Wireless Mesh Networks

Renato Lo Cigno
www.disi.unitn.it/locigno/teaching

Part of this material (including some pictures) features and are freely reproduced from:

Thanks also to Gianni Costanzi for checks and providing figures
Ad-Hoc and WMN

- **Ad-Hoc network**
 - non permanent
 - general purpose or specific (sensors)
 - single or multi-hop, normally mobile
 - may require routing (see AODV and OLSR)

- **Wireless Mesh Networks (WMN)**
 - more structured than Ad-Hoc
 - may be hierarchical
 - semi-permanent, some nodes are fixed
 - requires routing
A Mesh – Ad-hoc network

• Ad-Hoc can be meshed
 - non single broadcast channel
 - multi-hop require routing
Hierarchical meshes
Hierarchical meshes

- Capacity of the backbone
- Routing strategies
 - Gateway selection
 - client level
 - backbone level
- Backbone of fixed nodes
 - multi-km links \(\rightarrow\) easy and cheap coverage
 - replace wireless “closed” backbones
 - Nomadic access vs. static access
Domestic Mesh

- Simplify home cabling
- Can support anti-intrusion
- Distribute e.g. IPTV
Building automation

- Simplify cabling
- Allow central control
 - vs. pure sensor/actuator networking where information is not propagated
- Simple, static routing (but does not work!)
- Reliability concerns
Multi-home meshes

- Community networks
- Social networks
- SOHO support
- Nomadic access
Vehicular-metropolitan networks
Vehicular-metropolitan networks

- Mainly infrastructure-to-vehicle
 - cooperative driving is a different (though related) story
- Traffic control & congestion management
 - A22 is “selling” as the “future” 73 messaging panels on close to 300 km ...
- Tourism, advertisement, local information
- Nomadic communication with pedestrians too

- In U.S. some commercial experiments are already available
Train & Planes networks

- **Cellular networks?**
 - capacity problems in “dense” environments
 - cannot “reach” planes
 - problems with very high speed
- **Collect the traffic locally then interconnect from a single – non energy constrained point**
Mesh project & sites

• Community Networks & around
 - Seattle Wireless (http://www.seattlewireless.net/)
 - Roofnet at MIT (http://pdos.csail.mit.edu/roofnet/)
 - TFA at Rice (http://tfa.rice.edu)
 - Tuscolo Mesh (http://tuscolomesh.ninux.org/joomla)
 - Georgia Tech
 (http://www.ece.gatech.edu/research/labs/bwn/mesh/index.html)
 - ...
 - Pergine Valsugana
 - ...
 - Trentino Networks
Mesh: Basic scenarios (1)

- Extended WLAN access
- Simple configuration
 - no routing
- Simple 802.11 handover support
- Double radio guarantees good performance

- Single radio creates resource conflicts
 - 3 BSS on the same channel
 - suitable for low-cost low-performance
Mesh: Basic scenarios (2)

- Extended WLAN access
- Routing required
- Simple 802.11 handover support
- Double radio guarantees good performance

- WDS is broadcast
- A(GW) can be a bottleneck

- Single radio creates serious resource conflicts
 - n+1 BSS on the same channel
Mesh: Basic scenarios (3)
Mesh: Basic scenarios (3)

- Extended WLAN access
- Basic infrastructuring
- Single radio operation very difficult

- Multiple external gateways
 - sophisticated, flow-based routing
- Non standard handover support
 - flow based routing requires exporting the context
 - address management require coordination
- WDS may be multi-hop
 - How many channels?
- Point-to-point and broadcast channels in WDS
Moving between BSS belonging to different Mesh/WDS

- Address management (DHCP) is a problem
- Flow-based routing may be impossible
- Joining/splitting of partitions is an open issue
Mesh – Ad-Hoc: AODV

Ad-hoc On-demand Distance Vector routing - rfc3561

- DV (see RIP) protocol for next-hop based routing
- On-Demand: maintains routes only for nodes that are communicating
- Must build routes when requested
- Route Request (RREQ) are flooded through the network
- Nodes set-up reverse path pointers to the source
 - AODV assumes symmetric links
Mesh – Ad-Hoc: AODV

• The intended receiver sends back a Route Reply (RR)
• RR follow the reverse path set-up by intermediate nodes (unicast) establishing a shortest path route memorized by intermediate nodes
• Paths expire if not used
 - protocol & transmission overhead
 - guarantee of stability in dynamic, non reliable networks
• Usual DV problems
 - count to infinity, slow convergence, ...
Mesh – Ad-Hoc: AODV

- Next-hop based (other proposals are based on source routing)
- "Flat" protocol: all nodes are equal
- Can manage only one route per s-d pair
 - can be inefficient in presence of highly variable link quality and persistence
- Good for sporadic communications
- Bad for high mobility
 - slow convergence
 - difficulty in understanding topology changes.
Mesh – Ad-Hoc: AOMDV

Ad-Hoc On-demand Multipath Distance Vector Routing in Ad Hoc Networks
- An extension to AODV
- AOMDV computes multiple loop-free and link-disjoint paths
- Using “Advertised Hop-count” guarantees Loop-freedom
 • A variable, which is defined as the maximum hop count for all the paths. A node only accepts an alternate path to the destination if it has a lower hop count than the advertised hop count for that destination
- Link-disjointness of multiple paths is achieved by using a particular property of flooding
- Performance comparison of AOMDV with AODV shows that
 • AOMDV improves the end-to-end delay, often more than a factor of two
 • AOMDV reduces routing overheads by about 20%
Mesh – Ad-Hoc: OLSR

Optimized Link-State Routing Protocol (rfc3626)

- Proactive, link-state routing protocol
- Based on the notion of MultiPoint Relay (MPR)
- Three main components:
 - Neighbor Sensing mechanism
 - MPR Flooding mechanism
 - topology Discovery (diffusion) mechanism.

- Auxiliary features of OLSR:
 - network association - connecting OLSR to other networks
Mesh – Ad-Hoc: OLSR

Basic neighbor sensing:
- periodic exchange of HELLO messages;
- HELLO messages list neighbors + "neighbor quality"
 - HEARD - link may be asymmetric
 - SYM - link is confirmed to be symmetric
 - MPR - link is confirmed to be symmetric AND neighbor selected as MPR

- Providing:
 - topology information up to two hops
 - MPR selector information notification
Mesh – Ad-Hoc: OLSR

- Each node selects from among its neighbors an MPR set such that
 - an emitted flooding message, relayed by the MPR nodes, can be received by all nodes in the 2-hop neighborhood

- **Goals:**
 - reduce flooding overhead (select minimal sets)
 - provide optimal flooding distances
Mesh – Ad-Hoc: OLSR

- Exchanges topology information with other nodes of the network regularly
- MPRs announce their status periodically in control messages.
- In route calculation, the MPRs are used to form the route from a given node to any destination in the network
- Uses MPRs to facilitate efficient flooding of control messages
Mesh Networks: 802.11s

• Working group to deliver a standard for 802.11(& around) base Mesh Networks
 - Interactions with 802.11p dedicated to vehicular networks

• Tries to define a framework to support a Mesh network as a standard extended WLAN with routing that goes beyond the standard minimum spanning tree of 802.1 interconnection
Device Classes in 802.11s

- **Mesh Point (MP)**
 - a point able to relay messages
- **Mesh AP (MAP)**
 - a MP able to provide services to STAs
- **Mesh Portal (MPP)**
 - a MAP connected to a wired LAN
 - normally called a gateway and assumed to access the internet
Routing in 802.11s

- Hybrid Wireless Mesh Protocol (HWMP) - Mandatory
 - AODV derived link-state protocol
 - Based on trees for proaction and efficiency
 - Add on-demand features (like AODV)

- Radio Aware OLSR (RA-OLSR) - Optional
 - Radio aware metrics added to MPRs in OLSR
 - Optional fish-eye routing capabilities
 - Association and discovery protocols for topology discovery and buildup