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Abstract. Unstructured, chunk-based P2P streaming (TV and Video)
systems are becoming popular and are subject of intense research. Chunk
and peer selection strategies (or scheduling) are among the main driver of
performance. This work presents the formal proof that there exist a dis-
tributed scheduling strategy which is able to distribute every chunk to all
N peers in exactly �log2(N)�+1 steps. Since this is the minimum number
of steps needed to distribute a chunk, the proposed strategy is optimal.
Such a strategy is implementable and an entire class of deadline-based
schedulers realize it. We show that at least one of the deadline-based
schedulers is resilient to the reduction of the neighborhood size down to
values as small as log2(N). Selected simulation results highlighting the
properties of the algorithms in realistic scenarios complete the paper.
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1 Introduction

P2P streaming and in particular P2P support for IP-TV are becoming not only
hot research topics, but also available systems and services like [1,2,3,4,5].

Fundamental to support live streaming is the guarantee of a low distribu-
tion delay of the information to all peers. This is strictly related to the overlay
characteristics and the scheduling that distribute chunks to peers.

The community has been divided on whether structured systems, i.e., an over-
lay with known and controlled topological properties like a tree or a hypercube,
or unstructured systems based on general meshes are better for this scope. The
advantage of structured systems lies in the possibility of finding deterministic
scheduling that achieve optimal performance, but they are normally fragile in
face of churn (coming and leaving of nodes), require signaling for the overlay
maintenance, and can be complex to manage. Unstructured systems, instead,
are robust and easy to manage. Overlay maintenance only requires connectivity:
each node autonomously search and contact its own neighbors. Their disadvan-
tage has been so far the impossibility of finding a distributed scheduling algorithm
that is optimal and robust under normal operating conditions.
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This paper tackles this problem, demonstrating the existence of an entire class
of optimal schedulers under the assumption that the overlay is fully connected,
and showing that at least one of these schedulers is robust against the reduction
of the neighborhood down to log2(N), where N is the number of peers.

2 Problem Statement

We study the scheduling (chunk and peer selection) for dissemination at each
peer in non structured overlay networks. It is well known that the lower bound
on the dissemination delay of any piece of information, given that nodes have
exactly the bandwidth necessary for the streaming itself, is δlb = (�log2(N)�+1)T
where T is the transmission time1. It is also known [1] that centralized schedulers
can distribute every chunk of a stream in exactly δlb. Also, in [6] it was proved
that a bound holds for several distributed schedulers if N → ∞ and Mc → ∞
(Mc is the number of chunks). However, when real-time distribution systems are
considered such an asymptotic bound is not equivalent to δlb.

This paper focuses on formally proving the existence of a distributed opti-
mal algorithm, and in finding robust, feasible schedulers that with restricted
neighborhoods perform within a reasonable bound of the optimal one. This is
the starting point (a reference optimum) for further research on heterogeneous
systems, on the interaction of the overlay with the underlying IP network, and
on all those ‘impairments’ that forbid finding closed-form formal solutions to
problems in real networking scenarios.

2.1 System Description

We consider an overlay of peers connected with a general mesh topology. The
total number of peers is N . Each peer is connected to NN other peers2 which
constitute its neighborhood. A special case is NN = N − 1, which define a fully
connected mesh. We consider the presence of one more “special peer” that is the
source of the video. The source never receives chunks, so its links are logically
unidirectional and it is not part of any neighborhood, i.e., its unidirectional links
are additional to the others. Fig. 1 reports two sample topologies.

The source distributes a (possibly live) video or TV program. The video is
divided in Mc chunks of equal duration emitted periodically. All peers have unit
bandwidth (i.e., they can transmit a chunk in exactly the inter-chunk generation
time) on the uplink and no limitations on the downlink. We do not consider churn
and we focus, as main performance parameter, on the diffusion delay of chunks,
which is the delay with which chunks are received by all peers. Formally, if ri is
the emission time of chunk Ci, then its diffusion delay is fi = t − ri such that

1 The bound comes from the fact that each node can transmit the information only after
receiving it, and the number of nodes owning the chunk at most doubles every T .

2 For the sake of simplicity we restrict discussion to n-regular topologies: random
graphs with symmetric connectivity and n links per node.
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(A) (B)

Fig. 1. (A) – General mesh topology with N = 8 and NN = 3; the shaded (pink) area
is the neighborhood of the black node; the source is the checkered (yellow) node;
(B) – Full mesh with N = 4

all N peers have received Ci. Each peer has a perfect knowledge of the status of
its neighbors.

The assumptions above means that: i) no global ordering of peers is required;
ii) the system is not structured; iii) schedulers’ decisions are independent one
another; vi) peers know exactly the subset of chunks already received or being
received by all neighbors; and v) signaling delay is negligible.

The first scheduling decision is whether a peer pushes information to other
peers or if it pulls it from other peers . . . or a mix of the two policies. Sometimes in
the literature it is stated that pushing information is a behavior typical of struc-
tured systems, and pull methods are more adapt for non-structured overlays.
Recent papers like [6,7] instead use push schedulers on non-structured meshes.
Indeed, the choice of whether it is better to push or pull information is not re-
lated to the structure (or the lack of it) of the system, but to the bandwidth
bottleneck, which can create conflicts in scheduling decisions.

Push-based systems are suitable for systems where the bottleneck is the up-
link, because this guarantees a priori that only one chunk will be scheduled
for transmission on the uplink, and that scheduling conflicts arising from the
distributed nature of the scheduling will insist on the downlink of other peers.

If the situation were reversed (uncommon in networks dominated by ADSL
access, but technically possible), then pull-based schedulers would solve a pri-
ori the conflict on the downlink, and more bandwidth-endowed uplinks would
accommodate scheduling conflicts. Interestingly, a scenario with symmetric up-
and downlink capacities does not offer an easy logical choice on whether pushing
or pulling information is the best choice.

We consider push-based schedulers, but we claim that reversing the bottleneck
hypothesis, pull-based schedulers which are dual to those we prove optimal in
the sequel can be easily derived.

2.2 Formal Notation and Definitions

A system is composed by a set S = {P1, . . . PN} of N peers Pi, plus a special
node called source. Each peer Pi receives chunks Cj from other peers, and send
them out to other peers at a rate s(Pi). The source sends chunks with rate
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Table 1. Definitions and symbols used in the paper

Symbol Definition

S The set of all the peers
N The number of peers in the system
Mc The total number of chunks
Pi The ith peer

Ch The hth chunk
rh The time when the source generates Ch

NN The neighbourhood size
fh The diffusion delay of chunk Ch (the time needed by Ch to reach

all the peers)
C(Pi, t) The set of chunks owned by peer Pi at time t
C′(Pi, t) The set of chunks owned by Pi at time t which are needed by some

of Pi’s neighbours
Ni The neighborhood of peer Pi

s(Pi) The upload bandwidth of peer Pi

s(source). The set of chunks already received by Pi at time t is indicated as
C(Pi, t).

The source, not included in S, generates chunks in order, at a fixed rate λ
(Cj is generated by the source at time rj = 1

λ j). We normalize the system w.r.t.
λ, so that rj = j. Also, we set ∀i, s(Pi) = s(source) = λ = 1, which is the limit
case to sustain streaming.

If Dj(t− rj) is the set of nodes owning chunk Cj at time t, the worst case dif-
fusion delay fj of chunk Cj is defined as the time needed by Cj to be distributed
to every peer: fj = min{δ : Dj(δ) = S}. According to this definition, a generic
peer Pi will receive chunk Cj at time t with rj +1 ≤ t ≤ rj + fj. Considering an
unstructured overlay t will be randomly distributed inside such interval. Hence,
in an unstructured system Pi is guaranteed to receive Cj at most at time rj +fj .
To correctly reproduce the whole media stream, a peer must buffer chunks for
a time of at least F = max1≤j≤Mc (fj) before starting to play. For this reason,
the worst case diffusion delay F is a fundamental performance metric for P2P
streaming systems, and this paper will focus on it.

When ∀i, s(Pi) = λ = 1, at time t the source sends a chunk Cj (with rj = t)
to a peer and every peer Pi sends a chunk Ch ∈ C(Pi, t) to a peer Pk. All these
chunks will be received at time t + 1.

As discussed earlier, the minimum possible diffusion delay fj for chunk Cj is
�log2(N)�+1. Chunk diffusion is said to be optimal if ∀j, fj = �log2(N)�+1 = F .

The most important symbols used in this paper are recalled in Table 1.

3 Scheduling Peers and Chunks

In a push-based P2P system, when a peer Pi sends a chunk, it is responsible for
selecting the chunk to be sent and the destination peer. The chunk Cj to be sent
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is selected by a chunk scheduler, and the destination peer Pk is selected by a
peer scheduler. This paper focuses on algorithms which first select the chunk Cj ,
and then select a target peer Pk which needs Cj , but the definition of optimality
presented in this paper is valid for any chunk-based P2P streaming system.

Some well known chunk scheduling algorithms are Latest Blind Chunk, Latest
Useful Chunk, and Random Chunk (again, blind or useful). The Latest Blind
Chunk algorithm schedules at time t the latest chunk: Cj ∈ C(Pi, t) : ∀Ch ∈
C(Pi, t), rj ≥ rh (Cj is scheduled even if all the other peers already have it). The
Latest Useful Chunk (LUc) algorithm selects a chunk that is needed by at least
one peer: Cj ∈ C′(Pi, t) : ∀Ch ∈ C′(Pi, t), rj ≥ rh where C′(Pi, t) is a subset of
C(Pi, t) containing only chunks that have not already been received (or are not
currently being received) by some other peers. The Random Chunk algorithms
select a random chunk in C(Pi, t) (Random Blind Chunk) or in C′(Pi, t) (Random
Useful Chunk – RUc).

Once the chunk Cj to be sent has been selected, the peer scheduling algorithms
selects a peer Pk which needs Cj . The most commonly used peer scheduling
algorithm is Random Useful Peer, which randomly selects a peer which needs
Cj . In theory, the chunk scheduling algorithm can select Pk ∈ S, but in practice
peer Pi will only know a subset of all the other peers, and will select Pk from a
subset of S called neighborhood. The neighborhood of Pi is indicated as Ni. The
case in which ∀i,Ni = S − Pi is special, and corresponds to a fully connected
graph.

3.1 Optimal Peer Scheduling

Random peer selection prevents achieving optimality, because the selected peer
might be unable to further distribute the chunk. The rationale behind optimal
peer selection should be the following: the selected destination peer should be
able to immediately take on the role of redistributing the chunk.

We define the “Earliest-Latest” peer scheduler (ELp) as follows: ELp selects
as target a peer Pl that needs Ch and owns the latest chunk Ck with the earliest
generation time rk:

Ch /∈ C(Pl, t) ∧ ∀Pj ∈ Nl, L(Pl, t) ≤ L(Pj , t) (1)

where L(Pi, t) = maxk{rk : Ck ∈ C(Pi, t)} is the latest chunk owned by or in
arrival to Pi at time t. If at time t Pi has not received any chunk yet, L(Pi, t) = 0.
If more peers exist that satisfy (1) one is chosen at random.

3.2 Optimal Chunk Scheduling

We show in Theorems 1 and 2 that a LUc/ELp scheduler is optimal in the
full mesh case; however, LUc/ELp provides large worst-case diffusion delays
when the neighbourhood size is reduced (as will be shown in Section 5). Such a
bad behaviour is common to all the LUc schedulers, and is caused by the fact
that such schedulers always select the latest useful chunk. Hence, if for some
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reason (such as a restricted neighbourhood size or a limited knowledge of the
neighbourhood) a chunk Ck with rk > rh arrives to a peer before Ch is completely
diffused, then the peer is not able to diffuse Ch anymore and its diffusion delay is
increased by a large amount. In other words, every time that limited knowledge
of the neighborhood makes a later chunk arrive to a peer before an earlier one,
the diffusion of this latter might be stopped.

For this reason, a new scheduling algorithm has been developed to be equiva-
lent to LUc/ELp in the full mesh case, and to perform reasonably well when the
graph is not fully connected. The new algorithm is based on a deadline-based
chunk scheduling algorithm, named Dl. The Dl scheduling algorithm works based
on scheduling deadlines dk associated to every chunk instance. The scheduling
deadline is initialized to dk = rk + 2 when the source sends Ck at time rk.
The chunk scheduler then works by selecting the chunk Ck with the minimum
scheduling deadline:

Ck : ∀Ch ∈ C′(Pi, t), dk ≤ dh; (2)

Before sending Ck its scheduling deadline is postponed by 2 time units: dk =
dk + 2 (both Pi and the destination peer will see Ck with its new scheduling
deadline, while chunk instances present in other peers are obviously not affected).

The scheduling strategy based on selecting the chunk with a minimum dead-
line is known in literature as Earliest Deadline First (EDF), and is mentioned
as “Deadline Driven Scheduling” in a seminal paper by Liu and Layland [8], but
to the best of our knowledge, it has never been applied with dynamic deadlines
in distributed systems.

Observation 1. The scheduling deadline dk of a chunk instance Ck at peer Pi

is equal to rk + 2d, where d is the number of times that Ck has been selected by
the Dl schedulers along the path taken by the chunk till Pi.

4 Analysis with Full Meshes

In this section, some important properties of the LUc/ELp and Dl/ELp schedul-
ing algorithms are proved for the case of a fully connected overlay. In Theorems 1
and 2, it is proved that LUc/ELp achieves optimality, while in Theorem 3 the
optimality of Dl/ELp is shown.

Lemma 1. When using ELp, ∀i, t ≤ �log2(N + 1)� ⇒ ||C(Pi, t)|| ≤ 1.

Proof. During an initial transient, at time t the system contains 2t − 1 chunk
instances (because at every time instant the source emits a new chunk and all
the peers having at least one chunk send a chunk); hence, there are N − (2t − 1)
peers having no chunks. By definition, the ELp scheduler selects such peers as
targets, hence a peer Pi can have more than 1 chunk only if 2t − 1 > N ⇒ 2t >
N + 1 ⇒ t > log2(N + 1).

Lemma 2. If ∀i, s(Pi) = λ = 1 ∧ Ni = S − Pi, if a LUc/ELp scheduling algo-
rithm is used, then

∀δ, 0 < δ ≤ �log2(N)� ⇒ ||Lj(δ)|| = 2δ−1
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where Lj(δ) = {Pi : maxk{rk : Ck ∈ C(Pi, rj + δ)} = rj} is the set of peers
having Cj as their latest chunk at time rj + δ.

Proof. The lemma is proved by induction on δ = t − rj , and by considering the
latest chunk owned by the peers at time t = rj + δ, so that S is partitioned into
three subsets:

– X (δ) =
⋃ {Lj(i) : i > δ} is the set of peers with latest chunk later than Cj ;

– Y(δ) = Lj(δ) is the set of peers having Cj as their latest chunk;
– Z(δ) =

⋃ {Lj(i) : i < δ} the set of peers with latest chunk earlier than Cj .

The above is a partitioning into disjoint subsets, therefore ||X (δ)|| + ||Y(δ)|| +
||Z(δ)|| = ||S|| = N . The lemma can be now proved by induction on δ.

Induction base: After chunk Cj is generated by the source at time rj , it is sent
out to a peer Pi, which will receive it at time t = rj + 1 ⇒ δ = 1. Hence,

Dj(1) = {Pi} ⇒ ||Dj(1)|| = 1

As Cj is the newest chunk in the system, X (δ) is empty and Cj becomes the
latest chunk on Pi:

∀Ck ∈ C(Pi, rj + 1), rj > rk

Thus, δ = 1 ⇒ ||Lj(δ)|| = ||Dj(δ)|| = 1 = 2δ−1, ||X (δ)|| = 0 = 2δ−1 − 1. Also
note that ||Z(δ)|| = N − 1 > ||X (δ)|| + ||Y(δ)||.
Inductive step: First of all, it is easy to notice that ||X (δ − 1)|| ≤ 2δ−2 − 1:
in fact, at every time unit a new chunk Ck : rk > rj is generated, and all the
peers Pi ∈ X (k − 1) can send their latest chunk to another peer. As a result,
||X (δ−1)|| will be at most equal to 2||X (δ−2)||+1. But ||X (δ−2)|| ≤ 2δ−3 −1
(by induction), so

||X (δ − 1)|| ≤ 2(2δ−3 − 1) + 1 = 2δ−2 − 1

Now, if δ ≤ �log2(N)�, then

δ ≤ �log2(N)� ⇒ 2δ ≤ N ⇒ 2(2δ−2 + 2δ−2) ≤ N

and since ||Lj(δ − 1)|| = 2δ−2, ||X (δ − 1)|| ≤ 2δ−2 − 1 and ||Z(δ − 1)|| =
N − ||X (δ − 1)|| − ||Y(δ − 1)||, the above equation can be rewritten as

2(||X (δ−1)||+1+ ||Y(δ−1)||) ≤ N ⇒ ||X (δ−1)||+ ||Y(δ−1)|| ≤ ||Z(δ−1)||−2

As a result, at δ − 1, ||Z(δ − 1)|| is more than half of N , therefore there
are enough peers with latest chunk older than Cj to receive chunks from both
X (δ − 1) and Y(δ − 1), so ||Lj(δ)|| = ||Dj(δ)|| = 2δ−1, hence the claim.

Theorem 1. If N = 2i, algorithm LUc/ELp is optimal.
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Proof. By definition, an algorithm is optimal iff ∀j, fj = �log2(N)� + 1. In this
case, this means ∀j, fj = i + 1. By Lemma 2,

∀j, δ ≤ �log2(N)� ⇒ ||Lj(δ)|| = 2δ−1

hence, ∀j, ||Lj(i)|| = 2i−1. As a result, ||Dj(i + 1)|| = 2||Lj(i)|| = 2i = N , and
fj = i + 1.

Theorem 2. Algorithm LUc/ELp is optimal also if N �= 2i.

Proof. If N = 2i + n, with n < 2i, by Lemma 2 it comes ∀j, ||Lj(i)|| = 2i−1.
Hence, for δ = i chunk Cj is sent 2i−1 times and chunks with rk > rj are sent
2i−1−1 times. As a result, ||Dj(i+1)|| = 2i, ||X (i+1)|| = 2i−1, ||Z(i+1)|| = 0,
and ||Lj(i + 1)|| < ||Dj(i + 1)||. To compute the exact value of ||Lj(i + 1)||, let
x be the number of chunks sent by peers in X (i) to peers in Z(i) and let y be
the number of chunks sent by peers in Y(i) to peers in Z(i). According to the
peer scheduling rules, x + y = ||Z(i)|| (because chunks are sent to peers having
the earliest latest chunk). Moreover, ||Lj(i + 1)|| = y + ||Lj(i)|| − (||X (i)|| − x).
Hence,

||Lj(i + 1)|| = ||Z(i)|| − x + 2i−1 − (2i−1 − 1 − x) =

= (N −2i−1− (2i−1 −1))−x+2i−1 −2i−1 +1+x = N −2i +1+1 = N −2i +2

Finally,

||Dj(i + 2)|| = min{N, ||Dj(i + 1)|| + ||Lj(i + 1)|| = 2i + N − 2i + 2} = N

Hence, fj = i + 2 = �log2(N)� + 1.

Observation 2. If an optimal chunk scheduling is used, all the copies of every
chunk Ck are forwarded from time rk to time rk + fk − 2.

Based on the optimality of LUc/ELp, it is now possible to prove that Dl/ELp
is an optimal algorithm too. This is done by showing that on a full mesh it
generates the same schedule as LUc/ELp.

Theorem 3. If ∀i, s(Pi) = λ = 1, ∀i,Ni = S − Pi, then the chunk distribution
produced by Dl/ELp is identical to the chunk distribution produced by LUc/ELp.

Proof. By contradiction: assume that at any time t0 the chunk distribution pro-
duced by Dl/ELp starts to differ from the one produced by LUc/ELp, i.e., assume
that Dl at peer Pi at time t0 selects chunk Cj while LUc would select chunk Ck

(so, rk > rj). However, it will be shown that choosing Cj with Dl implies rj ≥ rk

contradicting the hypothesis rk > rj .
If t0 < �log2(N + 1)�, then Lemma1 guarantees that all chunk schedulers are

identical under ELp peer scheduling.
If t0 ≥ �log2(N +1)�, we have from the hypotheses that ∀t < t0 the schedules

produced by Dl/ELp and LUc/ELp are identical. By definition at time t0 in Pi

LUc/ELp choses

Ck ∈ C′(Pi, t0) : ∀Ch ∈ C′(Pi, t0)rk ≥ rh.
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Since the source only produces a single chunk at every time unit, rk and rh cannot
have the same value, hence rk > rh. To obtain a different schedule Dl/ELp must
choose Cj �= Ck.

Since for t < t0 Dl/ELp produced the same schedule as LUc/ELp, Cj and Ck

have been transmitted t0− rj and t0− rk times respectively (see Observation 2);
hence, di = ri + 2(t0 − ri) for both Cj and Ck.

Since Dl/ELp chooses Cj ∈ C′(Pi, t0) : ∀Ch ∈ C′(Pi, t0)dj ≤ dh we have
dj ≤ dk ⇒ rj + 2(t0 − rj) ≤ rk + 2(t0 − rk) ⇒ −rj ≤ −rk ⇒ rj ≥ rk which
contradicts the hypothesis rk > rj .

Observation 3. Note that the Dl scheduler postpones the scheduling deadline
by two time units per transmission as dk = dk + 2. If a generic constant q was
used instead of 2 and the scheduling deadline was postponed as dk = dk + q, then
the last equation in the proof of Theorem 3 would have become

rj + q(t0 − rj) ≤ rk + q(t0 − rk) ⇒ (q − 1)rj ≥ (q − 1)rk

which contradicts rk > rj if q > 1. Hence, if a generic constant q > 1 is used to
postpone the scheduling deadline, then Dl/ELp is still equivalent to LUc/ELp.
In this sense, Dl can be seen as a whole class of deadline-based algorithms.

5 Neighborhood Restriction and Selected Results

Although both LUc/ELp and Dl/ELp have been proved to provide optimal per-
formance in the case of a fully connected graph their performance in more real-
istic situations is still unclear. Besides these two algorithms we consider various
combinations with LUc, RUc and RUp algorithms for comparison.

5.1 Simulating P2P Streaming and Measuring Performance

The behavior of the scheduling algorithms introduced in Section 3 is analyzed
using the SSSim simulator [9], by setting up an overlay of N peers with unit
upload and infinite download bandwidth. The source distributes Mc chunks.

As explained in Section 2 the performance metric considered in this paper
is the worst case diffusion time F , and (as stated in Section 3), a scheduling
algorithm is optimal iff F = �log2(N)� + 1.

First of all, the algorithms have been simulated on a fully connected graph, as
shown in Figure 2. In accordance with Theorems 2 and 3, LUc/ELp and Dl/ELp
achieve optimal performance, outperforming the other algorithms (in particular,
RUc/ELp achieves a value of fi near the double of the optimal, and all the other
algorithms achieved even worse performance).

5.2 Restricting the Overlay

In realistic situations a restricted overlay is used instead of a fully connected
graph. Such a restricted overlay is modeled assuming bidirectional relations and
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Fig. 2. Full mesh overlay; maximum diffusion delay as a function of N; 500 chunks
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Fig. 3. Worst case chunk diffusion delay of algorithms, with 1000 peers, as a function
of: (left) neighborhood size, with 2000 chunks; (right) number of chunks, with NN = 11

a pre-defined number (NN = ||Ni||) of neighbor nodes. The resulting graph is
a random NN -regular graph. In the following simulations, the algorithms are
evaluated on 10 instances of the random NN -regular graph. We have verified
that confidence intervals were always within 5% of the reported mean values
with a confidence level of 90%.

The left hand side of Figure 3 shows performance of different streaming algo-
rithms as a function of NN and shows how the LUc/ELp algorithm (which is opti-
mal on a full mesh) is highly sensitive to neighborhood restrictions and performs
badly when NN < N − 1. Dl/ELp, on the other hand, works better than all the
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Fig. 4. Chunk loss and F as a function of the neighborhood size (N = 10000, D = 32)

other algorithms and is able to achieve values of F near the optimum (which in this
case is 11). The right side of Figure 3 shows how the number of chunks affects F
for NN = 11 (note that log2(N) = 9.9658). Dl/ELp keeps good performance even
for long streams, while for several other algorithms fi increases with i (the perfor-
mance of the algorithm depends on the stream length), hence these distribution
mechanism results to be unstable in a streaming context.

5.3 Limiting the Chunk Buffer Size

The only solution to the instability problem is to define a playout delay D, and to
discard chunks Cj at time rj +D. This causes some chunk loss (for chunks Cj that
would have fi > D), but can make the distribution system stable again. Moreover,
the playout delay D can be used to dimension the chunk buffers in the peers (in
particular, each peer needs to buffer at most D chunks)3.

Since some chunks can be lost, the performance should be evaluated based on
both chunk loss ratio and the maximum delay. Figure 4 plots the chunk loss ra-
tio (left) for the various algorithms as a function of the neighborhood size with
D = 32. Note that for NN > 14 the chunk loss ratio for Dl/ELp is 0, showing
that it is possible to dimension the chunk buffer size so that it does not affect the
algorithm’s performance (to the authors’ best knowledge, this is not possible for
the other algorithms). The worst case diffusion time F (right) fastly approaches
the optimum with Dl/ELp, while it is obviously 32 for all other algorithms.

3 Implementing the chunks buffer size in the simulator can enable optimizations which
allow to simulate larger task sets, hence we move to N = 10000.
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Fig. 5. F as a function of bandwidth heterogeneity (N = 600, Mc = 600)

5.4 Heterogeneous Upload Bandwidth

Finally, we evaluate the performance of Dl/ELp in heterogeneous networks. We
use a scenario similar to that of [6]. The system is composed of N=600 nodes,
devided in 3 classes based on their upload bandwidth: bandwidth of 2 for (h/3)N
nodes4, bandwidth of 0.5 for (2h/3)N nodes, and unit bandwidth for (1 − h)N
nodes, thus keeping the mean bandwidth at 1. We vary h from 0 (homogeneous
case) to 1.

Figure 5, plotting the diffusion delays for Mc = 600 chunks and an infinite
buffer size, shows that Dl/ELp performs better in this specific setting than the
other algorithms studied for the whole range of h. These initial studies indicate
that Dl/ELp could be a strong contender also in heterogeneous settings. We leave
more detailed studies, including studies of the effect of Dl’s increment parameter
on performance (see observation3), for future work.

6 Related Work and Contributions

Optimality of schedulers has been extensively studied in the literature. For the
case of full mesh overlay and unit upload bandwidth limits, the generic (i.e., valid
for any scheduler) lower bound of (�log2(N)�+ 1)T is well known. [1] proves that
this bound is strict in a streaming scenario by showing the existence of a centralized
scheduler that achieves such bound. A similar proof (although for the case of file
dissemination) can be found in [11]. Our work improves on these results by proving

4 In order to validate our results with heterogeneous bandwidth, we implemented our
algorithms also in the P2PTVSim [10] simulator. For this reason, we had to use a
smaller number of peers and chunks.
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the existence of distributed schedulers (LUc/ELp and Dl/ELp) that achieve the
same strict bound.

Generic upper bounds as well as upper bounds on the distribution times
achieved by different distributed schedulers can also be found in literature. The
fundamental work of [12] studies asymptotic properties of distributed gossiping
algorithms in a similar setting, showing an upper bound for any pull based algo-
rithm of all the messages in O(Mc + log(N)) time with high probability even for
blind algorithms. Generic asymptotic bounds are also shown for blind push based
algorithms, although in this case full dissemination cannot be guaranteed. A blind
algorithm that distributes chunks with a high probability in (9∗Mc+9∗log2(N))T
is also shown. Note that this suggest a distribution delay for the individual chunk
that grows with Mc.

Authors of [11] also evaluate blind distributed strategies in the case of file dis-
tribution, showing distribution delays dependent on the number of chunks.

[6] studies upper bounds for specific well known algorithms, showing that the
combination of random peer selection and LUc achieves asymptotically good de-
lays, however this demonstration is provided in the case of upload bandwidth
higher than 1.

The distributed LUc/ELp and Dl/ELp schedulers presented in our paper per-
form significantly better than the generic upper bounds shown in [12] and [11]
in that it achieves full diffusion of all chunks in (Mc + �log2(N)�)T , i.e. a chunk
diffusion delay independent of Mc.

It also differs from the streaming algorithms studied in [6], since for LUc/ELp
and Dl/ELp this strict delay bound holds for any N(not just asymptotically), and
it is valid even in the boundary case of unit upload bandwidth, without relying on
redundant source coding.

[6] uses ER graphs to model the restricted neighborhood. With N = 600 and
NN = 10, authors find that the studied algorithms suffer significant losses. These
chunk losses are confirmed by our results (even if our random graph model is
slightly different) for the algorithms considered therein. However, we also show
(through simulations) that the new Dl/ELp algorithm performs near the opti-
mum with any Mc and any N , even with significant overlay restrictions. Namely,
reducing the neighborhood size to any NN >= �log2(N)�, our algorithm keeps
distributing all chunks with a delay only slightly above the lower bound and al-
ways (on all simulated NN -regular random graphs) below 2 ∗ (�log2(N)� + 1)T .
Note that the neighborhood of �log2(N)� practically means less than 30 in any
reasonable setting.

7 Conclusions and Future Work

This paper presented the formal proof that distributed algorithms can achieve op-
timal diffusion for streaming applications in unstructured meshes. The paper in-
troduced a class of deadline based algorithms Dl/ELp which are optimal in full
meshes and maintain very good properties also in realistic scenarios with small
neighborhoods.
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Future work includes on the one hand extending the theoretical results to sce-
narios with different constraints, including large bandwidth and heterogeneous
scenarios, and, on the other hand, exploiting these algorithms to implement real
P2P streaming systems.
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