in one single assignment: easy to mess it up

Practical Discrete Event Simulation and The Python Simulator

21

This year assignment

* We give you a small, home-made network simulator

* Goal:
— extend the simulator to implement a protocol feature
— analyze and compare the results w.r.t. standard implementation

Practical Discrete Event Simulation and The Python Simulator 22

iz UNIVERSITY
% OF TRENTO

The ALOHA protocol

* Very simple medium access protocol:
— when you have a packet to send, send it!
— no carrier sensing
— if two (or more) packets overlap at a SPECIFIC receiver, they collide

Packet 1 Packet 2 Packet 3 Packet 4

* In the simulator we also make additional assumption(s):
— while receiving a packet (or more), we do not transmit (somewhat CSMA 1p)
— some others (see later)

‘ Receiving “ Transmitting | N
arrival T

Practical Discrete Event Simulation and The Python Simulator 23

Events

* arrival: a new packet to be sent is generated by a node

* end_tx: used by a node to know when it’s done transmitting

* start_rx: notifies the node the beginning of an incoming packet
* end_rx: notifies the node the end of an incoming packet

* end_proc: used by a node to know when processing is over

— used to avoid channel capture
— example: imagine two nodes having always a packet to transmit

| Transmitting | Transmitting | Transmitting | I Transmitting
— @

—

Receiving J Receiving Receiving |Transmitting

@ >

) s
~

* rx_timeout: used to avoid getting stuck into reception (see later)

Practical Discrete Event Simulation and The Python Simulator 24

Nodes’ state and variables

* Each node in the simulator has a current state, plus some variables

— States:
* |IDLE: the node THINKS the channel is free
* TX:the node is currently transmitting a packet

* RX: the node is currently receiving one (or more!) packets. It is aware that there
is something being transmitted in the channel

* PROC: the node is performing a little processing after a TX or an RX
— Variables:

* queue: queue of packets that needs to be sent

* recv count: number of packets in the air

* current packet: either the packet being TXed or trying to be RXed

CP=NULL CP=P1 CP=NULL CP=P2 CP=P2 CP=NULL CP=NULL
recv=90 recv=1 recv=0 recv=1 recv=2 recv=1 recv=0
| Recv P1 | | Recv P2 Recv P3 %
— L., g —' » (.) (. >

Practical Discrete Event Simulation and The Python Simulator 25

Shrdle, UNIVERSITY
égﬁgﬁoF TRENTO

5’ Department of | Hf,wwtmn)
Engineering and Computer Science

State transitions

start_rx

arrival start rx
recv count > © -

end_rx

start_rx

IDLE \ recv count

end_rx
recv count > ©

.q@ Q%y rx_timeout
¢,
e Non

Oc

arrival
end rx

recv count = ©

end_rx start_rx

start_rx

X

end_proc end_rx

queue not empty

arrival arrival

Practical Discrete Event Simulation and The Python Simulator 26

end_rx while being IDLE

* We assume base ALOHA, performing no carrier sensing

— while transmitting, we assume a node is not able to detect an incoming
packet. In this condition, a new packet is also not detected

TXing . RXing

state | TX PPROC]| IDLE

— while receiving multiple packets, we assume a node does not know when
the first packet ends, but we consider an RX timeout corresponding to the
maximum packet size (plus a small delta)

‘ RXing ‘ | RXing ‘ N

state | RX PROC| IDLE

rx_timeout

THESE ARE ALL ASSUMPTIONS!

Practical Discrete Event Simulation and The Python Simulator 27

UNIVERSITY

Recall: DES Flow chart OF TRENTO

init simulation

finalize time >
simulation max time?

pick next event
NO more events

Practical Discrete Event Simulation and The Python Simulator 28

Flow chart: arrival event

x UNIVERSITY

2 OF TRENTO

&
/ Department of Information
¥ Engineering and Computer Science

yes

no
yes

queue packet drop packet

l

> schedule next arrival <€

set state TX

2

tx packet

2

current packet = packet

2

schedule end_tx

-

Practical Discrete Event Simulation and The Python Simulator

29

Flow chart: end_tx

Stadfe, UNIVERSITY

A
%% OF TRENTO
(2 <
@) 3 CAY Department of Information
ll{r Engineering and Computer Science

set state PROC

Y

current packet = NONE

v

schedule end_proc

Practical Discrete Event Simulation and The Python Simulator

30

Flow chart: end_proc

|

on end_proc:

no

iS queue empty? set state TX

Y

tx packet

Y

set state IDLE current packet = packet

2

schedule end_tx

Practical Discrete Event Simulation and The Python Simulator

31

STrife, UNIVERSITY
Flow chart: start_rx %% OF TRENTO

&
A/ Department of Information
Engineering and Computer Science

on start_rx(packet):

is state IDLE?

recv count = 0?

Y
no i
urré;tsroa:itfk’:i(|a=ndN0N set state RX set packet CORRUPTED
Y
set current packet CORRUPTED set packet RECEIVING
Y Y
> set packet CORRUPTED current packet = packet
Y
schedule rx_timeout
Y

j—l

schedule end_rx(packet)

Y

recv count ++

Y

D

Practical Discrete Event Simulation and The Python Simulator 32

; UNIVERSITY
Flow chart: end_rx s OF TRENTO

24> Department of Information
Engineering and Computer Science

IOV

on end_rx(packet):

is packet RECEIVING?

no

set packet RECEIVED

current packet = packet?
no

current packet = NONE

yes

set state PROC > cancel rx_timeout

no

schedule end_proc |«

A

recv count --

-

Y

Practical Discrete Event Simulation and The Python Simulator 33

Flow chart: on_rxtimeout

S§ade, UNIVERSITY

Department of Information
Engineering and Computer Science

on rx_timeout:

set state PROC

schedule end_proc

Practical Discrete Event Simulation and The Python Simulator

34

The simulator: Files

* Written in Python

— no need to compile

— cross platform

— one of the most known scripting languages
* Files

— main.py: script to actually run the simulator
* ./main.py -l : get the list of all runs
* ./main.py -L : list of all runs with associated parameters

— sim.py: event manager and scheduler that runs the simulation

— channel.py: class that, when beginning transmission, schedules the start_rx

event to all nodes within communication range
— node.py: implements the logic of a node (all the flow charts so far)
— distribution.py: random distributions used in the simulator
— other files, not at the core

* Qutput: csv file with list of packet events

Practical Discrete Event Simulation and The Python Simulator

35

* Downloading a zip file
— The zip file is (will be) published in classroom
* Cloning the git repository

— git clone https://ans.disi.unitn.it/redmine/spe-network-simulator.git

— master branch: simulator only
— plot branch: simulator plus process.R script
— exploit git to track your changes, maybe in different branches

* Updated today (13 May 2019)
— some bugfixes
— python 2 and 3 compatibility

Practical Discrete Event Simulation and The Python Simulator

36

https://ans.disi.unitn.it/redmine/spe-network-simulator.git

Configuring the simulator: config.json

{ "simulation" : {
// seed(s) to initialize PRNGs
"seed" : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
// duration of each simulation in seconds
"duration" : 30,
// communication range in meters
"range" : 10,
// physical layer datarate in bits per second
"datarate" : 8000000,
// packet queue size. set to © for infinity

"queue" : 2,
// packet inter-arrival distribution in 1/seconds
"interarrival" : [
{"distribution" : "exp", "lambda" : 10},
[...]
{"distribution" : "exp", "lambda" : 1510}
1P
// packet size distribution in bytes
"size" : {"distribution"” : "unif", "min" : 32, "max" : 1500, "int" : 1},
// maximum packet size in bytes to compute the RX timeout
"maxsize" : 1500,
// processing time after end of reception or transmission before starting operations again
"processing" : {"distribution" : "const", "mean" : ©0.000001},
// position of nodes, list of x,y pairs
"nodes" : [
[[1,1], [2,3], [e, @]]
1P
// log file name using configuration parameters
"output" : "output_{interarrival.lambda} {seed}.csv"

Practical Discrete Event Simulation and The Python Simulator 37

Coding style

* Coding follows Python style guide:
— https://www.python.org/dev/peps/pep-0008/

— indentation: 4 spaces

— width 80 characters

— some more things

— try to keep the same style as much as possible

* Code is well documented:
— function purpose
— function parameters
— reason for particular choices
— DOCUMENT YOUR CODE AS WELL

Practical Discrete Event Simulation and The Python Simulator 38

https://www.python.org/dev/peps/pep-0008/

U
\\ 7‘ Some results
o 10

Simulation setup:

* set of nodes transmitting packets
— size uniformly distributed within 32 and 1460 B

— exponentially distributed inter-arrival times with lambda from 10 to 1510
arrivals/s

— 8 Mbps physical layer bitrate
— queue size: 2 packets

DISCLAIMER

The following plots are given as an example. They
might not be suitable for a formal report!

Practical Discrete Event Simulation and The Python Simulator 39

Metrics

* Total offered load: sum of the offered load from all stations
— lambda * (32+1500)/2 * N * 8 / 102472 (Mbps)
* Throughput at receiver: correctly received bytes over simulation
time
— sum the size of all the packets marked as “RECEIVED” and divide it by the
simulation time

* Collision rate at receiver: ratio of collided packets over total
incoming packets

— N.CORRUPTED / (N.CORRUPTED + N.RECEIVED)
* Drop rate at sender: ratio of packet dropped at the queue over
total generated
— N.DROPPED / N.GENERATED

Practical Discrete Event Simulation and The Python Simulator 40

UNIVERSITY
OF TRENTO

Depariment of Information
Engineering and Computer Science

Some results: 2 nodes

Practical Discrete Event Simulation and The Python Simulator 41

Se4%. UNIVERSITY

{9 V) OF TRENTO
-

o) 2 0’3’ Department of Information
Engineering and Computer Science

Some results: 2 nodes

3- _ 1.00-
2 2
2 8
= Q 0.75-
o 2- © .
.qz) P receiver node
8 o
o = 0.50- - 1
® i)
et i) - 2
31" 3
< S 0.25-
> Q
e %
£ g

0- 0.00-

0 5 10 15 0 5 10 15
total offered load (Mbps) total offered load (Mbps)
1.00~-

0.75-

sender node
0.50 - o 1

- 2

0.25-

packet drop rate at sender

0.00-

0 5 10 15

total offered load (Mbps)
Practical Discrete Event Simuiauon ana 1ne ryuion snmuidator 42

Szif, UNIVERSITY
Some results: 3 nodes % S eNto

Sy -
S 72 Y Department of Information
N7e Engineering and Computer Science

Practical Discrete Event Simulation and The Python Simulator 43

Some results: 3 nodes

3- _ 1.00-
2 2
2 8
=3 @ 0.75-
o 2- ® receiver node
2 o
8 § - 1
o} < 0.50-
- o - 2
© =
3_1' % —-— 3
< S 0.25-
-} (0]
e %
£ g
0- 0.00-
0 10 20 0 10 20
total offered load (Mbps) total offered load (Mbps)
1.00-

0.75-
sender node
- 1
0.50 -
- 2
=0 3

0.25-

packet drop rate at sender

0.00-

0 10 20

total offered load (Mbps)
Practical Discrete Event Simuiauon ana 1ne ryuion snmuidator 44

Some results: 6 nodes

Practical Discrete Event Simulation and The Python Simulator 45

UNIVERSITY
OF TRENTO

Department of Information
Engineering and Computer Science

Some results: 6 nodes

3- _ 1.00-
A 2
Q. = .
2 9 receiver node

1) -

= 2075 B
o 2- ©
‘© 2 - 2
3 o
o = 0.50- - 3
..TE :8 - 4
3— 1 % -e—- 5
< S 0.25-
=) Qe - 6
e [&]
£ g

0- 0.00-

0 20 40 0 20 40
total offered load (Mbps) total offered load (Mbps)
1.00-

sender node

0.75- o 1

0.50-

0.25-

packet drop rate at sender
N
o O A W N

0.00-

0 20 40

total offered load (Mbps)
Practical Discrete Event Simuiauon ana 1ne ryuion snmuidator 46

gnaen UNIVERSITY
(7 T BN
= r"; OF TRENTO

Some results: 3 nodes

S5 f -
M2 Y Department of Information

Engineering and Computer Science

~

N

Practical Discrete Event Simulation and The Python Simulator 47

UNIVERSITY
OF TRENTO

Department of Information
Engineering and Computer Science

Some results: 3 nodes

3- . 1.00-
m =
S 3
= ® 0.75-
- w receiver node
Se- @
(0] [- 1
® c 0.50- —P
= o
® B
5 3 I
e © 0.25-
(@)} Q
3 3
£ g
0- 0.00-
0 10 20 0 10 20
total offered load (Mbps) total offered load (Mbps)
1.00-
o}
2
% 0.75-
= sender node
9 - 1
© 050~
8_ - 2
S - 3
2 0.25-
[$]
[0}
(o}
0.00-
0 10 20

total offered load (Mbps)
Practical Discrete Event Simuiauon ana 1ne ryuion snmuidator 48

For the time being

* Download the simulator from classroom

* Play around with it
— ./main.py -h
— run some simulations
— try to get some plots
— get familiar with the code

* Isthe code 100% bug free?

— thoroughly tested, but can’t never be sure ®
— if you find something strange, let me know!!

Practical Discrete Event Simulation and The Python Simulator

49

