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Abstract Streaming applications over Peer-To-Peer (P2P)

systems have gained an enormous popularity. Success al-

ways implies increased concerns about security, protection,

privacy and all the other ‘side’ properties that transform an

experimental application into a service. Research on secu-

rity for P2P streaming started to flourish, but no comprehen-

sive security analysis over the current P2P solutions has yet

been attempted. There are no best practices in system de-

sign, no (widely) accepted attack models, no measurement-

based studies on security threats to P2P streaming, nor even

general surveys investigating specific security aspects for

these systems. This paper addresses this last aspect.

Starting from existing analyses and security models in

the related literature, we give an overview on security and

privacy considerations for P2P streaming systems. Our anal-

ysis emphasizes two major facts: (i) the Byzantine – Altru-

istic – Rational (BAR) model offers stronger security guar-

antees compared to other approaches, at the cost of higher

complexity and overhead; and (ii) the general perception

(not necessarily the truth, but a commonplace belief) that

it is necessary to sacrifice accuracy or performance in order

to tolerate faults or misbehaviors, is not always true.
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1 Overview

Peer-to-peer systems have gained more and more momen-

tum over the last years as a means to access multimedia

contents, albeit initially in form of file downloads. The evo-

lution to streaming and multicast (e.g., TV) was just a con-

sequence. Their power to accommodate large amounts of

users, together with their resilience to churn, reliability, and

low cost are some of the reasons why they are preferred

over dedicated servers or content distribution networks so-

lutions. In spite of these advantages, or maybe because of

them, some P2P features make these systems more difficult

to defend against some classes of attacks.

Security-wise, P2P streaming systems are more challeng-

ing than other P2P applications because they are more vul-

nerable to QoS fluctuations. Live streaming protocols, and

TV in particular, are most sensitive to delay and delay jitter:

it is enough for a host to be prevented from receiving some

packets in time, and the user may grow dissatisfied with the

quality of the delivery and leave the system altogether. If

some other peers are connected to that machine, they will be

damaged as well. From the watcher’s viewpoint, even slight

quality fluctuations, or choppiness, cause the viewing ex-

perience to loose appeal and the user to drop the service

(or switch channels if others offer better quality). Worse,

the quality of the user experience is unrecoverable: if some

packets are lost during live broadcast, they are lost for good

because recovering them afterwards brings no utility to the

user.

Apart from their time-sensitive nature and bandwidth

dependency, P2P streaming are susceptible to manipulation

and threats at the transport and network layers. Clever at-

tacks can compromise selectively the guarantees that a stream-

ing session should provide, rendering some channels unus-

able, or making the broadcast unavailable in particular lo-

cations. Both events can be classified as targeted censorship
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violating the freedom of speech and expression. Analyzing

the threat models in all these cases gives relevant indicators

over possible risks and vulnerabilities in the transmission.

In what follows, we provide a brief security analysis

of P2P live streaming, and provide a classification of both

attack points and solutions to common vulnerabilities. We

provide general considerations and features that novel P2P

streaming proposals should consider in order to minimize

the chances of attack.

The remaining of this paper is organized as follows. Sec-

tion 2 motivates this survey by introducing a few attacks

examples, either directly to P2P streaming applications or

strongly related to them. Section 3 discusses the threats and

security models for P2P streaming applications, with spe-

cific attention to P2P-TV systems. Section 4 describes the

easier, and hence readily realized, attacks in P2P stream-

ing systems. The study continues with discussing security

practices (Sect. 5) particularly for the tree and mesh over-

lays (these latter combined with data-driven dissemination).

We conclude discussing the trade-offs of this type of mech-

anisms, open issues and future work.

2 Examples

Finding real-world examples of security attacks to P2P stream-

ing systems is (unfortunately?) not easy, because these sys-

tems are young and most of all because the organizations

managing them are not so keen in releasing information about

attacks to their systems. In the following we sketch two ex-

amples based on real life events that are clearly related to

P2P streaming and help us introduce the reason why we con-

sider important addressing security issues in P2P streaming

systems and do it before large scale attacks make the head-

lines of non-technical literature.

2.1 Example 1: The reason for polluting

Albeit rarely admitted or clearly proved, it is commonly ac-

cepted that in file-sharing applications content pollution, i.e.,

intentionally change parts of the file to make it useless or of

bad quality, is a day-by-day routine. In [11] and [36] it is

practically given for granted that a P2P streaming system

can undergo pollution attacks.

It is often reported that pollution attacks in file sharing

are due to the fact that the system is devoted to illegally ex-

changing copyrighted material, and it is the copyright owner

who pollutes the system as a last means to defend its rights

when any legal action failed.

If this were the situation, then one may think that in a

system distributing legal content like standard public TV

there is no reason to consider pollution. This position is

however rather naı̈ve.Making some specific content unavail-

able can be a goal for many actors. For instance changing

the advertisements on very popular events can lead to very

remunerative commercial frauds. On a larger scale, selec-

tively changing (or simply removing) parts of some content

may lead to public opinion manipulation that, if done by a

government or similar body can be called censorship, but

if done by private (criminal) organizations raises even more

frightening scenarios.

2.2 Example 2: Skype Outage

In recent years, the problem of facilitating signaling in VoIP

(Voice over IP) networks through a P2P network has been

subject of intense activity in both research [33] and stan-

dardization [17]. While clearly the problem domain is dif-

ferent from video streaming, they share similar security con-

cerns, among which time-sensitiveness is the most impor-

tant.

One of the main attacks that can be played against P2P

VoIP systems is denial of service against the availability of

the signaling system: the attacker may try to block the ability

for a caller to identify the current location for the designated

callee. Furthermore, given that the caller expects to retrieve

this information in reasonable time in order to start the call,

it may be sufficient for the attacker to severely delay the

transmission to the location of the callee.

To achieve this goal, one of the easiest forms of attack is

to try to perturb the routing substrate of the P2P system, nor-

mally based on distributed hash tables like Chord [10] and

Pastry [26]. Possible attacks in these cases include Eclipse,

Sybil and neighbor selection attacks. These problems, casted

in the video streaming domain, will be discussed in Sec-

tion 4.

An example of the kind of problems that users can ex-

pect from VoIP systems, which can be mirrored in the video

streaming domain, is exemplified by the Skype two-day out-

age which occurred on August 2007 [1]. While Skype has

denied that this specific event has been caused by malicious

activity, blaming instead the “Microsoft Patch Tuesday” (with

a large number of machines rebooting at the same time), yet

this is an example of what could happen when nodes in a

P2P streaming service (voice is being streamed here) loose

autonomy (see Sect. 3.2). The loss of autonomy, which lead

to a dependability problem in this case, is due to the dom-

inance of an operating system in correlating nodes. In gen-

eral, nevertheless, the same problem can be due to any other

reasons.
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Active Aspect Influences what Results into

Peer nodes
P2P protocol partitioning, censorship

QoS delays, isolation

Supernodes
P2P protocol partitioning, censorship

QoS delays, isolation

Application code
P2P protocol censorship

data privacy data leaks

Table 1 Common sources of vulnerabilities in P2P streaming. The Ac-

tive Aspect in the first column indicates the class of entities that gen-

erate attacks; the second column refers to the targeted system feature,

while the third column shows a possible result of the vulnerability be-

ing exploited.

3 Security considerations for P2P Streaming

Security design for a P2P system builds on the relevant as-

pects of that system: first, the actors posing the attack and

the assets to be protected are the starting and ending points

of any attack. Studying sources and targets of attacks is usu-

ally done by means of the threat model (Sect. 3.1); second,

any attack means to subvert or damage an existing scheme,

often for the benefit of the attacker; the result is that the sys-

tem will no longer function as designed, hence it will not be

able to fulfill its goals. Knowing what these goals are helps

identify the ultimate result of a security breach. Sections 3.2

and 3.3 overview the possible non-functional goals that a

streaming system aims to. Finally, Sect. 3.4 shows the pos-

sible mechanisms to protect the system assets for achieving

the goals presented before.

3.1 Threat Model

In any security analysis, it is important to consider all pos-

sible generators of attacks (active elements) against possi-

ble targets of attacks (passive). In the first category we find

P2P nodes, supernodes and application code, while in the

second we include the protocol, the overlay, and the data

being transferred. Although the streaming source can also

be a possible target, the usual assumption is that the source

is trusted, since we have not found any studies on source-

level attacks. The application code can be seen as both ac-

tive (when causes data leakages, or jeopardize data privacy)

element, or passive element of attack (when can be directly

manipulated for protocol subversion). An overview of the

threat sources and targets in P2P streaming applications is

given in Tables 1 and 2 and is detailed hereafter.

There are three major elements likely to turn into sources

of attacks in P2P streaming:

Peer nodes: Malicious or malfunctioning nodes can always

alter the protocol behavior. For instance, they may not

reply to requests, or may reply generating wrong mes-

sages. This can result into biasing the neighbor selection

process of another node, thus into network partitioning

Passive Aspect Influenced by Results into

Application code
Code provider censorship

data leaks

P2P protocol
peers censor, partition, pollution

superpeers partitition, DoS

application code data leaks

Overlay routing

data privacy data leaks

QoS delays, DoS

overlay routing partitioning, censorship

Distributed data data integrity partitioning

Table 2 Common attack targets in P2P streaming. The aspect in the

first column indicates the vulnerability, the second column refers to

possible sources of attacks, while the third column shows a possible

result of the vulnerability being exploited.

or even censorship. Censorship has deep consequences:

besides the standard legal aspects, a smaller number of

users in the overlay implies a poorer quality of the diffu-

sion [22]. From the point of view of QoS, peers can also

do delayed forwarding and hence jeopardize once more

live streaming and TV systems.

Supernodes: Supernodes do not always exist in P2P appli-

cations, but it is envisioned that they can greatly bene-

fit applications requiring large bandwidth and low, con-

stant delays. Supernodes bring similar vulnerabilities to

streaming systems as common peer nodes; however, the

emphasis is on their higher responsibility in data diffu-

sion: e.g., if superpeers do not behave fairly and honestly

with all peers, they can bias the service toward preferred

users. As a consequence, partitioning and censorship are

more stringent at the supernode level. Supernodes be-

come even more critical as some projects explore the

possibility that they are controlled by ISPs in an effort

to make P2P overlays and IP networks cooperate [20].

Application Code: Wallach [34] notices that the P2P code

runs with numerous privileges on peer machines: it nor-

mally uses the network connection and the local hard

drive. When unrestricted, local access and external com-

munication may lead to information leaks or malicious

code installed on the local machine that could alter the

overall P2P protocol. The remedy is twofold: sandbox-

ing the P2P application to use just an isolated location

on the local drive, and denying operations that are not

coherent with the purposes of the P2P application. The

application code poses a particular threat to users’ pri-

vacy, because embedded malware could leak sensitive

information to non-authorized recipients.

The passive sources of vulnerability that are usually tar-

gets of attacks are:

Overlay Routing and Maintenance: Overlaymanagement

messages among peers aims at reliability and quality.

Secure routing deals with both maintaining secure rout-

ing tables, and securely transmitting messages [34]. The

data in transit can be sniffed and if the channel is not
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secure, it can even be leaked or modified. The dispatch-

ing of tampered data to fair peers depends on the se-

curity of the overlay and neighborhood tables; not only

routing can undergo malicious delaying, but also parti-

tioning (sending tainted data to the same peers) and/or

censorship (not sending anything to a group of peers).

The P2P protocol: One way or another, the attackers in a

P2P scenario always try to manipulate the protocol to

their own advantage, or to the disadvantage of other peers.

The P2P application protocol is at a higher level than the

overlay routing mechanism, and manipulates streamed

data by correlating a number of aspects: membership

mechanism, data scheduling and transmission, identity

management, overlay mechanisms, reputation, etc.

Distributed Data: Data integrity is essential in streaming

and TV systems, because the purpose of the application

is liveness. If a TV-channel is re-distributed on the P2P

system but part of the news/programs are altered with

some users treated differently from others, this can lead

to partitioning, loss of users, and censorship.

3.2 System-level security goals in P2P streaming

If the threat model identifies the sources of potential jeop-

ardy to the system, the security model and goals identify the

aspects of the system that are jeopardized by the threat. In

Table 3, we split these aspects into system operation, intro-

duced here, and content management, discussed in Sect. 3.3,

concerns.

For what system operation is concerned, we identify the

properties listed in the first row of Table 3 and discussed in

the sequel as those to be granted to streaming systems in the

face of threats and attacks. The system security, in the con-

text of streaming system operation, can be identified with the

capability of the system not to fail. We note that the term fail

assumes a different flavor in streaming systems, specially for

live events, than in other traditional P2P systems. Indeed, if

for instance we consider a file-sharing application, failure

can be identified with the inability to download a file, or at

most with the inability to do that in a given time: it does

not matter whether the system operates continuously or in

bursts, or if the file is downloaded at a regular pace or all

of a sudden right before the deadline. To make another ex-

ample, in telephony applications it is not a security require-

ment that all users can talk at the same time (the probability

of such an event is considered negligible). In a streaming

system, instead, the inability to connect to a stream by any

user is a failure, even more so if this happens for a very pop-

ular, and hence important, stream, that might lead to users

discrimination.

Category System Feature

System operation

Reliability

Availability

Dependability

Node Autonomy

Access Control

Content management

Authenticity

Integrity

Non-repudiation

Confidentiality

Anonymity

Table 3 Desirable security and privacy features for P2P streaming sys-

tems.

We use the terminology for systems failures as defined

by ITU-T in the E.800 series1 and by IFIP WG 10.42.

Reliability: The up-time of the system in steady state is the

reliability of the system, and as such it is normally mod-

eled by the mean time between failures (MTBF). Relia-

bility can be a property of a single device or sub-system,

a global property of the entire system or, as more suit-

able for our purposes, it can refer to the vision of the sys-

tem conditioned to one specific peer or a subset of peers.

A single failure, even if recovered, implies loss of reli-

ability. Let us characterize reliability as ρ = 1−
1

MTBF
,

where MTBF is the number of consecutive requests from

a peer before one fails (hence MTBF ≥ 1). Reliability is a

desirable feature for security, but asking high reliability

to a highly volatile system, like a P2P overlay, which is

designed for resilience rather than resistance is not ap-

propriate, thus the main goal of reaching a certain level

ρ ′ of reliability is ensuring the system high Availability.

Availability: It is the ability of the system to be up and run-

ning. A system can be unreliable, yet highly available,

simply because recovery from failures is faster than the

user/application of the system can detect. In P2P stream-

ing, for instance, churn can be a source of unreliability,

since peers leaving implies that from the point of view

of some other peers, a portion of the system (or a given

request) has failed. However, topology reconfiguration

can be fast enough to avoid the loss of any information

at the application, so that the system remains available

even from the perspective of peers that are affected by

churn. In general terms, we can say that a P2P streaming

system to be secure must be available with high proba-

bility at any time, contrary to other (not all) P2P applica-

tions, most notably file sharing, where the system can be

unavailable for relatively long periods, but still operate

securely in that it yields its services.

Dependability: Even if highly available, a systemmay still

suffer from correlated failures that make it non-depen-

1http://www.itu.int/rec/T-REC-E.800/en
2http://www.dependability.org/wg10.4/
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dable. Dependability is a subtler property of the system:

it reflects the ability of a system to work and provide ser-

vices in critical moments. An example will clarify the

point. Cellular telephone systems are in general reliable

and available, however they are not dependable with re-

spect to emergencies and civil protection: during acci-

dents the cells covering the area of the accident become

congested because people call with higher rate than nor-

mal and resources are locally insufficient; during natural

disasters, besides the above phenomenon, normally the

electricity fails, and the base stations do not have ad-

equate power backup. In the context of P2P streaming

and TV applications, the system may turn to be non-

dependable because simple attacks can ruin specific event

streaming (e.g., popular broadcasts) which causes a higher-

than-average amount of traffic; in these cases, simple

traffic-volume based attacks can jeopardize the most use-

ful (or prized) events3.

Dependability is a security feature more critical for mul-

ticasting and broadcasting systems than for other sys-

tems because of the correlation between the value of the

events and the number of peer/people wanting to receive

them. Moreover, if the streamed event relates to critical

public news, then the failure of the system represent not

only a lack of security, but also a public/social safety

problem.

Node Autonomy: This is a system security goal that is

somewhat specific to P2P systems. Each node is peer

with all the others and its autonomous functioning should

be guaranteed at all times: at any point during service,

each node should be empowered to perform the actions

that it is specified to perform at that step, without the

need of external intervention. This does not mean that

the node is isolated, nor that it cannot interact with other

nodes or with external repositories providing informa-

tion that the node cannot obtain alone or with other peers,

like in the IETF ALTO architecture [27], but that it is not

in the condition of depending on this information for its

operation. Dependencies on external intervention expose

the node to trivial DoS attacks (when the information is

not available, the node cannot work), and many other se-

curity threats. For instance, node autonomy is a require-

ment to prevent censorship attacks, and as discussed in

the second example (Sect. 2.2), the ability of decorrelat-

ing reboots or similar actions is fundamental to avoid

massive failures that lead to information loss.

Access Control: Access control is fundamental to avoid

frauds in commercial services, and fraud avoidance is

3A volume-threat is a subtle form of DoS attack: the attacker does

not need attack directly any peer or the source, it just needs to inject in

the network, which is already loaded because of the very popular live

event streamed, enough dummy traffic to cause a packet loss rate that

the streaming application cannot cope with.

a security goal. Access control can be a conflicting re-

quirement with Node Autonomy. On the one hand, to the

best of our knowledge, there are no known methods for

distributed authentication, so that, for this function, the

node cannot be autonomous. On the other hand, it can

be argued that a commercial system requires a form of

centralized control (by the service provider) and is pro-

vided in exchange of some form of payment (direct or

not). Thus in this case there is a commercial agreement

between the two entities and any form, for instance, of

denied access can be tracked and is not a DoS.

Access control is also a powerful means to reduce the

possibility of security attacks coming from inside the

system, because it prevents identity misrepresentation as

well as, to some extent, collusion and multiple identi-

ties. The real challenge is providing access control while

preserving the users privacy, i.e., implementing a system

that either guarantees against information leakage (e.g.,

what TV channel is downloaded), or enables pseudonym-

based authentication [4,3].

3.3 Data and Content Security goals in P2P streaming

Considering now content management, there are some spe-

cific properties of P2P streaming that are of particular secu-

rity interest:

Authenticity and Integrity: The data transmitted must be

guaranteed and not tampered with, and it must be guar-

anteed that it was emitted by the intended transmission

entity.

Non-repudiation: Refers to the situation when the nodes

that received a certain piece of data cannot deny that they

received it. Non-repudiation is of interest only for video

on demand applications, while for TV-like (broadcast-

ing) it may be a minor feature.

Confidentiality: The content that is transmitted during the

streaming process can only be used or retransmitted to

other nodes involved in the protocol. This property inter-

laces with access control. In fact an access control sys-

tem that prevents unauthorized participation to a stream-

ing, but is not supported by a content management sys-

tem that can prevent recording and later replication of

the content becomes useless. Recent studies on com-

mercial TV streaming solutions have shown that they do

not perform encryption [7], which makes the protocol

lose not only confidentiality but also authenticity and in-

tegrity.

Anonymity: This is one of the most controversial proper-

ties, since in many contexts the capability of a user to

remain anonymous is associated to potentially unlawful

activities. However, specifically in TV systems, the right

of a user to watch a programwithout disclosing his iden-
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tity is key to privacy protection and should be guaranteed

by broadcasting systems. This property should be guar-

anteed also by P2P streaming systems, not only in face

of external observers, but also with respect to the other

users of the same system, and the broadcaster too.

Haridasan and van Renesse argue that not all applica-

tions need anonymity and confidentiality, but the features

that matter most in frequent cases, are authenticity, integrity

and non-repudiation [15]. Still, we have seen that anonymity

becomes a key issue of privacy protection in TV systems.

Non-repudiation, in the same systems, may be of secondary

concern, unless a node can build claims on the fact that some

information has not been delivered. Similarly to Sect 3.1,

these are clear differences of security requirements and other

P2P applications.

3.4 Protection Mechanisms

As we have discussed, in P2P streaming there are two im-

portant values to be protected: i) the data exchanged between

peers, and ii) the hardware and software resources that each

user somehow ‘lends’ to the P2P system.

In streaming systems the data being shared has a limited

validity in time: after the target playout time the data turns

stale. This adds a new dimension to the problem of data pro-

tection: delay makes data useless. As a consequence, band-

width becomes an asset that can be attacked to make data

useless. As P2P systems are decentralized, it is usually easy

for malicious peers to flood the system with junk and fake

data in such a way that they would exhaust the bandwidth of

the system [8].

Access Control: is a prevention mechanism that limits the

reach of unwanted entities (peers) to the data being ex-

changed.Mapping and enforcing the connection between

identities and access rights, access control strongly re-

quires mechanisms for identity and reputation manage-

ment. Some applications (e.g., public TV) require no ac-

cess control for service provision, but others may be lim-

ited to groups of authorized users: membership is con-

trolled, and the system should provide means to protect

membership in face of attacks, both for breaking the con-

trol and for denying service to authorized members.

Auditing: Auditing is a detective means by which viola-

tions of predefined courses of actions can be identified.

Unlike access control, auditing is an ‘after the fact’ mea-

sure and the outcome of its analysis influences future

course of actions. Auditing requires the existence of logs

with recordings of certain activity, the mechanism that is

periodically triggered to write to these logs, and an audi-

tor —the entity verifying the logs. As far as the checking

mechanism is involved, auditing can be continuous —at

Attack Target Attribute

Forgery data confidentiality,integrity

Pollution data confidentiality,integrity

Eclipse overlay,protocol autonomy

Neighbor protocol autonomy

Sybil protocol authentication

DoS peers availability

Omission peers,data dependability

Table 4 Overview of attacks in P2P streaming systems. Attackers can

collude in pollution, membership, neighbor selection, Sybil and DoS

attacks. The source of attacks is usually any peer node. In some cases

– pollution, forgery, neighbor, omission – superpeers can do more dam-

age to the system than average peers.

certain time intervals or on all records— or probabilistic

—at random moments of time or on random recordings.

In P2P systems, audit can function as a means to check

whether a peer node functions according to a predefined

contract or protocol. The idea of distributed audit in the

sense that nodes trade local storage with storage on other

nodes, is hinted in [34]. Of course, in order to perform

it, the auditing method must be secured; this involves

making sure that any nodes cannot influence what is be-

ing written in the logs, nor hide the logs themselves.

Full access to query these logs must be entrusted to the

requesting entity; moreover, the mechanism evaluating

the events logged in the file must not misinterpret or ig-

nore anything that was recorded. A simple way to ensure

that most of these conditions are satisfied, is to impose a

reward/punishment/incentive mechanism that makes the

entities involved in the audit process cheat as little as

possible.

4 Common Attacks in P2P Streaming Systems

The most serious attacks in P2P systems comes from the

inside of the system. This happens because only an internal

node runs the protocols used between hosts, and can thus

exploit them. In the BAR gossip model [21], for instance,

nodes are known once they join the system and moreover,

an unknown node has a very restricted set of actions that

it can perform. Therefore, the security of P2P application

should look to protect internal nodes from other (malicious)

internal nodes.

In what follows we will focus on some possible situa-

tions of vulnerability and describe the favorable conditions

in which they take place. Each of the following attacks can

exacerbated by collusion: one malicious entity compromises

a (potentially large) collection of nodes to conduct corre-

lated attacks onto the whole system. This scenario breaks

the node autonomy requirement stated in Sect. 3.2. As ex-

pected, this is the most dangerous situation since it may be

extremely difficult to track down the attacker if nodes func-
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tion correctly at each step or on short-term, while overall

misbehaving or deviating the protocol on the long run.

Forgery and repudiation attacks: Forgery attacks break the

condition of confidentiality and integrity of data men-

tioned in the previous section as a requirement of P2P

streaming systems. Haridasan and van Renesse call forg-

ery any fabricated or tampered data streamed into the

system [14]. Repudiation attacks are attempts to deny

having received streaming content or to acknowledge but

with false information. Most cryptographic techniques

as message signatures and public key infrastructures can

easily solve the vulnerability, but suffers from the disad-

vantage that the performance cost of signatures or keys

is high.

Pollution attacks: in P2P streaming occur when the attacker

mixes or substitutes junk pieces of data into the P2P

distributed stream. In this way, the quality of the trans-

mission decreases considerably: polluted chunks which

arrive at fair peers degrade the stream quality and can

change its meaning; and these peers will forward the

junk to other peers and the whole effect will exponen-

tially span over the network. Proof that the effects of this

type of attack can be devastating in a streaming scenario

are given by Dhungel et al., along with proposing four

possible defenses: blacklisting, traffic encryption, hash

verification and chunk signing [11].

Membership and Eclipse attacks: With this type of attacks,

the membership protocol or the way nodes are admit-

ted into the overlay are compromised. A special type of

membership attack is the Eclipse attack, where, as no-

ticed in [32], an attacker which controls a portion of the

overlay neighbor scheme, eclipses fair nodes by drop-

ping or re-routing any messages meant for those nodes.

In other words, in Eclipse attacks, the attacker can gain

some control over the routing mechanisms in the P2P

system.

Unstructured overlays are more susceptible to this type

of attacks than the structured overlays; the latter do im-

pose some constraints over the neighbors of one node,

while the former do not. For this reason, the unstructured

overlays use floods of random walks to gain knowledge

of the network topology; the more they use these mech-

anisms, the higher the probability that an attacker will

control more nodes in the system. One possible solution

described in [32] is to use a mechanism that bounds the

in-degree and out-degree of the nodes in the P2P over-

lay. In this way, an attacker is prevented from communi-

cating with more nodes than those to which it normally

should.

Neighbor selection attacks: These attacks refer to the sit-

uations in which an attacker controls the neighbor selec-

tion mechanism of some nodes, and makes them choose

it as information provider. Malicious nodes can thus in-

filtrate and dominate sets of neighbors. The attacker will

influence the way the overlay communicates and the neigh-

bor selection process happens, so that it can control the

traffic and subvert the whole system. These attacks are

referred to as epidemic by [29], as fair nodes will “un-

knowingly reference compromised peers in their neigh-

bor set”. Of course, the problem is even worse if the

membership server is itself attacked in this way. One

idea of solving this problem with Distributed Hash Ta-

bles is to identify the invariants in the placement of peers

in the overlay, and detect attacks in the form of devia-

tions from these invariants. A solution adapted to mesh-

based systems is shown in [29].

Sybil attacks: These attacks happen when the reputation

mechanism established within the P2P system is com-

promised. Specifically, an attacker creates a large num-

ber of entities which bear the same disguised identity in

order to become more powerful. Depending on how the

id-s of nodes and reputation constraints are generated,

the reputation system may be more or less vulnerable to

such attacks. The idea is that once disguised, the attacker

profits from the trust that is given to the real entity it im-

personates. Guarding against such attack may involve a

trusted third entity which certifies that a name or a rep-

utation id is attached to the exact entity it is supposed

to carry it. Therefore, certified node identifiers is one of

the most straightforward techniques to repel masquerad-

ing. In addition to this method, auditing is another way

to prevent the Sybil attack. An interesting solution em-

ploying auditing is provided in [32], where a node pe-

riodically challenges one of its neighbors to provide it

with a list of that node’s inbound contacts; if that list ap-

pears unfair or tampered with, then the requester node

can act upon this discovery.

DoS attacks: Denial of Service can take many forms, from

system partitioning to sending excessive amounts of re-

quests or duplicate packets intended for their peers. The

ability to bring a contribution to the streaming session is

thus compromised, because a fair node would be flooded

with useless messages or too many requests for it to

handle. In this way, the resources of the system are ex-

hausted with a relatively small effort on the attacker side.

When the resource on which the attack focuses is band-

width, the attack has been also termed as request spread-

ing attack [8]. These problems were previously studied

in the case of distributed systems as well as P2P stream-

ing scenarios and there are several approaches in coun-

teracting this type of attacks [9,8,35].

Omission attacks: are at the other extreme than DoS at-

tacks, implying that all the packet of data or just a part

of it is not sent further according to the protocol spec-

ification. Again, just like for the DoS attacks, this be-

havior can compromise the whole P2P system even if
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Fig. 1: Important structural aspects in securing P2P stream-

ing.

a small number of peers collude. As noted by [15], the

problem with this attack is that the guilt of a node cannot

be proved easily.

5 Security practices

In this section we provide a close-up on the existing secu-

rity solutions in P2P streaming. We expose and discuss the

vulnerabilities of each approach and then derive a few pat-

terns and conclusions that would help in protecting against

attacks in P2P streaming systems.

As shown in Fig. 1, there are two building blocks of

P2P systems to be considered: overlay topology and data

dissemination mechanisms. The topology of the overlay de-

fines how to connect each node in the network with the right

neighbors; in other words, in a situation in which nodes are

constantly joining and leaving the system, to find a solution

in which each node sees as its neighbors only the nodes it is

most interested (and is fair) to communicate with. The cri-

teria to choose neighbor range from locality to certain QoS

values.

The topology of the overlay is in tight connection with

the application: the application domain determines the topol-

ogy of the network, while in its turn the overlay topology in-

fluences runtime application aspects that can be either func-

tional or non-functional: searching, routing, performance,

efficiency, robustness [16,5,6]. In complex applications, where

the topology changes dynamically, the mechanisms involved

in the construction of the overlay have increased importance

because they are invoked continuously; consequently, keep-

ing these mechanisms protected against attacks becomes es-

sential in order to maintain their compliance with the proto-

col schemes.

According to several classification studies [38,28,24,22]

that there are two typical overlay topologies in P2P stream-

ing applications:

1. Tree-overlays: in which the overlay is usually built in the

shape of a tree. This means that the way in which overlay

nodes send and receive messages is structured and em-

bedded in the overlay topology: The source is the root of

the tree and leaf nodes receive but not redistribute the

data. Other structured topologies, like multi-trees and

hypercube exist;

2. Mesh-overlays: where the overlay does not have a spe-

cific structure but it is a generic mesh. That is, every peer

has several neighbors, but without a clear parent-child

relationship or any predefined topology. The media is

distributed among different peers and then each of them

transmits the media further.

Apart from the overlay construction, the other defining

aspect of P2P systems is the data dissemination mechanism

among peers. That is, while the overlay deals with connect-

ing a node with the right neighbors, the data dissemination

algorithm is concerned with how to select neighbors to ac-

tually exchange information with. There are two basic ways

of disseminating data in P2P streaming systems [22,31]:

1. The push, or source-driven approach means that a peer

transmits a chunk to its neighbors, assuming they do not

have it yet; the directions in which the data is sent are de-

termined by the parent-child relationship among nodes,

be it a tree or mesh overlays. It is easy to see this way

of performing data dissemination is prone to redundant

pushes and thus to DoS attacks (e.g., flooding neighbors

with data they already have), to neighbor selection and

omission attacks (bias in where to push data);

2. The pull, or receiver-driven approach is an alternative to

the previous scheme, by which a peer uses buffer maps

to create pull schedule with the peers it decides to com-

municate with. A peer requests the information it is miss-

ing. This approach is more robust than the previous, but

vulnerable to collusion: peers that already have data may

not advertise it to others;

The data-driven approach is in practice a pull mecha-

nism. Epidemic algorithms (and gossiping ones in particu-

lar) are examples of this approach. Gossip in P2P is a data

dissemination mechanism that does not employ the support

of the overlay but can manage itself overlay patterns. It is

also useful in data aggregation and resource allocation [19].

The reason for its popularity is that gossiping mechanisms

are simple and more robust than others. Security-wise, we

believe they are interesting to study because they are more

general than the push and pull mechanisms. The biasing

vulnerabilities suffered by the other approaches are easily

solved with gossip, since it is not easily predictable in which

way data flows. In addition, as previously noted [31], gossip-

based mechanisms are less sensitive to peer dynamics, thus

to churn.

For the reasons above, in what follows we will analyze

the two overlay approaches in conjunction with gossiping

protocols from a security standpoint.We will bring into light

what are the vulnerabilities and strengths induced to the sys-

tems that adopt these approaches.
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Problem/attacks Envisaged solutions

Imbalance root vs. leafs

Using multi-trees, gossipBandwidth fluctuation, bottleneck

Protocol deviations on parent node

Identifying malicious nodes

Monitor, acknowledgmentDoS, omission

Membership attacks

Forgery, repudiation Signatures

Sybil attacks Not yet solved

Table 5 Common fairness and security issues in tree-based P2P

streaming systems.

5.1 Tree-based Approaches

Generally, streaming in tree-based overlays imposes that the

source of the media is the root of the tree, and that the rest

of the peers are children of the source and children/parents

among themselves. The path that the data must follow in

this case is fixed: first from the source to the first-order par-

ents, then from those to their children, and so on. A visi-

ble functional problem that occurs with this kind of overlay

structure is simple: the efficiency of the hierarchy is over-

come by the large imbalance between parent nodes and leaf

nodes (parents forward data while leaves do not, so every-

body wants to be a leaf). Historically, the solution to this

issue took the form of multi-tree overlays, as [29,28] notice,

in other words: more trees, more leaves. This approach leads

to distributing the data in multiple distinct trees.

There are other problems related to the topology of this

overlay [38,22], and they are summarized in Table 5. Since

in tree overlays each node receives data from only one source

node, bandwidth fluctuations can be highly damaging, and

paths that are closer to the root are more likely to turn into

bottlenecks. Security-wise, minor protocol deviations of sin-

gle nodes can affect easily entire subtrees. Additionally, when

nodes closer to the root leave the system (e.g., they crash or

are attacked), they leave unserviced a large percentage of the

nodes.

Trying to solve the above problems, Zhou and Liu have

combined the tree overlay with gossip data dissemination

so that the two approaches would compensate each other’s

faults [38]. Because the tree model is brittle but yet time-

efficient, it is used as a second option: by default all data

is transmitted by gossiping, and if a node does not receive

anything for a certain period of time, the tree overlay will

be used to obtain the data from its parent. Security-wise,

because the protection level for a composite system is the

protection level of its weakest link, this solution is prone to

all vulnerabilities of the tree overlay.

Another solution adopted in tree-based overlays is pre-

sented by Shetty et al. in [30]. In tree-shaped overlays, the

streaming quality depends on the cooperation of the non-

leaf nodes (namely the nodes in the overlay tree that are

neither leaves nor the source). The possible attacks that are

considered are thus DoS, omission, forgery and repudiation

attacks. Shetty et al. identify that one of the problems with

the current security solutions in P2P streaming is that they

cannot identify the malicious nodes themselves, just the fact

that there are malicious nodes. This is because in overlay

multicast streaming, if a fair peer receives tampered data, it

cannot determine if its parent is malicious (since its parent

might have taken that data from some other peer).

A signed acknowledgment together with a random mon-

itoring scheme were shown to be a solution to detect the ex-

act attacker peers. The former mechanism is used by peers

to prove their fairness, while the latter helps trusted peers to

monitor in a random fashion some of their peers suspected to

malfunction. The problem with this solution design is that it

relies on one single session trust manager, which imposes a

scalability issue and a single point of failure. The trust man-

ager decides whether a peer is malicious or not, by receiv-

ing ‘complaints’ from peers and employing a localization

scheme. If it cannot detect the exact location of the omis-

sion or forgery attack, the trust manager will decrease the

trust value of both peers (the reporter and the reported). Oth-

erwise, the child and the tree that inherit from the reported

node are moved to another peer-tree.

On the downside, this solution does not handle collu-

sion attacks in the form of Sybil attacks: if a malicious node

assigns itself several identities, then the only way to pre-

vent it from gaining control is by assigning strong identi-

ties from a central identity manager, or conversely, to imple-

ment a punishment scheme, where a malicious node can be

evicted, provided bad service or punished in money. More-

over, having the trust manager as one fixed peer throughout

all sessions is a single point of failure, therefore passing this

responsibility to different nodes with high levels of trust for

each session, should be a straightforward improvement.

A common solution in tree-based approaches is given

by SecureStream [15]. SecureStream is able to repel several

types of attacks because of its multiple intrinsic mechanisms

that help in eliminating most vulnerabilities. For example, in

order to protect itself against membership attacks, Secure-

Stream uses the Fireflies protocol in which members moni-

tor each other in case of failure, by pinging each other. The

pinging protocol is based on a gossiping protocol, where

each node is assigned certain other nodes to monitor, and

there is a limitation on the number of neighbors that a cer-

tain node can accuse of failures (this comes to stop mali-

cious nodes from accusing too many fair ones). Each peer

has a predefined set of neighbors.

To guarantee the integrity of the data being streamed

over the network, SecureStream avoids signing groups of

packets with asymmetric keys, but computes content hashes

that are signed with the sender’s private key. In order to

minimize the number of malicious neighbors, this solution

takes a smart approach: in each round, the source of the
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transmission notifies its neighbors that it has available infor-

mation. This information is valid for an “availability win-

dow”. Each neighbor, in its turn, requests from the source

the information that it misses (this is the “interest window”),

but trying not to overload the source. Whenever they obtain

new information, peers send notifications to their neighbors.

Overall, this method of dissemination is resilient to attacks,

especially omission attacks: if a peer does not reply with

the promised information, then another one is contacted.

It should be noted here that the nodes located close to the

source do not necessarily receive packets faster.

Moreover, there is a limit in the number of requests that

arrive at a peer (this repels the possibility of node flooding).

In order to eliminate free riders, an auditing mechanism en-

sures that all nodes contribute to the protocol at least as spec-

ified by a minimum amount. Auditing is distributed: local

auditors are periodically elected to evaluate the contribution

of each of their neighbors. Punishing nodes that behave ma-

liciously, as well as employing the pull-approach that dis-

ables attackers to gain control deterministically over sets

of nodes, are the salient features that make SecureStream

tolerant to Byzantine attacks. In comparison to the BAR-

Gossip approach described in Sect.5.3, it can be noted that

the source does not need to know all the members of the pro-

tocol: here the membership is dynamic, so scalability is not

bounded.

5.2 Mesh-based Approaches

Mesh-shaped overlays are less structured in comparison to

the tree solutions. A membership server may keep track of

the existing nodes in the system if required, and there is

no fixed flow that data must follow. Recent works see these

meshes as unidirectional, in the sense that nodes have sepa-

rated inbound and outbound links. The number of neighbors

that a node can accept is limited by resources or by the pro-

tocol.

Empirically, a comparison betweenmulti-tree and mesh-

based overlays in streaming scenarios is given in [28,24]

and the conclusion is that mesh approaches are more robust.

The study shows that overlays that are mesh-shaped bear

better performance when the size of the network is large,

the streaming rates are high, and the nodes have high band-

width and low round-trip times. On the downside, they may

introduce a large number of duplicate packets in the net-

work. Multi-trees, in comparison, are more time-efficient in

heterogeneous networks, but on large scales they perform

worse than meshes. Some issues of the mesh-based overlay

are shown in Table 6.

Two classical examples in mesh-based overlay solutions

are Prime [23] and CoolStreaming [37]. In CoolStreaming,

the approach is data-driven: the data availability drives fur-

ther propagation; gossip communication is used to dissemi-

Problem Envisaged solutions

Identifying malicious nodes

Monitor and audit schemesFlooding, omission attacks

Membership attacks

Collusion attacks

Not yet solvedData diffusion problems

Acknowledgment / Repudiation pb.

Table 6 Common security issues in mesh-based P2P streaming sys-

tems, and possible solutions.

nate network membership and content availability. Building

on CoolStreaming, which does not form a typical mesh but

several trees onto an initial mesh, Prime is historically one

of the first mesh streaming systems. In Prime, content deliv-

ery (or swarming) has two phases: push reporting is done by

parents (announcing availability of data) and pull-reporting

by children (retrieving data using some packet scheduling

algorithm). For advertising the new content dedicated links

are in place (diffusion connections) over diffusion trees.

From a security point of view, neither Prime nor Cool-

Streaming protect themselves from effects of several types

of attacks. For example, Prime assumes that peers are all

fair and connect in a random fashion with one another, and

that the mesh formed by peers is directed. Since there is no

mechanism to check whether instead of randomness, some

nodes can connect only to certain other nodes on purpose, so

coalitions (and also network partitioning) can form. Apart

from the simple collusion attack, the integrity of the diffu-

sion connections is not enforced. There is no mechanism in

place to make sure that one node declares its content avail-

ability to all or none or a fraction of its neighbors; there is

no guarantee that the bandwidth, outgoing and ingoing de-

gree of each node are used properly. Even more importantly,

there is the issue of acknowledgement and repudiation: there

is no guarantee that peers eventually receive streamed data.

5.3 Gossiping and Byzantine Faults

Gossip algorithms are mostly used for content dissemination

in dynamic distributed systems. They rely on what is termed

as “probabilistic exchange of information” [19]: nodes use

randomness in determining to/fromwhich neighbor theywould

forward/retrieve data. Gossip protocols in general are robust,

scalable and rapidly spread information, their only fault be-

ing that they might generate more traffic than the nodes can

handle. This traffic quantity, however, is a price that gossip

protocols pay for redundancy. Still, even if dangerous, they

can become a very useful tool for rapid and scalable epi-

demic dissemination when proper attention is given to the

message propagation mechanism.

Based on an analytic model [19], there are three main

features of common to gossip protocols:
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1. Peer selection is about how a peer A selects another peer

B in order to interact with it. This choice must be done

randomly in a typical gossip protocol, but it can be bi-

ased if the scheme is undergoing an attack: peer A might

see that there are three other available peers B, C and D,

but its choice on communicating with B might not be a

random choice. For this reason, securing the gossiping

protocol involves adding a mechanism to enforce that

peer selection is random and cannot be tampered with;

2. Data exchanged is an application-dependent choice be-

longing to each of the two peers involved in the ex-

change. It is not necessary that peers exchange data: they

might as well exchange references to other peers in a bet-

ter ‘position’ to exchange actual data (e.g., more band-

width). From this point of view, it is essential that none

of the two parties cheats. This constraint can be enforced

by checking the validity of the data during the content

exchange, before the communication between the two

peers ends. In addition, the security of the channel es-

tablished between the two peers must be enforced;

3. Data processing refers to how each peer handles the data

it has received. It involves both storing the message for

the next round and passing it to the application. Neither

the former nor the latter problem are treated in this paper.

Generally, gossip protocols are scalable and very reli-

able; by randomly selecting peers, gossiping avoids mes-

sage losses or node failures. Still, as noticed in [13], gossip

schemes cannot deal with situations in which attackers fal-

sify the information being disseminated from one peer to an-

other, because gossip protocols do not verify the data being

exchanged. This subclass of problems falls into the class of

Byzantine faults. For this reason, there are a number of so-

lutions trying to address these issues, and hereafter we will

briefly discuss some of them.

Compared to previous structured overlay approaches, a

more realistic solution (from the point of view of Byzan-

tine faults) to P2P streaming is given by Dolev et al. in S-

Fireflies [12]. The purpose of the P2P overlay network is

double: tolerate Byzantine nodes and self-stabilize (to adapt

dynamically to churn). S-Fireflies builds probabilistic graphs

(random graphs) with nodes of low in- and out-degrees, that

is stable in terms of Byzantine presence. The result of the

algorithm is the enforcement of a ’rigid’ complete graph,

so that nodes get to know all their neighbors (with a high

probability). Onto this robust connection graph, Dolev et al.

establish a monitoring mechanism that uses gossip to report

node failures and propagate transmission rounds. The proto-

col is verifiable at the level of each node, so any peer can ver-

ify that another node communicates with correct neighbors.

Moreover, there is an enforcement mechanism for nodes not

to impersonate other nodes. In terms of the streaming ses-

sion, there is a system-wide process with the purpose of

updating all nodes in the network; even if a quarter of the

whole number of nodes are temporarily faulty, the system is

still able to recover.

The above solution provides some useful mechanisms

for a P2P network to timely adapt to Byzantine faults: the

construction of the random graph coupled with verifiable

adaptiveness. However, although it controls the effect of ma-

licious behavior in its general form, it does not deal with the

causes of this behavior: nodes should be encouraged to par-

ticipate in the game, because the more peers cooperate, the

better the performance of the streaming session.

BAR-Gossip (Byzantine-Altruistic-Rational) [21] is the

next step in making P2P streaming more secure and less

treacherous. This new model increases the safety and live-

ness guarantees offered by Byzantine fault tolerance because

it features an incentive-based mechanism for non-byzantine

peers that may become malicious. This solution leverages

on three different peer behaviors: purely byzantine, altruis-

tic and rational nodes. The modification to the original peer

selection scheme in gossip, is that this process is pseudo-

random and verifiable. The strength of the overall protocol

is due to several reasons:

– it is extremely robust when faced with Byzantine and

selfish nodes,

– it can face collusion attacks,

– it provides stable short-term throughput, while the bulk

of the other approaches target maximizing bandwidth on

the long term,

– it is usable for short-window transmissions/streaming,

– it does not use reputations, so Sybil attacks are already

dealt with.

BAR-Gossip functions in rounds, or transmission ses-

sions; in every round, the source transmits the correct pack-

ets, and then peer nodes propagate these packets simulta-

neously in two schemes: a balanced exchange, and an opti-

mistic push (of non-expired packets) protocol. BAR-Gossip

also details the explicit exchange protocol between nodes,

and takes all actions to balance the amount of information

that is swapped between the two sides (very much like tit-

for-tat). Moreover, the protocol seeks to monitor and re-

ward/punish individual node activity so that there is an over-

all equilibrium between all nodes involved. Some solutions

that this protocol gives to common problems, are:

– Neighbor selection attacks, because selection is verifi-

able. However, the convergence is not as fast as tradi-

tional gossip, because the mechanism of selecting neigh-

bors replaces sheer randomnesswith pseudo-randomness

and verification performed by the selected node onto the

selector.

– Nodes lying about their history, because it is no longer

desirable to lie in the short-term, because it is no longer

in their interest neither to under-report nor to over-report

their packet history;
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– Forgery attacks are repelled because of a clever mecha-

nism by which data is first traded and verified, and then

exchanged. If the data is forged, this would be noticed

before the actual exchange, so the potential receiver would

realize the attack and report it. Again, making sure that

data is not forged prior to the exchange involves more

overhead in the transmission;

– Stability on the short term is also grounded on the no-

tion of Nash equilibria, so that any node would consider

that its peers are following the protocol. This belief is

actually an incentive for nodes, to abide by the protocol;

– Free-riders elimination is achieved by allowing junk up-

dates, to compensate for the free-updates of an altruistic

node.

Nevertheless, BAR-Gossip has its limitations. First if all,

it only supports a static membership system, that is —all

participating nodes must subscribe to the broadcaster before

participating in any round— to this end, the system gains a

centralized identity management scheme with a static list of

node id-s. In the case of large amounts of nodes that come

and leave, this could turn into a scalability problem. In ad-

dition, by using the comments in [2], the question of how

would nodes discover themselves can arise; discovery is ar-

guably the heart of gossip-based protocols, so a discovery

solution should consider the topology of the network, and

should be as decentralized as possible so that nodes can use

it at all times.

Furthermore, it can be noticed that in the case of the op-

timistic push protocol, nodes are likely to waste bandwidth

by sending junk—this again can turn into a problem if band-

width is scarce or the quantity of junk that is being sent is

large. From this points of view, an interesting idea would

be that of Martin in [25], where the efforts are concentrated

toward leveraging on altruistic nodes to carry the burden of

rational nodes. In other words, in the BAR-Gossip solution,

altruistic nodes and rational ones behave in the same way

according to the specification; however, rational nodes may

refuse to participate in some computation if the cost of their

involvement is higher than their utility. In this case, perfor-

mance of the overall system can be improved if altruistic

nodes take upon themselves the work that was refused by the

rational nodes. Of course, burdening altruistic nodes should

be done with a reward, as much as ‘selfishness’ (rational

nodes refusing participation) should be punished.

6 Discussion

There are a number of vulnerabilities that P2P streaming

systems are prone to. When it comes to live streaming, prob-

lems get worse because of the bandwidth demand and time-

liness of this type of systems. Seamless performance and

attack-proof design are probably impossible to achieve at

Tradeoff between . . . . . . and

punishing innocent nodes fairness incentives

neighbor selection dynamic peer membership

bandwidth utilization allowing fake data delivery

timeliness punishment for misbehaving nodes

performance cryptographic schemes used

Table 7 Tradeoffs in BAR-Gossip.

the same time. Evenworse, given the large variety of attacks,

countering all or most of them is even more challenging.

6.1 Tradeoffs: Security vs. Performance

BAR-Gossip is able to overcome a very large number of

different attacks from the list in Section 4, but there are a

number of trade-offs it has introduced to achieve this goal

(see Table 7). The essential idea it applies in order to repel

a large range of attacks is to encourage nodes to behave. If

nodes misbehave, then they are punished; this can be eas-

ily implemented by some form of penalty or by placing the

wrong-doers further away from the source of broadcast, thus

ensuring that their possibility to harm is diminished. How-

ever, it is easy to notice that punishing one nodemay involve

punishing the nodes that the current node is communicating

with; thus, the effect of the punishment is likely to occur to

innocent nodes as well. This is a trade-off in its ownway: the

decision to punish also some nodes that do not misbehave,

in order to ‘set an example’ for other nodes.

Neighbor selection is another trade-off. Instead of allow-

ing a tree-like structure in which nodes know from the be-

ginning who to communicate with, it is wiser, from a secu-

rity point of view, to sacrifice some performance in order

to eliminate vulnerabilities as much as possible. Using the

pseudo-random scheme together with selection verification

is a far safer approach that using a centralized membership

directory, which apart from bearing scalability problems, is

also a single point of failure, not to mention the privacy is-

sues it arises. From this point of view, there is another trade-

off remarked by Jesi in [18]: BAR gossip is able to let neigh-

bors control how random the peer selection process is for

certain nodes, at the cost of ruling out dynamic peer mem-

bership. This is the reason why all peers first have to regis-

ter themselves to the broadcaster, before participating to the

streaming system. Trading in the other direction, a system

can admit dynamic membership, at the cost that nobody can

control how randomly a node selects its neighbors.

Bandwidth utilization is the reason of another compro-

mise. Since there can be nodes that offer packets (data) at

a lower cost than any other nodes, this would imply that all

requesters would crowd to use these free suppliers [7]; bal-

ance is brought into this scene by introducing the possibility

that requester nodes receive junk if they turn into a burden

for the altruistic ones. In this case however, bandwidth is
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wasted with the sole purpose of ‘teaching a lesson’ to the

misbehaving nodes.

Timeliness of transmission is very seldom compromised

in P2P streaming solutions. This is straightforward for the

simple reason that users hate choppiness or low quality, and

as long as they encounter any of them, they leave the system.

Because this is not in the system’s best interest —the more

users, the higher the combined bandwidth— then timeliness

is not a parameter to be touched. However, if nodes misbe-

have, punishment can take the form of placing these nodes

farther from the source (if applicable), with the clear effect

of obtaining packets which are closer to expiry.

Furthermore, protection mechanisms on the transmitted

data ensure its integrity, confidentiality and fair-use. Overall,

these mechanisms, ranging from signing, to briefcase ne-

gotiation and eventually briefcase exchange, function in the

detriment of performance. Each node consumes bandwidth

and processor cycles for the system’s best interest, even if it

is not always in its own interest. Of course, nodes should not

be allowed to act by themselves, and as long as the risks that

they encounter are the same for all other nodes, the same

measures should be taken for them all. Needless to mention,

countering all forms of ‘anarchy’ ensures the well-being of

the entire system; thus an incentive/punishment technique

needs to be in place to protect the streaming process.

6.2 Further Work

Currently, collusion-based attacks remain one of the most

problematic types of attacks in P2P streaming systems. Col-

lusion do not necessarily mean the protocol is not respected,

but it can also refer to a slight deviation from the protocol,

which is hard to locate and cure. In BAR-Gossip, for in-

stance, collusion may occur to rational nodes: a group of

nodes that are not satisfied with the previous exchanges,

group together in order to maximize collective utility. Their

uncooperative behavior toward the rest of the network can

manifest in a slower propagation of messages in the exterior

of their group, compared to the one within the group. Again,

this does not disrupt the overall protocol, it just decreases its

effectiveness and jeopardize nodes equity.

More work is needed as to analyze the utility of nodes

to deviate from the protocol; finding a bound for this utility,

correlated with the application, would be useful in finding

quantitative incentives for not deviating from the protocol.

Moreover, churn in streaming systems remains another open

problem, for which one possible solution can be that of self-

adaptive networks, as described in 5.3.

7 Conclusions

There are two approaches to securing a peer-to-peer system:

on the one hand, access control and identity management

mechanisms can help to ensure that no malicious peers are

allowed to join the system. This approach relies on the as-

sumption that malicious behavior can be detected before-

hand: peers refusing to comply with the rules of the proto-

col must not be accepted to join the system. On the other

hand, peers can make promises they do not maintain after-

wards. They can agree to be fair but eventually collude and

unbalance the streaming process to their own advantage. In

this second case, an audit-like mechanism can compensate

the scheme. Observing what happens as the protocol is run-

ning can help an administrator determine if there are any

system weak points that are being exploited. From this point

of view, we think that a methodology is needed to detect that

a P2P streaming system is under attack, and a study on what

are the possible ways to compensate the damage.

In streaming (as in any other) systems, attacks occur be-

cause there is a vulnerability to be exploited. Once an at-

tack happens, it needs to be confined to an area of the P2P

network as small as possible. Once the attacker cannot eas-

ily gain control over a bigger portion of the system, some

mechanisms are needed to detect the target and source of

the attack. It is not always easy to detect who the mali-

cious nodes are (they are always from within the network,

assuming that no other hosts can interfere with the protocol).

There are some techniques that can be used for this purpose:

one of them requires a trust manager [30], with the limita-

tion that the machine needs to be replaced periodically, and

should not be central to the whole network (since we want

to eliminate single points of failures). A complementary ap-

proach is to use the mechanism of incentives and punish-

ments, where nodes are stimulated to stick to the protocol;

if they do not comply, then a distributed monitoring mech-

anism (performed via the malicious neighbors of a node)

should help in enforcing a punishment onto the bad per-

formers. This incentive and punishment approach is so far

the only distributed mechanism able to offer guarantees that

on the long run, peer nodes will comply with the rules of the

system.

As discussed in the paper, tree-based streaming in P2P

networks are not only vulnerable to protocol failure, but are

also far faster contaminated by an attacker if the hierarchy of

nodes is fixed. In the eventuality no other constraints are put

onto the degree of each node (either inbound or outbound),

then the structure is vulnerable and cannot contain most at-

tacks. This happens because in a tree, if a node is contami-

nated, then its children will be too. In a mesh, on the other

hand, the infection spreads in a one-by-one fashion rather

than in a one-to-many fashion.
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Compared to tree-based streaming, mesh and gossip ap-

proaches are more robust, scalable and Byzantine-tolerant.

The largest amount of recent works concentrate on either

of these two approaches, and attach a wide variety of ad-

ditional mechanisms in order to counteract as many attack

types as possible. The overall trend is to delegate manymon-

itoring and security functions to each peer instead of keep-

ing separate entities exclusively for these tasks. Membership

and neighbor selection mechanisms are driving the flow of

any different protocol, while tune-ups mostly try to leverage

churn and node coalitions.
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