
Live Video Streaming for Community Networks,
Experimenting with PeerStreamer on the Ninux Community

Leonardo Maccari
DISI - University of Trento

leonardo.maccari@unitn.it

Luca Baldesi
DISI - University of Trento
luca.baldesi@unitn.it

Renato Lo Cigno
DISI - University of Trento
locigno@disi.unitn.it

Jacopo Forconi
ARCI Firenze

forconi@arci.it

Alessio Caiazza
Ninux Firenze

ac@firenze.ninux.org

ABSTRACT
P2P Live video streaming could be a distinguishing feature
of Community Networks, due to the affinity to both techni-
cal and social characteristics of such networks. It can help
binding together communities, it provides a good means for
inclusion of people as well as to deliver information and local
events. Video streaming in community networks, however, is
still problematic; this work describes how to customize Peer-
Streamer, an open source P2P video streaming platform,
to an existing Community Network in the city of Florence,
Italy. The paper exposes the motivations that make Peer-
Streamer a perfect match with the philosophy and the tech-
nical features of a community network and describes how the
community network of Florence can be a very good testbed
given the mixture of technical and social skills that animate
it. The proposed adaptation and implementation exploits a
so-far underused feature of PeerStreamer: the possibility of
separating the streaming engine from the play-out part on
different hosts. This feature makes it possible to install the
streaming engine, which is very efficient and has a very small
memory footprint, directly on the community network rout-
ing nodes, so that the streaming topology can be adapted
to the community network topology by directly accessing
routing information. On the other hand, the player can run
on standard PCs and use standard interfaces to access the
stream.

Categories and Subject Descriptors
C.2.4 [Computer System Organization]: Distributed
applications

Keywords
P2P video streaming, community networks, wireless mesh
networks, cross-layer design

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DIYNetworking’15, May 18, 2015, Florence, Italy.
Copyright c© 2015 ACM 978-1-4503-3503-4/15/05 ...$15.00.
http://dx.doi.org/10.1145/2753488.2753491 .

Video streaming has always been the killer application of
networks, though until recent years it was first a chimera
and then a dream. Today, instead, on-demand streaming is
a standard, albeit demanding, network application on the
Internet1, while TV-like broadcasting is available in many
places on specialized IP overlays supporting multicasting2.
Video streaming is enabled by powerful cloud- or Content
Delivery Networks (CDN)- based server architectures matched
to the typical Internet Service Provider (ISP) backbone plus
ADSL network architecture.

Community Networks (CNs) do not match the typical ISP
network architecture and they don’t have powerful data cen-
ter or cloud services. Moreover, they normally don’t have a
high capacity interconnection with the Internet, thus video
streaming remains not only a killer application for CNs, but
a killer tout-court, making it very difficult to deliver video
streams either coming from the Internet or locally generated.

However, there is an increasing demand for streaming ser-
vices in WCNs. In Guifi CN3 for example there are fourteen
VoIP servers, five video conference servers and nine radio
broadcasting servers. CNs are mesh networks with symmet-
ric links, and thanks to modern WiFi devices they normally
have fairly large capacity. This characteristic, together with
the bottom-up, cooperative approach that sustains them,
makes them a perfect match for P2P (peer-to-peer) tech-
nologies. P2P video streaming attracted a lot of interest in
the mid 2000s, but then was mostly abandoned in favor of
more traditional techniques, albeit several commercial ser-
vices still exists4.

The software and protocols supporting commercial P2P
TVs are definitely not a good match for bottom-up voluntary-
based CNs (explaining why goes beyond the scope of this
paper). Some of the authors of this paper, instead, main-

1YouTube, Netflix, Vimeo, are examples of on-demand video
streaming, normally provided as a web service.
2IP-TV differs from a web-service because it is provided
as an unbundled service separate from Internet access, al-
though normally commercially associated to it. A partial list
of IP-TV providers can be found at http://www.skytide.
com/products/iptv-providers-list
3http://guifi.net
4See for instance LiveP2PStream http://www.
livep2ptvstream.com/, SopCast http://www.sopcast.
org/, or PPTV http://www.pptv.com/



tain as open source software project the heritage of NAPA-
WINE [5], a very successful EU-FP7 project5.

PeerStreamer, the name of the P2P streaming system, is
one of the few available and fully configurable open source
platforms. It is based on a generic mesh topology that can
be adapted to the underlay topology requirements [10], it
includes advanced solutions for optimal video chunk schedul-
ing [1], and reliable chunk delivery negotiation based on push/pull,
offer/select protocols [7]. PeerStreamer is shortly described
in Sect. 3.1 for what is functional to this paper.

The contribution of this paper lies in describing how a
modern, open source P2P streaming implementation matches
perfectly the ethical goals and technical characteristics of
CNs and how PeerStreamer distribution core could be inte-
grated in the CN routing nodes, while deploying the graph-
ical user interface on users PCs, laptops, or even a modern
TV set. The Italian CN of Ninux, based in Florence gives a
perfect chance to test with PeerStreamer. It is a small scale
network with a lively community ready to include new appli-
cations in its network infrastructure to attract new people,
and it is in direct contact with ARCI6, a large Italian ONG
(Non-Governmental Organization) that is interested in using
Ninux to enlarge the audience of the live events it organises.
We are actively working to implement the described archi-
tecture and we plan to present experimental results from
this implementation in a near future.

The rest of the paper is organized as follows, in Sect. 2 we
introduce Ninux and Ninux Florence, in Sect. 3 we describe
PeerStreamer and in Sect. 4 we explain the possible design
we will use. Finally we draw the conclusions.

2. NINUX: THE LARGEST ITALIAN CN
Ninux7 is the largest Italian CN, with about 300 nodes

installed in the whole Italian peninsula. Ninux was boot-
strapped in Rome more than ten years ago as a small ex-
periment led by local hackers, and today it is composed of
various Ninux islands, among which the Rome island con-
tains roughly 2/3 of the total number of nodes. The islands
are not directly connected, and each local community is in-
dependent, all of them embrace the Ninux Manifesto that is
largely based on the Pico Peering agreement used by several
CNs8. Ninux was born to build a cooperative, neutral net-
work with universal access. Ninux is not a cooperative ISP,
it doesn’t have a formal association that represents it, nev-
ertheless through its members it achieved several goals, it is
a recognized Autonomous System, and it is currently part of
the Italian network of research (GARR), through which it is
connected to the Internet Exchange Point of Rome. Ninux
has been already the subject of some research works [9, 8],
and it currently participates to the CONFINE FP7 FIRE
project9, the largest European research project that studies
community networks.

5See http://www.napa-wine.eu/cgi-bin/twiki/view/
Public for a full description of the project, and Peer-
Streamer homepage http://peerstreamer.org for the
details on the software development
6The Italian acronym stands for Associazione Ricreativa e
Culturale Italiana, http:\\www.arci.it
7See http:\\www.ninux.org and \http:\\www.firenze.
ninux.org for the Florence island
8See http://www.picopeer.net/
9http://confine-project.eu

2.1 Ninux in Florence
The Florence portion of Ninux is the second largest of

the whole Ninux network after the main island of Rome. It
was started in late 2012 and, at the time of writing, it is
comprised of 21 nodes and it is animated by a stable com-
munity of about ten people. The network nodes are installed
primarily in private houses, a few more are hosted by associ-
ations. Fig. 1 shows the current state of the network, green
nodes are active ones, orange nodes are “potential nodes”,
that is, locations in which people have manifested the inter-
est of placing a new node but could not join yet. At the
current state there are few applications used by the network
community. People use the network to share files, to ac-
cess remote servers they control in different locations, or to
share an ADSL connection between two houses. There is an
experimental voice over IP server running.

The community is lively, and often participates at public
events to promote the network and to attract participants
coming from heterogeneous experiences. One of the goals of
Ninux in Florence, indeed, is to quickly move from a geek-
only experiment (that is the genesis of many CNs) to a net-
work involving a wider segment of population. One way of
achieving this goal is to focus on providing cheap Internet
access, and turn the network in a cooperative ISP, which at-
tracts the still many digitally divided people. On the other
hand, the experience of Ninux and other CNs tell that those
who are interested in cheap Internet access may not share
the network principles and will most likely become clients of
the network, instead of participants. Ninux Florence tries to
avoid such drawback. In fact, there is no focus on Internet
access and the community tries to involve new people inter-
ested in the funding values of the network itself. Of course
the more applications will be deployed in the network, the
easier it will be to attract external people.

Ninux Florence has a physical headquarter that is hosted
in a building managed by the ARCI ONG. ARCI is one of
the largest Italian ONGs, with more than one million people
affiliated and almost 5000 points of presence in Italy. The
building that hosts the weekly meeting of Ninux is called ex-
fila and is located in the south-east part of the city, pointed
by a red arrow in Figure 1. Among other things, exfila is
used to organize concerts and events, as it features a small
auditorium. Ninux has an active node in exfila.

The idea described in this paper comes from the need of
the Ninux community to increase the number of the internal
applications, together with the availability of contents that
ARCI generates in exfila, such as concerts and seminars,
and that would be very hard if at all possible to publish
live on the Internet using the ADSL connection present in
exfila. Being able to stream the live video events in the
Ninux network would be beneficial also for ARCI: it would
achieve a larger audience, and, in the future it would make it
possible to connect other ARCI buildings to Ninux in order
to receive the live events from exfila. Furthermore, ARCI
hosts an FM radio in one of his buildings, so it may be
possible to stream events from exfila to the radio station,
and from there stream the audio in FM. Conversely, live
contents generated by the radio could be spread also on the
CN, as audio is a sub-part of video and PeerStreamer can
be easily adapted.

3. P2P STREAMING AND PeerStreamer



Figure 1: The topology of the Ninux network of Florence, the red arrow points to the headquarter of Ninux
Florence.

P2P live streaming matches both the technical constraints
and the philosophy of a CN. From a technical point of view,
centralized cloud-based streaming does not suit a CN, since
every video stream is independently generated for each client.
If the streaming service is placed outside the CN, then the
connection that the CN uses to access the Internet will be
overloaded by the potentially tens of clients that request a
unique video stream. Even if the source is placed inside the
CN, the scalability can not be granted because the links con-
nected to the source node will be soon overloaded when the
number of clients increases. PeerStreamer instead subtracts
load from the source and distributes the impact on various
network links, so that the video distribution becomes sus-
tainable even increasing the number of clients. Its applica-
tion to CNs has already been tested and showed promising
results [3, 2]. Under a social point of view, live broadcast-
ing of community user ideas and events fosters the opinion
exchange within the community and can be a means for
information propagation in a way much more tied to the
citizens with respect to what usually media do. It can be
used to stream concerts, seminars, lessons with a completely
bottom-up approach without the need to involve any exter-
nal cloud-based or commercial platform.

3.1 PeerStreamer
PeerStreamer is an open source platform for live peer-to-

peer video streaming. It has been developed as part of the
European NAPA-WINE project and is capable of exploiting
a peer-to-peer mesh overlay to deliver media contents op-
timizing the receiving delay. PeerStreamer is composed of
different customizable parts.

Much of the interest around PeerStreamer is due to its
capacity of scaling over thousands of peers keeping a very
low latency in the packet delivery. Such characteristic was
proved during a test campaign conducted on PlanetLab [6],
a research network worldwide spread that encourages the
development of new emerging services. Thanks to Peer-
Streamer scalability, as the number of peers grows, the de-
livery delay of each packets grows only logarithmically. In

practice even with more than two thousands peers the trans-
mission only requires a few seconds to reach the farthest
peer: in television broadcasting this is defined as live.

This important feature is achieved through the epidemic
data diffusion scheme implemented in PeerStreamer. The
data source will fragment the video stream in basic units
(“chunks”) and inject in the overlay only few copies of each
chunk. The receiving peers will redistribute those packets
to other peers and so on until every peer have received its
own copy of the chunks [4].

Other peer-to-peer applications are designed to maximize
the expected throughput and are not suitable for live stream-
ing due to the time constraints of the overall transmission on
the overlay. PeerStreamer instead is intended to minimize
the receiving delay.

PeerStreamer can be logically split in three main compo-
nents; the source tools which inject the media contents in the
overlay, the streamer which is the actual responsible of set-
ting up the peers overlay and spread the contents across the
network, and the player application which takes the video
chunks from the local streamer and display the video to the
user. The resulting PeerStreamer logical overlay is depicted
in Fig. 2.

3.2 The Web Interface
PeerStreamer supports the separation of the streaming

function, the software component that takes care of trading
video chunks, from the playback function that visualizes the
video stream. The second component can be substituted by
any compatible players, such as the widely used Video Lan
Client (VLC)10. One architectural choice that is currently
under design is the introduction of a web-based interface
which has been proved to be generally more appealing for
the users and could grant a higher degree of flexibility.

Currently, each streamer can manage only one video stream.
As a future development, we can imagine that multiple streams,

10See http:\\www.videolan.org



Streamer

Player
Application

Source tools

Streamer

Streamer

Player
Application

Streamer

Player
Application

Streamer

Peer

Peer
Peer

Source

Peer

Figure 2: PeerStreamer network architecture. The
source tools inject the video packets in the overlay,
the peer-to-peer overlay is composed of the stream-
ers and the player applications perform the playout.
Not all the peers need to implement the player.

generated from multiple sources at the same time could
be running on the same network. We thus include in the
architecture a controller of the various streamer instances.
The interactions with the controller could be based on the
web protocol (HTTP) with Representational State Transfer
(ReST), a lightweight and efficient architectural style that
grants a high degree of interoperability with other web appli-
cations. A ReST oriented architecture is sketched in Fig. 3.
Each user has one (or more than one) software daemon run-
ning on his host (the streamer) responsible of the recep-
tion and sharing of video frames. The web interface allows,
through HTTP transactions, the creation of new streamers
to access to other videos and the playback on the web in-
terface itself, using the video plugin already installed in the
user’s browser. Potentially many playback objects can fit
in the web interface, a typical application could be a video
conference.

Such architecture allows running the streamer in a dif-
ferent physical host than the playback function and gives
the chance to realize many different set-ups. Using a web
interface would introduce also the possibility to easily mesh-
up and integrate other web-based services. For instance it
could be possible to add social features like a messaging
chat shared among the users or introduce the possibility of
showing material related to the video.

4. PEERSTREAMING IN NINUX
In this section we describe four potential configurations

based on the PeerStreamer architecture for the Ninux Flo-
rence CN, as well as for any other CN. The configurations
are listed in growing complexity, in each one we give for
granted the presence of a video source in the network and
we describe only the configuration of a single client. All
configurations are compatible and can be mixed in different
clients in the network.

The first configuration is the simplest and the one that
is already possible given the current capabilities of Peer-
Streamer. It embeds all the components in the user PC,
which needs to be able to access the IP address class of the
CN.

ReST Streamer Controller

S
tr

e
a
m

e
r 

in
st

a
n
ce

S
tr

e
a
m

e
r 

in
st

a
n
ce

S
tr

e
a
m

e
r 

in
st

a
n
ce

Web GUI page

User Host

Figure 3: Possible PeerStreamer architecture.

Figure 4: Configuration 1, all the software is in-
cluded in user’s PC.

Figure 5: Configuration 2, PeerStreamer is embed-
ded in the wireless router used to access the Ninux
network, user accesses video via browser.



Figure 6: Configuration 3, PeerStreamer runs on a
dedicated device, and other peripherals access the
stream via standard protocols.

Fig. 4 depicts such configuration that is normally used
when PeerStreamer operates over the Internet, it is the sim-
plest one and can be used by the user without noticing if
the source is in Ninux or on the Internet, assuming Internet
access is available.

A second configuration is the one depicted in Fig. 5 which
splits the role of the streaming function from the role of the
playback. The streamer and the controller can be placed di-
rectly on the wireless device used to access Ninux (the Ninux
node) and the user can access the stream pointing any web
browser to the web server in the node. The advantage of such
configuration is that the streaming engine can be embedded
directly in the Ninux nodes when they are installed, so that
every node in the network comes with PeerStreamer pre-
installed. Moreover, multiple devices (PCs, tablets, smart-
phones) can access the video at the same time. The con-
troller will then be accessed by the web interface to instruct
the streamer to participate to the diffusion of a video from
a certain source. Once this is done every device in the house
of the user can access the video. Note that the streaming en-
gine is a very lightweight application written in C language,
with a minimal memory fingerprint, so it can run even in a
constrained environment such as wireless access point.

To realize such configuration some development is needed:
the controller and the web interface need to be realized.
Moreover, PeerStreamer needs to be ported to the operative
systems and hardware of common wireless router (such as
Tp-Link or Ubiquiti routers, that are the most used in Ninux
and use embedded ARM processors). PeerStreamer cur-
rently supports x86 platforms, the GNU/Linux, Windows
and MacOS operating systems.

A third configuration, that would require less effort would
be to use a separated device in the home network to run
PeerStreamer and is reported in Fig. 6. Currently, cheap
(less than 100e) x86 devices are present in the market and
could be used as a small peer-to-peer media center. The
benefit of such approach would be that the dedicated device,
being a more computationally powerful platform without
any other concurring tasks could offer the video streaming in
different formats, in order to be accessible to various devices.
Among these, we can imagine that protocols such as DLNA
or Miracast could be used to serve smart-TVs or smart-
projectors, so that the user could enjoy the video even more
comfortably.

Figure 7: Configuration 4 PeerStreamer runs on a
dedicated device connected via HDMI to a smart-
TV. Such device is controlled via a dedicate mobile
App.

Such approach is perfectly compatible with the one used
by the CLOMMUNITY project11, which develops the Cloudy
linux distribution12 for usage in CNs. PeerStreamer is al-
ready one of the services introduced in Cloudy, which could
be a building block for the dedicated media center. Still, the
control of the streamer (to join a certain swarm) would take
place from a web page via a web browser

Finally, the forth configuration, depicted in Fig. 7 pushes
even further on user friendliness. The dedicated hardware
device is one of the embedded computers with HDMI output
(on the model of Google Chromecast or the Intel “Compute
Stick”). Such devices are multi-core platforms with Wi-Fi
support of the size of a USB stick that can be plugged di-
rectly into the HDMI plug of a TV. The functional model
is the same of the previous configuration but the video will
be directly transferred to the TV. For commodity, such de-
vice would not be controlled via a web interface, but with
a mobile phone App connected to the home Wi-Fi. Such
configuration would be the easiest to use, and implies the
development of various components that are currently not
available.

5. CONCLUSIONS
This paper described a work-in-progress project that merges

the outcome of a previous research project with the needs
of an existing community network. We outlined how P2P
streaming can be a killer (in all senses) application for CNs,
and how the Florence Ninux community can benefit from
such technology, being in direct connection with the ARCI
ONG, which can offer live streaming of local contents. We
described potential architectural models some of which we
will test with the joint effort of all the contributors of this
paper: academia, Ninux and ARCI. Since PeerStreamer is
an open source software such models can be freely replicated
also in other CNs.

6. REFERENCES
[1] L. Abeni, C. Kiraly, and R. Lo Cigno. On the Optimal

Scheduling of Streaming Applications in Unstructured
Meshes. In NETWORKING ’09: 8th Int. IFIP-TC 6
Networking Conference; LNCS 5550, pages 117–130.
Springer-Verlag, 2009.

11http://clommunity-project.eu/
12See http://cloudy.community/



[2] L. Baldesi, L. Maccari, and R. Lo Cigno. Improving
P2P streaming in community-lab through local
strategies. In 10th IEEE Int. Conf. on Wireless and
Mobile Computing, Networking and Communications
(WiMob), pages 33–39, 2014.

[3] L. Baldesi, L. Maccari, and R. Lo Cigno. Live P2P
streaming in CommunityLab: Experience and insights.
In 13th IEEE Mediterranean Ad Hoc Networking
Workshop (MED-HOC-NET), pages 23–30, 2014.

[4] R. Birke, C. Kiraly, E. Leonardi, M. Mellia, M. Meo,
and S. Traverso. A delay-based aggregate rate control
for p2p streaming systems. Computer
Communications, 35:2237 – 2244, 11/2012 2012.

[5] R. Birke, E. Leonardi, M. Mellia, A. Bakay,
T. Szemethy, C. Kiraly, R. Lo Cigno, F. Mathieu,
L. Muscariello, S. Niccolini, J. Seedorf, and G. Tropea.
Architecture of a network-aware p2p-tv application:
The napa-wine approach. IEEE Communications
Magazine, 49:154–163, 06/2011 2011.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an

overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12, July
2003.

[7] R. Lo Cigno, A. Russo, and D. Carra. On Some
Fundamental Properties of P2P Push/Pull Protocols.
In 2nd IEEE Int. Conf. on Communications and
Electronics (ICCE 2008), pages 67–73, June 2009.

[8] L. Maccari. An analysis of the Ninux wireless
community network. In 9th IEEE Int. Conf. on
Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 1–7, 2013.

[9] L. Maccari and R. Lo Cigno. A week in the life of
three large Wireless Community Networks. Ad Hoc
Networks, 24:175–190, 2015.

[10] S. Traverso, L. Abeni, R. Birke, C. Kiraly,
E. Leonardi, R. Lo Cigno, and M. Mellia.
Neighborhood Filtering Strategies for Overlay
Construction in P2P-TV Systems: Design and
Experimental Comparison. IEEE/ACM Transactions
on Networking, on-line(99):1–14, March 13 2014.


