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Abstract

Wireless Community Networks (WCNs) are created and managed by a local community with the goal of sharing Internet connec-
tions and offering local services. This paper analyses the data collected on three large WCNs, ranging from 131 to 226 nodes, and
used daily by thousands of people. We first analyse the topologies to get insights in the fundamental properties, next we concentrate
on two crucial aspects: i) the routing layer, and ii) metrics on the centrality of nodes and the network robustness. All the networks
use the Optimized Link State Routing (OLSR) protocol extended with the Expected Transmission Count (ETX) metric. We analyse
the quality of the routes and two different techniques to select the Multi-Point Relay (MPR) nodes. The centrality and robustness
analysis shows that, in spite of being fully decentralized networks, an adversary that can control a small fraction of carefully chosen
nodes can intercept up to 90% of the traffic. The collected data-sets are available as Open Data, so that they can be easily accessed
by any interested researcher, and new studies on different topics can be performed. WCNs are just an example of large wireless
mesh networks, so our methodology can be applied to any other large mesh network, including commercial ISP networks.

Keywords: mesh networks, community networks, wireless ad-hoc networks, network topology, privacy, network analysis,
centrality metrics, robustness analysis.

1. Introduction

A Wireless Community Network (WCN) is a wireless mesh
network created by a local group of users to have an alternative,
self-managed, community-based networking infrastructure. A
WCN serves two purposes: It allows inter-user interactions
(messaging, talking, sharing etc.), and it brings Internet connec-
tivity where it is not present. WCNs are flourishing. Many Eu-
ropean cities feature WCNs with hundreds of nodes: in Athens
a single WCN includes more than 2,400 nodes, while in Spain,
the Guifi network is a composition of WCNs that counts more
than 23,000 nodes and growing. Thousands of nodes connect-
ing tens of thousands of individuals, families, associations, pub-
lic offices with a non-profit approach and a community-based
organization. After an initial interest in their early stages [1],
WCNs have lately re-attracted the attention of academia and
research funding [2, 3], and they are becoming a strong asset
in reducing the digital divide and pushing broadband networks
from the bottom up.

The goal of this paper is to analyze the main features of three
large European WCNs, with particular focus on routing aspects
and on centrality and robustness metrics.
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1.1. Contribution
This paper extends the initial findings on a small portion of

the data presented in [4], leveraging the analysis, the metrics
and theoretic contributions published in [5, 6]. It offers an origi-
nal combination of insights not present in the existent literature.
First of all, three different large networks are monitored for an
entire week, exploring their stability and different characteris-
tics and finally providing a novel comparative analysis of the
three networks.

Second, WCNs do not strictly focus on Internet connectiv-
ity, as the large commercial networks analyzed in the literature.
Instead, the participants of a WCN perceive the network as an
alternative communication media that offers a higher degree of
privacy and neutrality. For this reason they try to use the inter-
nal services of the network as an alternative to external commer-
cial services. In the light of the recent world-wide discussions
on privacy, neutrality and forced disconnections, WCNs rep-
resent successful networks based on a somehow revolutionary
societal approach. For this reason it is particularly important to
study their development, describe their features and verify how
much they match the expectations, raised even by mainstream
media1. One of the contributions of this paper is the analysis
of the robustness and of the centrality metrics of WCNs, that
give an unbiased overview of how much these expectations are
reflected in real networks.

Third, we focus on specific issues that have been ignored by
previous works, as the analysis on the choice of Multi-Point

1See, for instance, recent coverage from the New York Times “U.S. Pro-
motes Network to Foil Digital Spying” http://nyti.ms/1r6yltT
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Relays (MPRs) in the Optimized Link State Routing (OLSR)
protocol. MPRs are key nodes used in the OLSR protocol that
have been largely debated in the literature, most of the times
using a theoretical or simulative approach. We believe this is
the first attempt to evaluate on real topologies how MPRs could
impact the performance not only in terms of signalling, but also
in terms of accuracy in finding the best routes.

Finally, and contrarily to the majority of the works in litera-
ture, we release all the data we have collected and the software
we developed to encourage more researchers to investigate on
this topic, so that new comparative research can be based on
this work. We will continue to monitor the three networks and,
if possible, to extend the monitoring to new ones and enrich the
public data-set with new features2.

1.2. Related Work
Several works describe the features of wireless mesh net-

works. In some cases, detailed analysis were made on small
wireless networks [7, 8], in some other cases large networks
providing Internet access were analyzed [9, 10, 11]. Never-
theless, there is a great difference between a commercial ac-
cess network and a large WCN, which offers some unique chal-
lenges [12] and displays some unique features.

Recently the topological properties of Guifi have been stud-
ied [13], and in a previous work [4] we analysed some feature
of the Ninux network.

This paper goes beyond the state of the art and focuses on
some currently unexplored specific issues. Among these, we
will study the centrality metrics applied to WCNs, and, specifi-
cally, group centrality metrics. These are metrics that have been
largely used in social science, but have been applied to wireless
networks only recently [14, 15], but never to networks as large
as the ones we consider.

Finally, many works in the literature address the problem of
finding the optimal MPR set for a network [16, 17, 18, 19].
Most of these works are based on geometric evaluations or sim-
ulations and, to the best of our knowledge, there is none es-
timating the impact of different MPR choice strategies in real
large topologies as we do in this work.

2. Overview of the Networks and the Measurements

The three networks we consider are Funk Feuer Wien and
Funk Feuer Graz in Austria, and Ninux in Italy: FFWien, FF-
Graz, and NNX for short. They have different management
structures and “philosophy”, but they all exploit the OLSR rout-
ing protocol to maintain the network topology and compute
routing.

2.1. Nodes’ Configuration
The majority of the nodes use either one of two solutions: i)

boxed indoor equipment, or ii) commercial devices for outdoor
use.

2The software developed and data-sets collected for this work are available
at http://disi.unitn.it/maccari/CN

In the first case devices such as the TP-Link TL-wr841nd3

are modified using outdoor antennas, powered over Ethernet
and enclosed in a plastic box. This is a low cost solution, easy
to deploy since it relies on omnidirectional antennas that do not
need to be aligned. The drawbacks are short ranges, higher in-
terference, and a lower throughput.

In the second case devices such as the Ubiquiti nanostation4

are used. They have embedded panel antennas with a beam-
width of 40 degrees or parabolic antennas with a beam-width
of 10 degrees. This second solution needs more expertise to
be installed, but guarantees longer ranges and higher bit rates.
Using directional antennas, it is often necessary to install more
than one device to connect to neighbor nodes. Each device is
connected to the others via Ethernet; this configuration is called
a super-node. A super-node implements cross-AP routing and
maintains a large horizontal ‘virtual’ coverage angle while fea-
turing long ranges and high bit rates.

The communication technology used is a mixture of IEEE
802.11g/a/n standards with preference for 802.11n to achieve
higher bit rates and use the 5GHz frequency that is generally
less crowded of consumer devices.

Each WCN or user, decides what is the best Operating Sys-
tem (OS) for the nodes, and the choice depends on many fac-
tors. As a general rule, using the OS shipped with the device
has higher stability and better performance due to a better inte-
gration with the hardware. As a drawback it may not allow the
users to modify the routing protocols or use the ad-hoc mode.

2.2. The OLSR routing protocol

Some comprehension of the OLSR protocol is needed to bet-
ter understand the remaining of the paper. Since OLSR is well
known and described in the literature [20], we give just a brief
description of its principles. OLSR is a link state protocol based
on Djikstra algorithm, where only bi-directional links are in-
cluded in the link set, and they are discovered using a “hello”
procedure that pairs beacons, called HELLO messages, broadcast
by each and every node in the network.

Let’s now introduce some specific notation. In a network N
each node j has a set of one-hop neighbors N1( j) reachable with
a direct link and discovered with the hello procedure. Nodes are
included in N1( j) only if they have proper symmetric links. Ev-
ery node j also has a set of two-hop neighbors N2( j) reachable
through some node i ∈ N1( j) with exactly two hops (by con-
struction N1( j) ∩ N2( j) = ∅).

N1( j) and N2( j) are built as follows: every node j period-
ically sends an HELLO message to build the knowledge about
the 1-hop neighborhood. Furthermore, HELLO messages con-
tain the IP addresses of every node in N1( j). Through the HELLO
messages of its neighbors, at steady state, j has the full knowl-
edge of N1( j) and N2( j).

Node j elects, among the nodes in N1( j), a set of MPRs M( j).
M( j) satisfies the following condition: every node in N2( j) must
have at least a symmetric link towards a node in M( j). Thus if

3See www.tp-link.com/en/support/download/?model=TL-WR841ND
4See www.ubnt.com/airmax
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i ∈ M( j) it “covers” some of the nodes in N2( j): M( j) com-
pletely covers N2( j). When j selects one MPR i it informs i
that it has become one of is MPR selectors. Each MPR starts
behaving as follows:

• It periodically generates Topology Control (TC) messages.
A TC contains the list of the IP addresses of its MPR se-
lectors;

• It rebroadcasts the TCs received from its selectors.

TC messages contain an approximation of the local topology
around an MPR and are received by all the nodes, given the
construction procedure of N1( j), N2( j), and M( j). In this way,
each node has enough information to compute the shortest path
route to any other node. Since only MPR nodes retransmit the
TCs, TCs will reach all the nodes in the network using a fraction
of re-transmissions compared to plain flooding. Minimizing the
size of each M( j) is thus important to minimize the union of all
the M( j), which in turn minimizes the number of generated and
forwarded TC messages.

In the network under consideration OLSR is configured to
use a quality metric on links: the Expected Transmission Count
(ETX) metric. ETX estimates the average number of times a
packet needs to be transmitted to reach a neighbor, taking into
account losses due to collisions and interference. Since the
timer used between every HELLO message is known, each node
j estimates the number e of HELLO messages that it should re-
ceive from one neighbor i in a given time window. Node j
counts the number r of HELLO messages actually received from
i in the window and specifies in its HELLO messages the ratio
r/e. The value r/e is called the link quality (LQ) of the link
from i to j. Node i will do the same, so that node j knows
both the LQ value and the reverse value (neighbor link quality,
NLQ). Since any unicast transmission in 802.11 requires a data
frame and an ACK in the opposite direction, the probability of
successfully sending a packet is approximated by LQ × NLQ.
The average number of frames needed to successfully send a

packet is thus estimated as ET X =
1

LQ × NLQ
. MPRs add to

the TC messages the ETX for each of their selectors. If ETX is
used, the minimum cost route is computed with Dijkstra’s al-
gorithm on a weighted graph. Since TC messages contain the
ETX metric only for the links between an MPR and its selec-
tors, j has only an approximated knowledge of the network. In
practice, MPRs hide the presence of some links.

The advantage of using MPRs to reduce overhead, as well
as the utility of the ETX metric is hotly debated among OLSR
users. Without entering the debate, we note that ETX is a very
crude metric and it is estimated on short messages sent in broad-
cast, i.e., at the minimum physical transmission speed, which
means that ETX is hardly representative of the actual quality of
the unicast link between two nodes. It is instead meaningful to
estimate the diffusion of routing signalling messages.

2.3. The Data Gathering Process
The data collection relies on the information exposed by the

OLSRd daemon. For each community network we store snap-
shots of the topology as a weighted non-directed graph G(N ,L)

at regular time intervals. N is the set of all nodes, with super-
nodes counting as a single node, and L is the set of all links li j

as selected by OLSR. The weight cl∀l ∈ L is either 1 for mini-
mum hop routing or the OLSR ETX metric measured on l. Let
Pi, j be the best path from node i to node j as selected by OLSR
and

w(Pi, j) =
∑
l∈Pi, j

cl (1)

be its cost or weight.
In all the networks, OLSR is configured to force each node

to select all its neighbors as MPRs. As a result every node is
an MPR and thus every node has a complete knowledge of the
topology. To know the entire topology, it is sufficient to extract
information from one node. The OLSRd software daemon can
be configured to export the network topology, and all the net-
works publish this information. Appendix A describes in detail
how the data is collected and what pre-processing is applied
to it to make the topological description of the networks more
meaningful.

FFGraz FFWien NNX
first sample 01/07/14 01/07/14 01/14/14
last sample 01/13/14 01/13/14 01/20/14

samples per day 144 288 288
samples time interval 10 min 5 min 5 min

Table 1: Summary of the data-sets collected

The data collection process is performed by a daemon writ-
ten in the Python language that downloads new topologies in
real time and saves them in an SQL database. As we already
mentioned, the source code is published as Open Source, and
the database as Open Data, so that any researcher wishing to
use the data used for this paper is free to access it.

The data has been collected in a period of one week for each
network, in Table 1 we report a summary of the data collected
for each network. The number of samples of FFGraz is smaller
due to the larger sampling period, so that for a one-day obser-
vation we have 288 samples for FFWien and NNX and 144 for
FFGraz.

3. Main features of the networks

Table 2 shows the key features of the networks. We can note
that the three networks are different, but share some topolog-
ical characteristics. The NNX network is the smallest of the
three, FFGraz is the one with the highest density (the density

of a graph G(N ,L) is defined as δ =
2||L||

||N|| ∗ ||N − 1||
). The

density in a graph with constant connectivity degree decreases
with the number of nodes, so even if NNX has a smaller average
degree compared to FFWien, it has a higher density. The pro-
portion between leaf nodes and non-leaf nodes is similar in the
three networks. Another measure of interest is the average local
clustering coefficient of the network (CC1), that expresses the
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FFGraz FFWien NNX
av. number of nodes 144 236 131
av. number of links 207 421 153

density δ 0.020 0.015 0.017
average degree 2.88 3.63 2.35

leaf nodes 63 (43%) 77 (32%) 51 (38%)
average ETX 2.0 1.46 1.24
average CC1 0.1934 0.2358 0.0347

Table 2: High level features of the networks under analysis

local density of links around a node. The local clustering coef-
ficient of node i with one-hop neighborhood size ni = |N1(i)| is
defined as:

CC1(i) =
2|{lk, j : k, j ∈ N1(i) ∧ lk, j ∈ L}|

ni(ni − 1)
(2)

In average, Ninux has a much smaller CC1 compared to Funk
Feuer Graz and Funk Feuer Wien.

3.1. Time Evolution of the Networks

During the observation on the whole week we measured only
a small fluctuation in the number of nodes and in the number of
links, mainly due to a small subset of leaf nodes with instable
links that periodically exit and enter the main connected com-
ponent of the network. This is reported in Fig. 1 where one
snapshot per hour for the full week is reported. Note that the
fluctuations of leaf nodes/links (the upper plot) have a marginal
impact on topology and routing.

Fig. 2 reports the persistence of each link of the networks,
that is, the fraction of snapshots over the total for which the link
has been present in the network. From this data we removed the
links that have a persistence smaller than 1%. This is to avoid
to consider sporadic links generated by test devices or tempo-
rary changes in the nodes configurations. There is a difference
among the networks, while NNX shows a very high persistence
for the majority of the links, FFWien and FFGraz present more
temporary links. Still, in both cases there is a large core of links
that is present in all the snapshots.

The fluctuation of the number of nodes and links does not
impact the macroscopic routing characteristics of the topology.
The reason is that fluctuations normally happens in marginal
nodes and links, so that the average length and cost of the short-
est paths are not influenced. This observation is reported in
Fig. 3, together with the average ETX, which doesn’t vary sig-
nificantly, either.

Fig. 4 reports the clustering coefficient of each network.
Sect. 5 discusses how CC1 directly influences the robustness of
the networks.

Since the network features are stable, from now on we limit
the analysis to data relative to one day of observation, in order to
reduce the effects of fluctuations and simplify the interpretation
of results. Since the full data-set is available on-line, all the
results are reproducible also for other time-periods. We have
observed some other days obtaining consistent results.
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Figure 1: The number of nodes, leaves and edges for the three networks during
the whole week.
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Figure 2: Persistence of the links for each network

3.2. ETX and Degree Analysis
Fig. 5 shows the average degree distribution of the three net-

works. For each node the degree is averaged over all the snap-
shots and rounded to the closest integer. The figure reports also
the power law and exponential curves that best fit the points
(using minimum mean square error). Since the number of sam-
ples and the dimension of the network are not large enough to
compare it with existing literature on power-law networks, we
do not indulge in the analysis of the degree distribution; we
just observe that qualitatively the distributions are very skewed.
This is not surprising also considering the results on another
WCN presented in [13].

Fig. 6 shows the empirical CDF of ETX for all the links and
all the snapshots. A large portion of the links have an ETX' 1.
Independently from the network the distributions have a long
tail of higher values, but the slope is different. Fig. 7 reports the
average ETX for every link computed on all the snapshots. In
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Figure 5: Degree distributions with exponential and power law fitting curves
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Figure 3: Average ETX value, route length, and route weight for the three
networks during the whole week
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Figure 4: Clustering Coefficient for the three networks during the whole week

Ninux it has a smaller range compared to Funk Feuer networks.
In all networks and all links ETX is relatively stable: the av-
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Figure 6: ECDF of the ETX value for the three networks
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Figure 7: Average ETX of each link in the three networks (links are ranked by
ETX)

erage standard deviation of the ETX on each link is less than
16%, 10% and 7% for Funk Feuer Graz, Funk Feuer Wien and
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Ninux respectively. This actually contradicts the common as-
sumption that in WCNs the links are unstable and their quality
is highly variable.

In the past, due to the unavailability and price of devices, the
networks were set-up using omnidirectional antennas, and ad-
hoc wireless mode. This allowed maximum flexibility, almost
no planning, but it also yielded poor performance and high in-
terference. Today, a large number of nodes are equipped with
directional antennas, and the super-node configuration (see Ap-
pendix A) is used to enlarge the coverage angle of each node.
In some cases the original firmware is not changed on the radio
device, and master-client configurations are used. This requires
some effort in network planning, but it also allows the use of
proprietary extensions that further increase the performance of
each link. In the case of Ninux we verified these assumptions
directly with people from the WCNs that confirmed that the
majority of the nodes are configured to have one link per each
radio.

We note some differences. Ninux has the best average qual-
ity, and more than 90% of the links have ETX≤ 2, while Funk
Feuer Graz has the highest average ETX and the highest stan-
dard deviation per link; it is the one with the highest density,
suggesting that in Funk Feuer Graz it is more common to to use
the same device for more than one link.

4. The Routing Layer

Once the weighted network graph is known, we can compute
all the shortest paths from any couple of nodes in the network.
Since every node is an MPR this is the same information that a
node in the network uses to compute its routing table.

Fig. 8 reports the distribution of the paths’ weight w(Pi, j)
computed both with a simple hop-count metric (cl = 1 ∀l ∈ L)
and considering the ETX metric as OLSR does. The graph is
based on all the routes computed on all the snapshots of a one-
day data-set. w(Pi, j) is quantized to integer values for readabil-
ity.

Funk Feuer networks have the mode at 5 hops, while Ninux
despite being the smallest of the three has the mode at 6 hops
(this can be explained observing that it is the network with the
smallest average degree). The difference between the curves
representing length and weight can be better appreciated look-
ing at the cumulative distribution. In Funk Feuer Wien and
Ninux the curves are very close to each other, while in Funk
Feuer Graz the difference is much more evident. This shows
that the highest quality of the links in Funk Feuer Wien and
Ninux is directly reflected in the paths’ weight w(Pi, j) computed
on ETX. Notice that Funk Feuer Graz features a very different
distribution of w(Pi, j) computed on ETX compared to the other
networks. The reason lies in the particular topology that leads
to some nodes with high centrality but bad links and will be
more clear after the discussion in Sect. 5. Fig. 10 shows a snap-
shot of the Funk Feuer Graz topology where, albeit only with a
trained eye, this somewhat pathologic situation can be seen.

Fig. 9 reports boxplots of w(Pi, j) ∀i, j based on ETX grouped
by number of hops, and computed in each network, for each

Figure 10: Compressed Funk Feuer Graz topology, the number in circles indi-
cates the number of attached leaves. The density of the link color is proportional
to its goodness (light blue = bad link). 3 clusters can be identified, two of them
connected with weak links.

snapshot. The boxplots show some intuitive but interesting re-
sults. For the FFWien and NNX networks the median of the
weights (the red line in the box) is very close to the minimum
value (the bottom whisker). Also, the first and third quartile (the
boxes) are close to each other, which means that more than 75%
of the routes of the same length have a very similar behaviour.
In FFWien with routes longer than 6 hops the upper whisker
starts diverging from the median, indicating a higher variance
of w(Pi, j). This is not evident in the Ninux network. In FF-
Graz there are two separate effects, the first one is that even for
shorter paths the boxes are much wider than for the other net-
works, the second is that, due to the particular topology of the
network, the variance of w(Pi, j) is not monotonic.

As a concrete application of this analysis, imagine that a cer-
tain service is placed on a single node i in the network, and
must be reached by any other node j, for instance, a VoIP Bor-
der Media Gateway. The weight w(Pi, j) influences the service
quality since it is an estimate of the average number of wireless
frames that need to be sent along the path for the packet deliv-
ery. In Ninux if i is chosen to be at an average distance of 6 hops
from any j (the mode of the route length as seen in Fig. 8c) the
perceived quality of the service will be similar for the large ma-
jority of nodes since the boxplots for length 6 is narrow. This
is not true for FFGraz, for which, among the routes that have a
length 5 (the mode for FFGraz) the distribution of the weights
is much wider. Thus the perceived quality of the service will
largely differ depending on the position of j. Since the average
distance of i from any node j can not be arbitrarily reduced, the
only solution to have a more homogeneous quality is, if possi-
ble, to use two servers, thus doubling the effort. Other similar
issues will be discussed in Sect. 5.

4.1. Analysis of the Multi-Point Relays

The distinctive feature of OLSR, and one of the most de-
bated, is the way MPRs are selected [16]. We introduce some
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Figure 8: Empirical distribution (solid lines, left y axis) and ECDF (dashed lines, right y axis) w(Pi, j) based on hop count (green/thin line) and ETX (blue/thick line)

(a) Funk Feuer Graz (b) Funk Feuer Wien (c) Ninux

Figure 9: Boxplots of the distribution of w(Pi, j) vs the number of hops in the path; boxes represent the 1st and 3rd quartile, the whiskers are set to 1.5 times the Inter
Quantile Range. X axis reports also the percentage of routes with the corresponding length

notation to further discuss this subject. Let j be a node of the
network, N1( j) is its neighbors’ set and M( j) ⊆ N1( j) is the set
of MPRs chosen by j, Mg is the union of all M( j); S g = ||Mg||.
S (i) is the selector set of MPR i and the symbol j → i means
j ∈ S (i).

As a general policy, S g should be small, since every MPR
generates signalling that is propagated to all nodes. The heuris-
tic proposed in the OLSR RFC tries to minimize each M(i),
and it has been shown that it produces results close to the lo-
cal optimum in dense scenarios [20, 21]. Minimizing also the
intersection of each M(i) reduces S g even further [19]. Com-
pletely decoupling the choice of M(i) from the links’ quality
may lead i to choose an MPR j even if the ETX on the link is
high (bad link). This has two drawbacks. The first is the poten-
tial computation of sub-optimal paths. As each node has only
an approximated view of the network based on HELLO and TC

messages, an Mg built ignoring quality metrics may hide (as we
explained in Sect. 2.2) links with high quality, and lead to com-
pute sub-optimal routes (we call this conjecture [A], as it is one
of the assumptions upon which many decisions and choices are

taken in tuning OLSR, but rarely verified). The second is that
the robustness of the diffusion of signalling may be reduced. In
fact, i may not receive TCs from j and thus have outdated infor-
mation on the network topology (conjecture [B], also this one
an assumption often made, but rarely verified).

The OLSRd community has initially implemented its own
quality-aware MPR selection algorithm that chooses for each
2-hop neighbor the 1-hop neighbor that maximizes the quality
on the two-hop path, an idea initially introduced in [22]. Con-
sequently Mg in a dense network constantly changes, since it
doesn’t depend on the links availability, that is assumed to be
slowly changing, but on the link quality that can be much more
variable. A fast changing Mg can have two bad consequences.
The first one is that also the routing may be changing frequently.
When Pi, j changes, even if w(Pi, j) remains similar, other quality
parameters of the route can vary (for instance, ETX doesn’t esti-
mate the capacity of a link). The protocols and the applications
at the upper layers can be highly impacted by such variations.
The second one is that every time there is a change in Mg the
network needs some time to propagate this information with
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HELLO and TC messages. When the information propagation
time becomes comparable to the time between changes there is
a high risk of network instability. The result of a large period of
trial and error [23] was that the developers of OLSRd, as a de-
fault configuration, force every node to select all its neighbors
as MPR, in practice renouncing to the optimization introduced
by the MPRs. As said, this is also the approach used in the three
networks under evaluation.

With the data-set available we can evaluate the impact of
different choices of MPRs. The introduction of quality-aware
MPRs selection raises many issues and gives many choices,
which are often used arbitrarily. We want to study if conjec-
tures [A] and [B] justify the use of quality metrics or not and
how different MPRs selection influences the topology quality.
We call Mq

g the set of MPRs chosen with the link-quality maxi-
mization metric, and S q

g its size.

4.2. Overhead reduction
Since we have the full topology and all cl we can compute

off-line Mg and Mq
g reproducing both metrics. Figure 11a and

11b report S g and S q
g vs time (snapshots) for a one-day subset

and show two relevant facts: i) S q
g largely exceed S g; and ii) S g

for FFGraz is smaller compared to NNX, but this is the opposite
for S q

g. The reason for ii is that FFGraz is larger and denser
NNX, so that the S g reduction achievable on FFGraz is higher
(the MPR choice with the RFC heuristic is more efficient in
dense networks). In Ninux the physical topology and the low
density strongly influences the choice of Mg, and S g cannot be
reduced.

To quantify how this impacts the signalling overhead,
Fig. 11c reports Lt, which estimates the normalized load per
link per generated TC:

Lt = El

[
ρl

t

]
; l ∈ L (3)

where El[·] is the average over all links and ρl
t is the total num-

ber of TCs transmitted on link l in each TC interval. It is clear
that reducing S g is fundamental to reduce the signalling over-
head. FFGraz has an average of 10% more nodes than NNX,
but also 35% links more than NNX, this explains why FFGraz
has less TC messages per link.

This estimation does not consider TC aggregation or fish-eye
strategies, that can reduce the global amount of TC messages re-
gardless of MPR selection strategy. Note also that Fig. 11c only
reports TC messages, but MPRs are used to re-broadcast any
other signalling messages, such as HNA messages, or messages
needed to spread the association between a node and a list of its
available services. Thus, it is of paramount importance to re-
duce the number of MPRs to keep the signalling bearable when
the network size grows.

4.3. Route quality
Let’s now analyze the impact of MPR selection on route cal-

culation. The base of conjecture [A] is that a node i receives
topology information from HELLO and TC messages. Thus, it
has only an approximated view of the network. We want to
quantify how much this can negatively influences routing.
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Figure 11: a) S g and S q
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tion, lq uses link-quality based MPR computation)
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Define Gi(N ,L′) as the approximated view of the network
graph G by node i. Gi has the same number of nodes of the
original graph G but has a smaller number of edges. L′ ⊆ L
contains the edges lk j for which at least one of the following
condition holds:

1. k = i, or j = i
2. k ∈ N1(i) or j ∈ N1(i)
3. k ∈ Mg and j→ k or j ∈ Mg and k → j

In practice, each node i knows only the links to its neighbors,
the links between its 1-hop neighbors and its 2-hop neighbors
and the link between any MPR in the network and its selectors.
For this analysis the MPR are chosen using the heuristic from
the RFC, without considering link qualities.

Given Gi we can compute the routing table Ri( j) for every
node i, and hence, for every (i, j) in N × N compute the effec-
tive path P′i j = {i = p0, p1 = Rp0 ( j), p2 = Rp1 ( j) . . . j} that pack-
ets follows from i to j. Comparing w(P′i j) with w(Pi, j) gives a
measure of the real impact of conjecture [A].

Figs. 12a, 12b, and 12c report w(P′i j) with w(Pi j) for all pairs
(i, j) averaged on all the snapshots and ranked by their weight.
Surprisingly enough, the difference is extremely limited, in
98% of the samples the same routes are chosen and the curves
overlap. This can be explained observing that even if node i
doesn’t have enough information to compute the globally best
route, it has enough information to send the packet to the most
convenient next-hop. Then, at any hop, the node that is rout-
ing the packet has a full knowledge the graph up to its 2-hop
neighborhood, and can choose again the most convenient next
hop.

This result is particularly relevant considering that OLSR2
[24], which is currently in its final stage of standardization
distinguishes between MPRs used to broadcast signalling and
MPRs used for routing. This choice was taken because of con-
jecture [A]. At least for these three networks, and we believe
for WCNs and meshes in general, this difference doesn’t hold:
maintaining two sets of MPRs may be an unjustified overhead.

OLSR is still one of the most used protocol in WCNs, even if
the communities tried to mitigate its limitations creating new
protocols, such as BATMAN, that is also widely used [23].
BATMAN, being a distance-vector protocol generates smaller
signalling messages, but it doesn’t give a full view of the net-
work to each node. We believe that the data we gathered show
that a correct implementation of OLSR can greatly reduce the
overall signalling, while maintaining stability properties. We
also believe that, even if this information is currently not used,
the knowledge of the full network topology (or at least of an
approximated one) can be beneficial to fine-tune the protocol
properties. For instance, the frequency of the signalling could
be raised for nodes that prove to be central in the topology, and
lowered for nodes that are in the periphery. The next Section
shows how to compute centrality metrics within OLSR, some-
thing that would be much more difficult to do with a distance-
vector routing protocol.
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Figure 12: Route weights with and without the approximation due to MPRs
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5. Centrality and Robustness Metrics

In graph theory, centrality metrics have been largely used to
identify the properties of nodes. In particular, in social science
the centrality of a node is often used to determine the influence
that a person has on the other participants of the social network.
In the context of wireless networks, centrality has not received
much attention up to recent times [14, 15].

The concept of centrality in a specific graph is not unique, in
this paper two definitions of centrality are considered, shortest
path group betweenness centrality Csp, or simply betweenness,
and group closeness centrality Cc (definitions can be found
in [25]). Computing group centrality is a hard task, so that
heuristics must be used for networks of the size we are con-
sidering.

Robustness metrics are used, instead, to study the robustness
of the network against nodes or link failures. We will quantify
the robustness of the network graph, but also introduce an ini-
tial evaluation of how the introduction of MPRs can impact the
diffusion of TC messages.

5.1. Centrality Metrics

The Csp(k) of node k is defined as the fraction of shortest
paths Pi, j ∀i, j ∈ N passing through k. If the traffic matrix
is uniform or unknown, Csp(k) is an unbiased estimator of the
fraction of traffic that a node will route. If one wants to place
a traffic analyzer in the network (for instance an Intrusion De-
tection System (IDS)), the node with the highest Csp is the best
choice to intercept the highest fraction of the overall traffic.

The closeness centrality Cc(k) of node k, instead, is an esti-
mation of the cost needed to spread an information from k to
all the nodes in the network. The definition that best serves the
purposes of this paper is that Cc(k) is the average distance from
k to any other node i in the network5. If one wants to place a ser-
vice in the network (a web server, a streaming server, etc.) the
node with the lowest Cc is the best choice to minimize its dis-
tance to any node in the network. For both centrality measures
the weighted graph is used, so that distances are weighted us-
ing ETX; thus, Cc(k) is the average number of wireless frames
that will be needed to successfully send one IP packet from any
node i to the service placed on k (or vice versa).

The definition of both metrics can be extended to groups of
nodes. The group betweenness of a group γ of nodes is defined
as the fraction of Pi, j ∀i, j ∈ N passing through at least one
node of γ. Again, if one wants to place an IDS on a group
γ of nodes in order to maximize the overall fraction of traffic
analyzed, the group with the highest Csp(γ) is the best choice.

The closeness group centrality of γ is the average of the min-
imum shortest path from any node i to any of the nodes in γ.
Among all the groups of the same size, the more central one is
the one with the lowest Cc(γ).

5Closeness centrality is generally defined as the inverse of Cc(k). We prefer
to use Cc(k) since coupled with the ETX metric, its value has a direct correspon-
dence with the average number of wireless frames sent along the path from any
node i to k.

Following the previous example, if a service can be repli-
cated on a set γ of nodes, then the group with lowest Cc(γ) is
the best choice. As a further example imagine that Cc(γ) can be
used as a metric to place Internet gateways. The group with the
lowest Cc(γ) is the group that will give the best average Internet
connectivity to the nodes in the network. Since the ETX metric
of a link is an estimation of the number of frames needed to
successfully deliver an IP packet on that link, Cc(γ) is directly
proportional to the average load (in terms of number of frames)
on the network generated by the traffic directed to the Internet.
This is of particular importance also for a commercial Wireless
ISP that needs to design a mesh network to deliver internet con-
nectivity. The number and the position of the gateways in the
network must be decided in order to distribute the load on the
whole topology and reduce the chances of creating bottlenecks.

5.1.1. Computing Group Centrality
Finding the group γ with the highest group betweenness has

been shown to be an NP hard problem while a brief analysis of
the literature did not produce any complexity estimation for the
closeness group centrality as we defined it.

The size of the networks under consideration does not al-
low the use of an exhaustive search on all the groups of size
k to find the global optimum, thus we implemented a greedy
algorithm we call GR1 to estimate the best group. At each
step h, given the solution computed at the previous step γh−1,
for every i in N , GR1 composes a new set γi

h = γh−1 ∪ {i}
and computes µi = Csp(γi

h) − Csp(γh−1). It ranks all the γi
h for

the corresponding µi and selects the one with highest µi. The
difference from the optimal Csp(γo) and Csp(γk) produced by
GR1 has been shown to be lower bounded by a constant in the
general case [26], moreover GR1 performs particularly well on
scale free networks [27]. Some of our networks show a scale
free behaviour, so we chose this greedy algorithm to compute
the best centrality measures. Nevertheless, since our between-
ness centrality measure is slightly different from the one used in
[26] and closeness centrality was not considered in that work,
we validated the greedy algorithm with a GRASP (Greedy Ran-
domized Adaptive Search Procedure) approach, and in partic-
ular, with a parallel multiple-walk independent-thread proce-
dure [28] that we called GR2. GR2 works as GR1, but instead
of always choosing the γi

h with highest µi it selects a restricted
candidate list of the first 5 and randomly picks one of them,
with probability proportional to µi. We ran GR2 with 16 in-
dependent parallel processes for each network graph and chose
the best solution. If the problem we want to solve has many
local optimum values far from the global one, GR2 should per-
form substantially better GR1. Instead we verified that GR2
produces a negligible improvement in both centrality metrics,
less than 1% on average compared to GR1. This confirms that
on the topologies of our data-set GR1 produces solutions very
close to the optimum.

Fig. 13a shows the group betweenness centrality of groups
up to size 5. It is clear that a motivated attacker, controlling
a few nodes is able to sniff a very large portion of the traffic.
In light of the recent Datagate privacy scandal, WCNs have at-
tracted the attention of mainstream media as a bottom-up alter-
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Figure 13: Group Betweenness and closeness Centrality of the best groups with
size from 1 to 5

native to avoid privacy infringement6. Our analysis on real net-
works shows instead that using a peer-to-peer technology does
not guarantee by itself to have networks that are robust to inter-
ception.

6See the New York Times, “Home Wireless Network Keeps the Snoops
Away”
http://www.nytimes.com/2013/11/14/technology/personaltech/

homemade-wireless-networks-keep-the-snoops-away.html?smid=

pl-share&_r=0

The other side of the coin is that a distributed monitoring sys-
tem placed on a small subset of nodes will be able to intercept
and analyze the majority of the traffic of the network, and also
to counter external attacks to privacy.

Fig. 13b instead shows that with a careful choice of γ the
average network load generated by traffic directed to the gate-
ways or to a set of servers can be cut down significantly. Re-
call that with OLSR, each node exposes the private networks
it is connected to using specific messages (HNA messages). By
extension, it can also export the offered services (as in [29]).
OLSR thus offers an easy and efficient way (since it exploits
the MPR system) to spread the knowledge that a particular ser-
vice is present in a set γ of nodes. Every other node is thus able
to use the service on the host in γ that is more convenient to
reach.

5.2. Robustness
The robustness of a graph is an estimation of the impact of

failures on the graph connectivity, and can be measured with
metrics introduced in [30] and based on percolation theory.
Given a connected graph G(N ,L) we remove a set F made
of f random edges and we call G′(N ′,L′) the main connected
component of the resulting graph. When an edge is removed
the connectivity of the graph may change, meaning that some
nodes can be isolated. The robustness of G(N ,L) is the ra-
tio ||N ′ ||

||N||
, averaged over a sufficient number of random choices

of F. The rationale behind this metric is that if the robustness
stays close to 1, the network is still functionally behaving as
a network when subject to f uncorrelated failures. Instead, if
it drops to values close to 0, the network is fragmented into a
multitude of isolated networks. In practice, there is no network
anymore. The same measure is repeated for growing values of
f .

We compute the robustness of each snapshot with 30 ran-
dom choices of F and growing value for f . Instead of express-
ing the robustness against the absolute number of failures, it is
convenient to express it against relative number of failed links,
so that different networks can be compared. Since the number
of edges in each snapshot (even of the same network) lightly
varies, we quantize the relative number of failures to a percent-
age: k = d100 ∗ f /||L||e. Then for each network we call r(k) the
robustness averaged over every snapshot.

Since ETX expresses the reliability of a link, instead of
choosing the edges with an uniform distribution the probabil-
ity of being removed is proportional to the normalized value of
ETX.

We choose to compute the robustness in four different ways:

1. On the full graphs;
2. On the full graphs, but choosing the links to purge only

within the core network, i.e., only the links that connect
non-leaf nodes;

3. On the MPR sub-graph Gm(N ,Lm) in which a link exists
only from a selector to its MPR. MPRs are chosen with the
RFC heuristic;

4. On the MPR graph Gq
m(N ,Lq) built as the previous one

but with MPRs chosen based on link quality.
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The last two ways affect the signalling network only. To better
explain this we refer to Gm but the considerations are the same
for Gq

m. When a node m that is not an MPR generates an HELLO

packet to show its presence, this information is distributed to
the whole network by at least one MPR i for which m → i.
Similarly, when a TC message is produced by i, the information
it carries moves from i to any other MPR j for which i → j,
and this is repeated at every hop. If one link is broken, TCs can
still arrive to every destination using alternative paths. But, if
one or multiple failures make Gm disconnected, the network is
logically broken. If this condition is not transitory, the routing
needs to be reconfigured and temporarily some routes will be
missing. Computing r(k) on Gm, we give an estimation of how
robust is the delivery of routing information on Gm that directly
depends on S g and S q

g.
Fig. 14a shows the robustness of the network and of the net-

work core. First of all we can observe that all the networks
are quite robust. If we remove 10% of links, that is a relevant
portion of the links, robustness is higher than 0.9. Second, ro-
bustness is higher for networks with higher average degree, and
this is particularly evident between FFGraz and NNX. Even if
their size is similar, in NNX, the choice of minimizing the num-
ber of links per device increasese the average quality per link,
but decreases the robustness.

There is a visible difference between the robustness of the full
graph and of the core graph. In all three cases, for low values
of k the core network is more robust that the full network, then
the two curves intersect. To understand this, consider that if we
remove a random link, if this link connects a leaf node ||N ′||
decreases by one unit. Instead, if the core network is well con-
nected, removing one link does not necessarily decrease ||N ′||.
Since FFGraz and FFWien have a higher degree than NNX the
intersection happens for higher values of links removed.

Fig. 14b presents the robustness of the MPR sub-graphs. It
is intuitive that Gm will be less robust than Gq

m since it has
a smaller Mg. For this reason we normalize the number of
failed links to the number of MPRs. Thus, we plot r(k′) where
k′ = d100 × f /S ge, and r(k′′) where k′′ = d100 × f /S q

ge in-
stead of r(k) respectively. This metrics express the robustness
normalized to the respective sizes S q

g and S g, notice that k′ and
k′′ can be larger than 100, so that they are not normalized pa-
rameters strictly speaking, as they are referred to a number of
nodes and not to a number of links. As a result we see that
the curve referring to quality-based MPR selection (solid lines,
marked with “lq” in the figure legend) stays below the curve
referring to the standard RFC implementation. This is relevant
with respect to conjecture [B]: we can finally say that using the
RFC heuristic produces a small reduction in terms of robust-
ness, which is largely compensated, from a global management
point of view, by the reduction of MPRs, and consequently of
signalling, making quality-based MPR selection questionable.

Similarly, robustness can be evaluated against the failure of
nodes, simply considering a random set of f nodes, normalized
on the size of N . Fig. 15a and Fig. 15b show the robustness
of the network graph to the failure of nodes. We evaluate the
robustness against random failures and targeted attacks. In the
first case, the nodes are randomly removed from the networks,
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Figure 14: Robustness metric for link failures on the network graphs and on the
MPR sub-graphs with both RFC and ETX based heuristics

in the second, we start removing nodes from the one that have
the highest degree. This second case resembles the actions of
a rational attacker that wants to provoke the highest damage to
the network.

The graphs show that due to the high skewness of the degree
distribution, the networks are quite resistant to random failures,
but are pretty weak against targeted attacks.
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Figure 15: Robustness metric for node failures

6. Conclusions

Wireless Community Networks represent a thriving mix of
technical solutions and social participation. Their open nature
allows users and researchers to participate, experiment and col-
lect information on how the networks work. In this paper we
used the data collected on three large WCNs to study their main
topology features, the centrality of their nodes and their robust-
ness. We also used the data-set to investigate on the role of
MPRs in an OLSR-based network, something that, to the best
of our knowledge, has never been done on such a large scale.
The results show that, even with some differences, WCNs are
pretty stable networks, the average quality of the links is good,
and thus, the weights on the routes are close to their length in
terms of hops. We also showed that the use of MPRs can re-
duce the signalling, without a strong impact on the quality of
the routes.

WCNs are often perceived as a tool that users can build to
escape control and protect their privacy. We showed that the
structural properties of the networks alone do not make them
more robust against coordinated attacks, since the traffic is con-
centrated on a few important nodes (as we showed using cen-
trality metrics) and the connectivity relies on a few important
nodes (as we showed using robustness metrics).

A preliminary version of the data-set and of the code used
for the analysis is already available for public use and the pos-
sible falsification of our results. We are actively documenting
the code used and improving its usability and the access to the
database as full Open Data7.

Many further research topics can be explored on the data-set,
for instance, we plan to study the properties of the most cen-
tral nodes, verify how much they change with time and how
we can use heuristics to avoid the complex algorithms we have
used in our analysis. Central nodes may behave differently (for
instance, their signalling can be more frequent) and the rout-
ing protocol could take advantage of the knowledge of the full
topology, contrarily to what happens now.
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Appendix A. Data Collection Details

The OLSR topology can be biased by the choice of using
multiple devices per super-node. We call a device an embedded
system that includes at least a wireless and a wired interface.
A super-node is composed of multiple devices connected to the
same switch via the Ethernet interface.

Two example configurations of a super-node deserve to be
described, in order to better understand the data collection
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Figure A.16: Two example super-node configurations, each super-node is made
of two devices.

phase. WCNs generally use two different addressing schemes
for the mesh network and for the home LANs inside each user’s
house. In Fig. A.16 we used 10.X.X.X/8 for the mesh network
and the classes 192.168.X.X/24 for the home LANs. In the
simplest case, each wireless and wired interface of a device in a
super-node is assigned an IP address in the class 10.X.X.X, and
wired interfaces also have an IP address in the 192.168.X.X
class. Each device runs its own instance of the OLSR rout-
ing protocol that manages both devices, making it practically
an independent node. The 192.168.X.X addresses are treated
from OLSR as private networks, that is, the OLSR protocol is
not running on those networks, but OLSR generates special sig-
nalling packets to let each subnet reach the others. The wired
interfaces are connected to a switch (normally placed directly
in the rooftop) that is also connected to a device in the home
of the user. This makes it easy to extend a super-node adding
further devices since no change needs to be done on the existent
ones. This configuration is used in node A in Fig. A.16.

Another configuration for super-nodes is to cable all the de-
vices to the same router. The devices are configured as stan-
dard 802.11 APs/clients and do not run OLSR. The traffic
coming from each device is isolated in the router using sep-
arated VLANs terminated on virtual interfaces on the router
which runs OLSR. This entirely masks the super-node structure
from the network. This configuration, at the cost of increased
configuration complexity, has two advantages: i) signalling is
reduced since only the router runs OLSR, and ii) the original
firmware can be left on the devices as long as it supports bridg-
ing and VLAN tagging. This configuration is used in Node B
in Fig. A.16.

From a routing point of view, there is difference in the two
configurations; in the first case, the super-node corresponds to
two different IP addresses in the network, with a wired link con-
necting them (thus, ETX will be fixed to 1). The resulting graph
G(N ,L) includes a clique of nodes with distinct IP addresses
and edge weights constantly set to 1. In the second, each super-
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node corresponds to only one host (with two different IPs).
We decided to merge super-nodes in one single logical node

as this is functional to our analysis and also more representative
of the network itself, for several reasons:

• The devices of a super-node all belong to the same person.
If he is an attacker he will intercept traffic from all of them;

• They are powered via the same source, connected to the
same switch and they share the physical installation, so
that failures due to physical damage, power outage or hu-
man errors are correlated;

• Since the first configuration (Node A in Fig. A.16) of
super-nodes is extremely inefficient, there are ongoing ef-
forts to gradually migrate to the configuration with an ex-
ternal router (Node B in Fig. A.16).

The process of merging super-node’s devices can not be ap-
plied using only data from the OLSRd daemon. Further infor-
mation must be gathered from distinct sources, and this pro-
cess was aided by the participants to the communities. For the
FFGraz network the naming style of each device is a domain-
like convention in the form “phisical-interface.device.node”.
This means that wifi0.device0.node0 and wifi1.device0.node0
are the first and second wireless interfaces of the first device of
the same node. Every 10 minutes FFGraz publishes the topol-
ogy using this naming convention. We are thus able to group
the interfaces and the devices corresponding to the same node.
FFWien instead exposes a JSON interface to the internal node
database. The presence of a centralized node database is com-
mon to many WCNs. It is used to monitor the evolution of
the topology and to publish the network map on the commu-
nity web server. Using the JSON interface we were able to map
each IP address to each node, and compact the devices on the
same node. For the FFWien network the data gathering process
is split in two phases, one is the collection (every 5 minutes) of
the OLSRd topology, and the second, once a day, is the access
to the JSON interface to do node merging. The Ninux network
currently does not expose a JSON interface but we had direct
access to the node database updated every 5 minutes. Directly
from the database we can access the topology, merge the nodes
and collect the ETX values for each link.

Currently, we are not able to access information on the po-
sition of nodes for all the networks. The interested reader can
find maps of the physical topology on the website of the three
networks8.

8See http://map.ninux.org/
https://karte.ffgraz.net/

https://map.funkfeuer.at/wien/
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