
Computer Aided Threat Identification

Yudistira Asnar
DISI-University of Trento, Italy

yudistira.asnar@unitn.it

Tong Li
School of Software, Tsinghua University, China

litong30@gmail.com

Fabio Massacci
DISI-University of Trento, Italy

fabio.massacci@unitn.it

Federica Paci
DISI-University of Trento, Italy

federica.paci@unitn.it

Abstract—Recently, there has been an increase of reported
security threats hitting organizations. Some of them are
originated from the assignments to users of inappropriate
permissions on organizational sensitive data. Thus it is crucial
for organizations to recognize as early as possible the risks
deriving by inappropriate access right management and to
identify the solutions that they need to prevent such risks.

In this paper, we propose a framework to identify threats
during the requirements analysis of organizations’ IT systems.
With respect to other works which have attempted to include
security analysis into requirement engineering process (e.g.,
KAOS, Elahi et al., Asnar et al.), our framework does not rely
on the level of expertise of the security analyst to detect threats
but allows to automatically identify threats that derive from
inappropriate access management.

To capture the organization’s setting and the system stake-
holders’ requirements, we adopt SI* [1], a requirement engi-
neering framework founded on the concepts ofactors, goals,
tasks and resources. This framework extends SI* with a
reasoning technique that identifies potential security threats
on resources and relevant goals. The reasoning is based on
Answer Set Programming (ASP) logic rules that take into
account the relationships between resources and the delegation
of permission relations between actors. We illustrate this
framework using an eHealth scenario.

I. I NTRODUCTION

The intricacies of controls and permission assignments
become more complex as the companies’ size, the number
of systems, and the granularity of access rights within
enterprise-spanning systems grow. In organizations, manag-
ing the access rights while protecting sensitive organizational
information is a daunting process for security administrators.
Many users may not be aware of their access rights or
conflicts/issues that their rights could create. Often users
are granted access to sensitive information but they are not
trusted by the information’s owners. If users misuse their
permissions they can un/intentionally compromise organiza-
tional assets’ security. Examples of threats that can hit an
organization because of an inappropriate access management
are unintended data editing, un/intentional disclosure, or
internal misuse for a personal gain.

To avoid such kind of threats, it is crucial to identify
pitfalls in users’ permissions assignments in the early phases

of an information system engineering process and manage
the level of risk of such threats by adopting suitable security
solutions.

In this paper, we propose a framework to identify threats
that are caused by inappropriate permissions assignment. We
identify such threats during the requirement analysis of the
organizations settings and of its IT systems. With respect
to other works which have attempted to include security
analysis into requirement analysis ([2]–[5]), our framework
does not rely on the level of expertise of the security analyst
to detect threats but allows to automatically identify threats
that derive from inappropriate access management.

To capture the organization’s setting and the system
stakeholders’ requirements, we adopt SI* [1], a requirement
engineering framework founded on the concepts ofactors,
goals, tasksandresources: actorsare the system’s stakehold-
ers,goalsare actors’ requirements, andtasksand resources
are the means to achieve actor’s goals.

In this work, we consider resources and goals as assets
because their fulfillment brings value to the organization.
Therefore, they must be protected by assuring that security
properties (e.g., confidentiality, integrity, and availability) are
not violated.

We have extended SI* with a reasoning technique that
identifies potential security threats on resources and relevant
goals. A threat is a situation where an actor who is not
trusted by the owner of the goal/resource is granted a
permission on a goal/resource that the actor might misuse
to harm the goal/resource. To enable the reasoning, we
extend the SI* modeling language with different types of
relationships between resources and different permission
types on resources.

The reasoning is thus based on Answer Set Programming
(ASP) logic rules that take into account the relationships
between resources and the delegation of permission relations
between actors.

The rest of the paper is organized as follows. In Section II,
we introduce the running example taken from the healthcare
domain. We introduce SI* framework in Section III. We
present the extensions to the SI* in Section IV and the
reasoning process to identify threats in Section V. Then, we

discuss the related work in Section VI and outline future
work in Section VII.

II. RUNNING EXAMPLE - DRUGSMANAGEMENT

To illustrate our approach for identifying threats, we use
a scenario taken from the healthcare domain that is about
health monitoring and drugs delivery to patients’ home. This
example involves six main actors:

• Patient is monitored by a smart T-shirt which measures
medical data (e.g., heartbeat rate, blood pressure, etc.)
and transfers them to the Hospital’s computer system.
When the patient’s condition is abnormal, the doctor
makes a diagnosis and produces a prescription. The
patient receives his prescription and requests the drug
delivery service to the pharmacy.

• Hospital provides medical services to patients. The
hospital monitors patients’ health and manages patients’
data, which are stored in the hospital’s computer. When
the patient has some problems, the hospital assigns a
doctor to diagnose the patient.

• Pharmacy is responsible for managing drugs and pro-
vide them to the patients. All the information about
drugs is stored in the pharmacy’s computer.

• Pharmacist works for the pharmacy and is responsible
to provide drugs to be delivered according to the
prescription received from the patient. The prescription
information is stored in the pharmacy’s computer.

• Drug manager works for the pharmacy and is respon-
sible to manage the drugs. All the drugs’ information
is also stored in the pharmacy’s computer.

• Doctor is responsible to diagnose the patients and
prescribe required medications.

III. T HE SI* M ODELING FRAMEWORK

SI* [1], [5] is a modeling framework extending the i*
framework [6] which supports security requirement analysis.
SI* is part of a complete security methodology, which aims
at analyzing and modeling organizational settings and its
security and dependability requirements.

The SI* language1 is founded on the concepts ofactor,
goal, resourceand relations such asAND/OR decomposition
and means-end. An actor is an entity which has intentions,
capabilities, and entitlements; agoal captures a strategic in-
terest that is intended to be fulfilled; aresourceis an artifact
produced/consumed by a goal;AND/OR decompositionis
used to refine a goal;means-endidentifies goals that provide
means for achieving another goal or resources produced or
consumed by a goal/task.

Example III.1. Figure 12 shows the goal model for the
Drugs Management scenario involving six actors: theHos-

1We only mention concepts that are relevant to this work
2We useitalic fonts to indicate the basic concepts of SI* framework, and

sans-serif fonts to denote the one related to the running example.

pital, theDoctor, thePatient, thePharmacy, thePharma-
cist, and theDrug Manager. The Hospital (Actor) has an
intention (Request) to fulfill the goal Provide medical ser-
vice andOwnstheSmart T-shirt resource, while theDoctor
has the capability (Provide) to fulfill the goal Diagnose.
This goal is then refined (AND-decomposed) into subgoals
Monitor patient, Manage patient data, and Diagnose.
Some goals can produce or consume some resources. For
example, the goalDiagnose requires the resourcePatient
data and produces the resourcePrescription.

SI* also captures social relationships (e.g.,delegation
and trust) for defining the entitlements, capabilities and
objectives of actors. Originally, adelegationmarks a formal
passage of responsibility (delegation execution) or authority
(delegation permission) from an actor (delegator) to the
actor receiving the responsibility/authority (delegatee) to
achieve a goal or to provide a resource. In this work, we
extend the notion ofdelegation of permissionas described
in the following section.Trust is a relation between two
actors representing the expectation of one actor (trustor)
about the capabilities of the other (trustee) – trust execution,
and about the behavior of the trustee with respect to the
given permission –trust permission. In this work, we only
consider the notion oftrust of permission.

Example III.2. The Hospital delegates executionof the
goal Diagnose to the Doctor, because the doctor has the
capability to fulfill the goal. Moreover, thePatient believes
that theHospital will not misuse the permission given upon
thePatient Data as specified by thetrust permissionrelation
between thePatient and theHospital.

IV. T HE EXTENDED GOAL MODEL

In order to automatically detect threats on resources we
rely on a subset of the basic concepts of SI* [1] and we
propose some extensions to the SI* modeling language to
represent different types of actors’ permissions on resources
and different types of relationships between resources.

We inherit from SI* the concepts ofactor, resource, and
goal and a subset of SI* relations such asdecomposition,
means-end, provide, request, own, and the social relations
delegationand trust of permissions and execution that have
been introduced in Section III.

In this work, goals and resources are considered as assets
that need to be protected because they bring values to
organizations. In order to specify how an asset needs to
be protected, we use the concept ofsecurity requirement
defining a specific security property, such as confidentiality,
integrity, and availability, to be preserved for a resource.
Moreover, a security requirement might also be related to a
goal because this goal produces or consumes the resource.

Figure 2 illustrates the extended SI* conceptual model
used in this work where in gray we indicate concepts and
relations that belong to SI* and in black we denote our

2

Patient

Hospital
Provide medical

service

Monitor patient

Diagnose

Manage

patient data

Sensor data

Patient data

Prescription

HComputer

Integrity
Confidentiality

Smart T-shirt

Availability

Smart T-shirt

Pharmacy Sell drug

Manage drug Provide drug

Drug info Prescription

PComputer

Drug manager

Pharmacist

PComputer

Prescription

Patient data

Manage drug

Provide drug

Drug info

Doctor

Prescription

AND

require

part_of
store_in

part_of

AND

store_in store_in

AND

O

Tp

O

AND

O

Tp

Tp

Tp

O
R

store_in store_in
require

store_in
part_of

De

De

De

De

Dpmd

O

Dpmd

Dpa

Dpa

Dpma

Dpma

Dpma

Dpma
Dpma

Dpma Dpma

R

P

P

De

P

part_of

P
P

Dpa

Dpa

Figure 1. Goal Model of Drugs Management Scenario

Actor

Resource Goal

Security Req

Own

Delegatee/Trustee

Means-end

Delegation/
Trust Delegatum/

Trustum

Delegater/
Trustor

Assets

Subgoal

Store_in,
Part_of,
Require

Provide, Permission

Security Property

Figure 2. Conceptual model of the extended goal modeling framework

extensions. We introduce our extensions to SI* in the next
two subsections.

A. Types of Resource Permissions

SI* framework can only capture whether an actor has
a permission on a resource or not but it does not allow
one to specify which is the type of permission the actor is
granted on the resource. Specifying the permission type is
crucial because it determines the type of actions an actor
can perform on a resource. Some of these actions might be
used by an actor to un/intentionally harm a resource.

Example IV.1. Considering the scenario in Figure 1, the
Drug Manager needs the modify permission onDrug info
to fulfill its goal Manage drug. However, it can be the case
that theDrug Manager is given an higher permission (e.g.,
manage) onDrug info which gives him also the capability
to revoke the permission given to other actors onDrug info
and thus to make no longer available the resource to these
actors. This situation might be a problem if the actors need
to accessDrug info to fulfill their goals.

Therefore, we refine the notion of permission in SI*
by introducing three different types of permissions:access,
modify, andmanageas described in Table I.

Table I
PERMISSIONS ON RESOURCE

Permission
Type Description

(Possible)
Affected Sec.

Property
Access
(low-level)

Actor only has the permission
to access/read/use the resource.

Confidentiality

Modify
(medium-level)

Actor can change the content
of the resource.

Integrity

Manage
(high-level)

Actor has the permission to
modify the resource, delegate
permissions to other actors and
modify permissions to other ac-
tors.

Availability

Each permission type determines the set of actions that
an actor can perform on a resource. Thus, a permission type

3

might lead to the violation of a specific security property if
the actor misuses the actions associated with the permission
type. In Table I we show the relation between permission
types and security properties that might be violated if an
actor abuses of the permission type. For example, if an actor
has anaccesspermission on a resource, he can accidentally
disclose the resource and thus violate the resource’s confi-
dentiality.

Example IV.2. In Example IV.1, theDrug Manager has a
modifypermission onDrug info. If Drug Manager misuses
this permissions he/she un/intentionally compromise the
integrity of Drug info.

We also assume that there is a hierarchy between the
different permission types: themanagepermission implies
themodifyone, and themodifyimplies theaccess, because in
an information system themanagepermission is considered
the most powerful right.

Example IV.3. The Drug manager hasmodifypermission
on Drug info resource therefore s/he can alsoaccess/read
the Drug info.

Note that if a resource is a physical resource (e.g., DBMS,
computer), we consider onlyaccessandmanagepermission
because for such kind of resource it does not make sense
to distinguishmodifyandmanagepermissions; while on an
informational resource we might grant all three permission
types.

Since an actor is able to delegate a permission to another
actor, we need to extend thedelegation of permissionin
order to specify which permission type is delegated. The
delegation of the different types of permissions - delegation
of access/modify/manage- is graphically represented by an
edge labeled withDpa, Dpmd and Dpma respectively as
depicted in Figure 1. Note that, a delegator can only delegate
a permission on a resource when s/he has themanage
permission on the resource.

B. Relationships between Resources

The other important extension we propose to SI* mod-
eling language is the ability to specify relations between
resources. Essentially, resources in an information system
can be structured using three relations:store in, part of ,
andrequire.

The store in relation captures a situation where an
informational resource is stored in a physical resource such
as a file stored on a computer. By using this relation, we
can determine all locations where a resource is stored and
which actors have access to those locations; and whether
a particular security property of the resource might be
violated.

Example IV.4. Patients’ prescriptions are not onlystored
in the Hospital’s computer system, but alsostored in the

Pharmacy’s computer. This means that the actors who
have the permission to manage thePharmacy’s computer
can also access/modify/manage thePrescriptions.

The part of relation indicates a composition relation
between resources. If an actor has some permission on a
resource, it implies s/he has the same permission on its parts.

Therequire relation denotes that a resource might require
another resource to function. In contrast withpart of and
store in, require does not need that the same permissions
apply to both resources linked by the relation.

Moreover, all the relations require the same security
requirement is preserved for the linked resources.

Example IV.5. In order to guarantee the availability of
the Sensor data also the availability of theSmart T-shirt
needs to preserved. Similarly, in Example?? to preserve
the confidentiality ofPatient data we need to guarantee the
confidentiality ofPrescription andSensor data.

V. THREAT IDENTIFICATION

The threat identification reasoning process aims at identi-
fying potential security threats for resources in a goal model.
We consider as athreat a situation where an actor has a
particular permission on a resource/goal but the owner of
the resource/goal does not trust the actor.

The reasoning process is based on ASP logic rules for
i) formalizing the goal model (Tables II and III), ii) de-
termining the actors’ permission on resources (Table IV),
iii) determining the security requirements that are associated
with resources and goals (Table V), and iv) identifying
threats (Table VI).

A. Build the Goal Model

The aim of this step is to draw a SI* model that cap-
tures the system’s stakeholders requirements as depicted
in Figure 1. This means identifying the actors with their
goals and resources and tasks to fulfill them, and the
delegation and trust relationships between actors. Moreover,
it is important to identify the relationships between resources
and resources’ security requirements.

In order to identify the threats automatically, the SI*
model has to be formalized. As we have done in [7], we use
an ASP system (i.e., DLV) to formalize the new concepts
and relations introduced in this work. Table II lists the
predicates to formalize a SI* model similar with the one
proposed in [1]. There are new predicates to express the
relations between resources, the permission an actor has on
a resource, the extended delegation of permission relation,
the security requirements of resources and goals, and the
threats on resources and goals.

The predicatesstored in, part of andrequire denote the
possible relationships between resources. The predicateper-
missionrepresents the permission an actor has on a resource
where PT ∈ {access,modify,manage}. An actor can

4

delegate its permission (del perm) to another actor when
he has sufficient permission on the resource (i.e.,manage).
Moreover, the predicatetrust perm indicates the belief of
an actor that the other actor will not misuse the granted
permission.

The predicatesecure req represents the security require-
ment associated with resources and goals. This predicate
holds when a resource needs to meet a specific security prop-
erty (SP ∈ {confidentiality, integrity, availability}), or
a goal needs to meet a security property which holds for a
specific resource that is produced or required by the goal.
Finally, the predicatethreatholds if an actor is a threat agent.

Example V.1. The SI* model, presented in Figure 1, is
formalized as depicted in the snip of the DLV input in
Figure 3. Lines 1 to 17 show the predicates to denote the
actors, goals and resources in the SI* model. The remaining
lines show the predicates that encode relations between
actors, goals and resources. For example, lines 39 represents
the delegation of execution of goalManage Drug between
the Pharmacy and theDrug Manager. Line 42 shows the
delegation ofmanagepermission onPComputer from the
Pharmacy to theDrug Manager.

We also introduce axioms (Table III) to derive implicit
relationships between resources and actors in the model.
Axiom A1 specifies that if an actor is the owner of a
resourceR, he also owns each resource subpartR1. Axiom
A2 specifies that if an actor has the capability to provide
a goalG, he is also able to provideG’s subgoals. In this
work, we assume thetrust relationship is transitive across
actors (AxiomA3) or via part-of relation (AxiomA4).

Example V.2. The Patient is the owner of thePatient

Table II
PREDICATES FOR AN EXTENDED GOAL MODEL FORMALIZATION

Goal model
goal(Goal:g)
resource(Resource:r)
actor(Actor:a)
provide(Actor:a, Goal:g)
own(Actor:a, Goal:g)
own(Actor:a, Resource:r)
subgoal(Goal g1, Goal:g)
means end(Resource:r, Goal:g)
means end(Goal:g, Resource:r)
Resource model
stored in(Resource:r, Resource:r1)
part of(Resource:r, Resource:r1)
require(Resource:r, Resource:r1)
Permission model
permission(Actor:a, Resource:r, PType:pt)
del perm(Actor:a, Actor:a1, Resource:r, PType:pt)
trust perm(Actor:a, Actor:a1, Resource:r)
Security requirements and Threats model
secure req(Resource:r, SProperty:sp)
secure req(Goal:g, SProperty:sp, Resource:r)
threat(Actor:a, Resource:r, SProperty:sp)
threat(Actor:a, Goal:g, SProperty:sp, Resource:r)

Table III
AXIOMS FOR GOAL MODEL EXTENSIONS

Relation implication
A1 own(A, R1)← part of(R1, R) ∧ own(A, R)
A2 provide(A, S1)← subgoal(S1, S) ∧ provide(A, S)

A3
trust perm(A, A2, R)← trust perm(A, A1, R)

∧ trust perm(A1, A2, R)

A4
trust perm(A, A1, R1)← part of(R1, R)

∧ trust perm(A, A1, R)

Table IV
RULES FOR ACTORS’ PERMISSIONS DETERMINATION

Permission propagation
P1 permission(A, R, modify)← permission(A, R, manage)
P2 permission(A, R, access)← permission(A, R, modify)
P3 permission(A, R, manage)← own(A, R)

P4
permission(A1, R, PT)← del perm(A, A1, R, PT)

∧ permission(A, R, manage)

P5
permission(A, R1, manage)← store in(R1, R)

∧ permission(A, R, manage)

P6
permission(A, R1, PT)← part of(R1, R)

∧ permission(A, R, PT)

data therefore s/he is also the owner of resource’s subparts:
Sensor data and Prescription as stated in AxiomA1.
Assuming theHospital has the capability to provide the
goal Provide medical service, according to AxiomA2,
then theHospital also has capabilities to fulfillProvide
medical service’s subgoals:Monitor patient, Manage
patient data, andDiagnose. According to axiomA3, the
Patient believes theDoctor will not misuse any given
permission on thePatient data because thePatient trusts
the Hospital and theHospital trusts theDoctor.3 Since the
Patient trusts theHospital upon themanagepermission
to his/herPatient data, then indirectly s/he also trusts the
Hospital to managePatient data’s subparts:Sensor data
andPrescription(axiom S4).

Note that the quality of a goal model is crucial for the
validity of the analysis’s results. In [8] the authors have
illustrated several best practices to build a “good” goal
model.

B. Determine Actor’s Permission on Resources

By applying the automated reasoning formalized in Ta-
ble IV, we can determine the actors’ permissions on each
resource. AxiomsP1 and P2 represent the hierarchy of
permissions. AxiomP3 assume the owner of a resource
will have the highest permission on the resource (i.e.,
manage). Axiom P4 specifies that an actor (with themanage
permission on a resource) can give any permission type
on the resource to another actor. Additionally, other actors’
permissions can be derived from the relationships between
resources. AxiomP5 specifies that if an actor has amanage
permission on a resourceR which stores a resourceR1,
s/he then has themanagepermission also onR1. Axiom

3We are aware that in some domain the transitivity of trust relations
might not be applicable.

5

Figure 3. Drugs Management Goal Model Formalization

P6 specifies that if an actor has a permissionPT on a
resourceR, then s/he has the same permission on subpart
R1 of resourceR.

Example V.3. Since thePatient has delegated theaccess
permission to thePharmacy, thePharmacy has theaccess
permission onPrescription. Moreover, thePharmacy has
themanagepermission onPComputer following axiomP3,
and themanagepermission onDrug Info andPrescription
based on axiomP5. By applying axiomP4 thePharmacist
and theDrug Manager obtains themanagepermission on
the PComputer from the Pharmacy. Apart from this, the
Pharmacist also gainsaccesspermission on thePrescrip-
tion from the Pharmacy. Since theDrug Manager has
managepermission on thePComputer (axiomsP1 andP2)
and Prescription is stored inPComputer,Drug Manager
hasmanagepermission onPrescription (axiomsP5).

C. Determine Goals and Resources Security Requirements

We assume that if a security requirement has to be fulfilled
for the resourceR1 then the same security requirement
should be fulfilled for another resourceR that is linked to
R1 by a relationshipstore in, part of , andrequire. The
same assumption applies to a goalG which is linked to the

resource bymeans − end relation. Table V specifies the
axioms to determine the security requirement for resources
which are linked via astore in, part of , and require

relationship (axiomS1-S7). Axiom S3 states that if the
integrity of a resourceR1 is critical and R1 is stored
inside another resourceR, than also the integrity ofR
should be guaranteed. The security requirement of a goal
can be derived from the resource’s security requirement to
which the goal is connected via a means-end relationship
as specified by axiomsS8 and S9. Axiom S10 specifies
that the same security requirement that applies to a goalG

should be applied to its subgoals.

Example V.4. Since the confidentiality ofPrescription is
required andPrescription is stored inPComputer because
of Axiom S1 and S2 the confidentiality and integrity of
PComputer has to be preserved as well. By applying axiom
S4, in order to guarantee the availability ofPatient Data,
HComputer must be available. Moreover, sinceSensor
Data requires theSmart T-shirt and integrity ofSensor
Data has to be preserved, the integrity ofSmart T-shirt has
to be guaranteed (axiomS6).

D. Identify Potential Threats

Table VI lists all the axioms used for identifying poten-
tial threats.4 Essentially, once the security requirement of
resources and goals and actors’ permissions are defined,
we can determine possible threats on resources following
axiomsT1-T3. The axioms state that we have a threat when
an actor has a permission sufficient to violate the security
requirement associated with the resource and the actor is
not trusted by the resource’s owner. Then, the threat for
goals are identified by applying axiomsT4-T7. A goal G is
threatened when the goal is provided by an actorA1 that is
a threat agent for a resourceR that is linked to the goal by
a means − end relation. For each threat, we also identify
the threat agent, the resource being harmed and the security
property being violated.

Example V.5. Table VII summarizes the threats identified.
Drug Manager is a threat agent for bothPrescription
and PComputer because he hasmanagepermission on
PComputer and PComputer storesPrescription but the
Patient does not trust theDrug Manager.

The list of threats can be useful for different stakeholders
in the security engineering process. The risk analyst, for
example, can assess the level of risk associated with the
threats: if the risk is unacceptable, some treatments are
required to mitigate the risk level. These treatments can be
returned back to the requirement analyst who revises the SI*
model with tasks representing the treatments. Alternatively,

4 The complexity of identifying threats is the same as the one of checking
a DLV program [9] because the model and the axioms are formalizedas
a DLV program.

6

Table V
AXIOMS FOR DERIVING SECURITY REQUIREMENTS

Security requirement propagation
S1 secure req(R, confidentiality)← store in(R1, R) ∧ secure req(R1, confidentiality)
S2 secure req(R, integrity)← store in(R1, R) ∧ secure req(R1, confidentiality)
S3 secure req(R, integrity)← store in(R1, R) ∧ secure req(R1, integrity)
S4 secure req(R, availability)← store in(R1, R) ∧ secure req(R1, availability)
S5 secure req(R1, SP)← part of(R1, R) ∧ secure req(R, SP)
S6 secure req(R, integrity)← require(R1, R) ∧ secure req(R1, integrity)
S7 secure req(R, availability)← require(R1, R) ∧ secure req(R1, availability)
S8 secure req(G, SP, R)← secure req(R, SP) ∧means end(G, R)
S9 secure req(G, confidentiality, R)← secure req(R, confidentiality) ∧means end(R, G)
S10 secure req(G1, SP, R)← subgoal(G1, G) ∧ secure req(G, SP, R)

Table VI
AXIOMS FOR THREAT IDENTIFICATION

Threat Identification

T1
threat(A1, R, confidentiality)← own(A, R) ∧ secure req(R, confidentiality)

∧ permission(A1, R, access) ∧ not trust perm(A, A1, R) ∧A1 6= A

T2
threat(A1, R, integrity)← own(A, R) ∧ secure req(R, integrity) ∧ permission(A1, R, modify)

∧ not trust perm(A, A1, R) ∧ del perm(A, A1, R, PT) ∧A1 6= A

T3
threat(A1, R, availability)← own(A, R) ∧ secure req(R, availability)

∧ permission(A1, R, manage) ∧ not trust perm(A, A1, R) ∧A1 6= A

T4
threat(A1, G, confidentiality, R) ← threat(A1, R, confidentiality) ∧ means end(R, G) ∧
provide(A1, G)

T5
threat(A1, G, confidentiality, R) ← threat(A1, R, confidentiality) ∧ means end(G, R) ∧
provide(A1, G)

T6 threat(A1, G, integrity, R)← threat(A1, R, integrity) ∧means end(G, R) ∧ provide(A1, G)
T7 threat(A1, G, availability, R)← threat(A1, R, availability)∧means end(G, R)∧provide(A1, G)

Table VII
IDENTIFIED THREATS

threat(drug manager, prescription, confidentiality)
threat(drug manager, prescription, availability)
threat(drug manager, pcomputer, confidentiality)
threat(drug manager, pcomputer, integrity)
threat(drug manager, pcomputer, availability)
threat(pharmacist, prescription, confidentiality)
threat(pharmacist, prescription, availability)
threat(pharmacist, pcomputer, confidentiality)
threat(pharmacist, pcomputer, integrity)
threat(pharmacist, pcomputer, availability)
threat(pharmacist, provide drug, confidentiality, prescription)

the threat list can be piped to the security architect who
identify possible security solutions at architectural level to
prevent such threats to occur. An example of how to to
transform security requirements into architecture solution is
presented in [10].

VI. RELATED WORK

In this work, we consider several requirement frameworks
that have attempted to include security analysis into the
requirement elicitation process. Among goal-oriented ap-
proaches, van Lamsweerde extends KAOS by introducing
the notions of obstacle [11] and anti-goal [2] to analyze
the security concerns of a system. KAOS obstacle captures
an undesired state of affairs that might harm safety goals
(i.e., hazard) or threaten security goals (i.e., threat). In
the framework, the authors propose a formal framework to
identify the obstacles to a goal in a given domain properties

and to generate resolutions to those obstacles. KAOS anti-
goal captures the intention of an attacker or considers it
as a malicious obstacle. In comparison to ours, the security
analysis proposed in these works does not take in to account
actors’ permissions and relations in the organization which
can be considered as the main sources of security risks in
an organization. Moreover, there is lack of guidance on how
to specify domain properties so that the obstacles/anti-goals
elicitation is complete and relevant.

Liu et al. [3] proposes an extension of the i* frame-
work [6] to identify attackers, and analyze vulnerabilities
through actor’s dependency links. In this framework, all
actors are considered as potential attackers therefore their
capabilities are analyzed and possible damages caused by
actors are assessed. In Li et al. [12], the authors proposed a
formal framework to support the attacker analysis. Similarly,
Elahi et al. [4] propose extensions to i* to model and analyze
the vulnerabilities affecting systems requirements. Though
these works consider relations between actors, they still rely
on the level of expertise of the security analysts to identify
possible attackers (i.e., even they have already been part
of the model) and vulnerability. Moreover, the notion of
permission (including the “delegation of permission”) is not
considered to be critical in their modeling and analysis while
it is crucial in our framework.

In addition, some works focus on integrating risk analysis
into the requirement analysis process, such as ISSRM [13],
the GR framework [5], and CORAS [14]. In Information

7

System Security Risk Management, Mayer et al. [13] pro-
posed a conceptual model for managing security of an
information system based on several security methods (e.g.,
CORAS, ISO 27001). Unlike ISSRM, Asnar et al. [5]
propose a concrete methodology, namely the Goal-Risk
framework to analyze and model security problems. It
captures the stakeholders’ goals, risks that might threaten
the goals, and countermeasures required to mitigate the
unacceptable the risk. Similarly, CORAS [14] provides a
comprehensive method for managing risk (i.e., not only
information security risk). The CORAS analysis is centered
on analyzing “unwanted incidents” for a defined asset model.
When the risk level of those unwanted incidents is beyond
the acceptable one, several treatments will be introduced
to the system. Though these frameworks support the risk
assessment process of possible threats, the elicitation ofrisk
(i.e., event in the GR or unwanted incident in the CORAS) is
a manual process which depends on the analysts’ knowledge
and there is no technique to ensure that the identification of
threats is complete and exhaustive. Through our approach,
analysts can identify automatically the threats that existin
a given organization and permission setting. However, the
outcome (i.e., threats) of our analysis can be considered as
an input for further risk assessment.

VII. C ONCLUSION AND FUTURE WORK

In this paper we propose a framework to automatically
identify threats that is complementary to other threats identi-
fication approaches that rely on the analyst level of expertise
such as risk assessment. The threats are derived from po-
tential misuse of actors’ permissions on resources. In order
to identity potential threats, we have extended SI* with:
1) relationships between resources, 2) actors’ permissions
on such resources, 3) security requirements on goals and
resources, and 4) delegation of a particular permission type
to the other actor.

We are planning to extend the framework, by considering
other relationships between resources and identify more
complex threat patterns that lead to the violation of security
properties.

ACKNOWLEDGMENTS

This work has been partially funded by NFSC of
China (Grant No.60873064), the 973 Program (Grant
No.2009CB320706), EU-FP7-ICT-IP-ANIKETOS (Grant
No.257930), EU-FP7-ICT- IP-SecureChange (Grant
No.231101), and EU-FP7-ICT-NoE-NESSoS project (Grant
No.256980).

REFERENCES

[1] F. Massacci, J. Mylopoulos, and N. Zannone, “Security
Requirements Engineering : The SI * Modeling Language
and the Secure Tropos Methodology,” inAdvances in In-
telligent Information Systems, ser. Studies in Computational
Intelligence, Z. Ras and L.-S. Tsay, Eds. Springer Berlin /
Heidelberg, 2010, vol. 265, pp. 147–174.

[2] A. Van Lamsweerde, “Elaborating security requirements by
construction of intentional anti-models,”Proceedings. 26th
International Conference on Software Engineering, pp. 148–
157, 2004.

[3] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy
requirements analysis within a social setting,”Proc.of RE,
vol. 3, pp. 151–161, 2003.

[4] G. Elahi, E. Yu, and N. Zannone, “A vulnerability-centric
requirements engineering framework: analyzing security at-
tacks, countermeasures, and requirements based on vulnera-
bilities,” Requirements Engineering, vol. 15, no. 1, pp. 41–62,
Nov. 2009.

[5] Y. Asnar, P. Giorgini, and J. Mylopoulos, “Goal-driven risk
assessment in requirements engineering,”Requirements Engi-
neering, vol. 16, no. 2, pp. 101–116, 2011.

[6] E. Yu, “Modelling strategic relationships for process reengi-
neering,” Ph.D. dissertation, University of Toronto, Canada,
1995.

[7] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
“Modeling security requirements through ownership, permis-
sion and delegation,” inRequirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, no.
July. IEEE, 2005, pp. 167–176.

[8] Y. Asnar, R. Bonato, P. Giorgini, F. Massacci, V. Meduri,
C. Riccucci, and A. Saidane, “Secure and Dependable Pat-
terns in Organizations: An Empirical Approach,” inRequire-
ments Engineering, 2007. Proceedings. 15th IEEE Interna-
tional Conference on, 2007.

[9] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer,
“Aggregate functions in disjunctive logic programming: Se-
mantics,complexity,and implementation in dlv,” inProceed-
ings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI) 2003. Elsevier Science Publishers, 2003,
pp. 847–852.

[10] K. Yskout, R. Scandariato, B. De Win, and W. Joosen,
“Transforming security requirements into architecture,” in
Third International Conference on Availability, Reliability
and Security, 2008. ARES 08. IEEE, Mar. 2008, pp. 1421–
1428.

[11] A. Van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering,”IEEE Transactions
on Software Engineering, vol. 26, no. 10, pp. 978–1005, 2000.

[12] T. Li, L. Liu, and B. R. Bryant, “Service Security Analysis
Based on i*: An Approach from the Attacker Viewpoint,” in
Security, Trust, and Privacy for Software Applications (STPSA
2010), Seoul, 2010, pp. 127–133.

[13] N. Mayer, P. Heymans, and R. Matulevicius, “Design of a
modelling language for information system security risk man-
agement,” inProceedings of the 1st International Conference
on Research Challenges in Information Science (RCIS 2007),
2007, p. 121–131.

[14] M. S. Lund, B. Solhaug, and K. Stolen,Model-Driven Risk
Analysis - The CORAS Approach. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011.

8

	Introduction
	Running Example - Drugs Management
	The SI* Modeling Framework
	The Extended Goal Model
	Types of Resource Permissions
	Relationships between Resources

	Threat Identification
	Build the Goal Model
	Determine Actor's Permission on Resources
	Determine Goals and Resources Security Requirements
	Identify Potential Threats

	Related Work
	Conclusion and Future work
	References

