Computer Aided Threat Identification

Yudistira Asnar

Tong Li

Fabio Massacci

DISI-University of Trento, Italy School of Software, Tsinghua University, China DISI-University of Trento, Italy

yudistira.asnar@unitn.it

Federica Paci
DISI-University of Trento, ltaly
federica.paci@unitn.it

Abstract—Recently, there has been an increase of reported
security threats hitting organizations. Some of them are
originated from the assignments to users of inappropriate
permissions on organizational sensitive data. Thus it is crucial
for organizations to recognize as early as possible the risks
deriving by inappropriate access right management and to
identify the solutions that they need to prevent such risks.

In this paper, we propose a framework to identify threats
during the requirements analysis of organizations’ IT systems.
With respect to other works which have attempted to include
security analysis into requirement engineering process (e.g.,
KAQOS, Elahi et al., Asnar et al.), our framework does not rely
on the level of expertise of the security analyst to detect threat
but allows to automatically identify threats that derive from
inappropriate access management.

To capture the organization’s setting and the system stake-
holders’ requirements, we adopt SI* [1], a requirement engi-
neering framework founded on the concepts ofactors, goals,
tasks and resources. This framework extends SI* with a
reasoning technique that identifies potential security threats
on resources and relevant goals. The reasoning is based on
Answer Set Programming (ASP) logic rules that take into
account the relationships between resources and the delegation
of permission relations between actors. We illustrate this
framework using an eHealth scenario.

I. INTRODUCTION

litong30@gmail.com

fabio.massacci@unitn.it

of an information system engineering process and manage
the level of risk of such threats by adopting suitable séguri
solutions.

In this paper, we propose a framework to identify threats
that are caused by inappropriate permissions assignment. W
identify such threats during the requirement analysis ef th
organizations settings and of its IT systems. With respect
to other works which have attempted to include security
analysis into requirement analysis { [2]-[5]), our framekvo
does not rely on the level of expertise of the security artalys
to detect threats but allows to automatically identify ttige
that derive from inappropriate access management.

To capture the organization's setting and the system
stakeholders’ requirements, we adopt SI* [1], a requirdgmen
engineering framework founded on the conceptactbrs
goals tasksandresourcesactorsare the system'’s stakehold-
ers,goalsare actors’ requirements, amasksandresources
are the means to achieve actor’s goals.

In this work, we consider resources and goals as assets
because their fulfilment brings value to the organization.
Therefore, they must be protected by assuring that security
properties (e.g., confidentiality, integrity, and availi&y) are
not violated.

We have extended SI* with a reasoning technique that

The intricacies of controls and permission assignmentsdentifies potential security threats on resources andaste
become more complex as the companies’ size, the numbeyoals. A threat is a situation where an actor who is not
of systems, and the granularity of access rights withintrusted by the owner of the goal/resource is granted a
enterprise-spanning systems grow. In organizations, gxanapermission on a goal/resource that the actor might misuse
ing the access rights while protecting sensitive orgaitirat to harm the goal/resource. To enable the reasoning, we
information is a daunting process for security adminisist extend the SI* modeling language with different types of
Many users may not be aware of their access rights orelationships between resources and different permission
conflicts/issues that their rights could create. Often sisertypes on resources.
are granted access to sensitive information but they are not The reasoning is thus based on Answer Set Programming
trusted by the information’s owners. If users misuse theifASP) logic rules that take into account the relationships
permissions they can un/intentionally compromise organiz between resources and the delegation of permission netatio
tional assets’ security. Examples of threats that can hit abetween actors.
organization because of an inappropriate access managemenThe rest of the paper is organized as follows. In Se¢fion I,
are unintended data editing, un/intentional disclosume, owe introduce the running example taken from the healthcare
internal misuse for a personal gain. domain. We introduce SI* framework in Sectignllll. We

To avoid such kind of threats, it is crucial to identify present the extensions to the SI* in Sectidn] IV and the
pitfalls in users’ permissions assignments in the earlyspia reasoning process to identify threats in Seclidon V. Then, we

discuss the related work in Sectiénl VI and outline futurepital, the Doctor, the Patient, the Pharmacy, the Pharma-
work in Section VIJ. cist, and theDrug Manager. The Hospital (Actor) has an
intention Requesk to fulfill the goal Provide medical ser-
vice andOwnsthe Smart T-shirt resource, while th®octor

To illustrate our approach for identifying threats, we usehas the capability Rrovide) to fulfill the goal Diagnose.
a scenario taken from the healthcare domain that is abouthis goal is then refinedAND-decomposédnto subgoals
health monitoring and drugs delivery to patients’ homesThi Monitor patient, Manage patient data, and Diagnose.
example involves six main actors: Some goals can produce or consume some resources. For

. Patientis monitored by a smart T-shirt which measuresexample, the goaDiagnose requires the resourceatient
medical data (e.g., heartbeat rate, blood pressure, etcdpta and produces the resourBeescription.

and transfers them to the Hospital's computer system. g+ 5150 captures social relationships (e.gelegation

When the pat|ent’§ condition is abnormal, the. doctorgng trust) for defining the entitlements, capabilities and
ma!<es a dlggnos!s and p_roQuces a prescription. Tthjectives of actors. Originally, delegationmarks a formal
patient receives his prescription and requests the drugassage of responsibilitglélegation executigror authority
delivery service to the pharmacy. _ (delegation permissignfrom an actor delegato} to the

« Hospital provides medical services to patients. Thezqior receiving the responsibility/authoritylelegatep to
hospital monitors patients’ health and manages patients; chieve a goal or to provide a resource. In this work, we
data, which are stored in the hospital's computer. Wheny,enqg the notion otielegation of permissioas described
the patient has some problems, the hospital assigns i the following section.Trust is a relation between two
doctor to diagnose the patient. actors representing the expectation of one actars{or)

« Pharmacy is responsible for managing drugs and pro- 5,4t the capabilities of the otherysted — trust execution
vide them to the patients. All the information about 5ng apout the behavior of the trustee with respect to the

drugs is stored in the pharmacy’s computer. _ given permission -rust permissionin this work, we only
« Pharmacist works for the pharmacy and is responsible .jsider the notion offust of permission

to provide drugs to be delivered according to the _ _
prescription received from the patient. The prescriptionExample 111.2. The Hospital delegates executioof the
information is stored in the pharmacy’s computer. goal Diagnose to the Doctor, because the doctor has the
« Drug manager works for the pharmacy and is respon- capability to fulfill the goal. Moreover, thPatient believes
sible to manage the drugs. All the drugs’ information that theHospital will not misuse the permission given upon
is also stored in the pharmacy’s computer. thePatient Data as specified by thi&ust permissionelation
« Doctor is responsible to diagnose the patients andoetween thePatient and theHospital.
prescribe required medications.

I[I. RUNNING EXAMPLE - DRUGSMANAGEMENT

IV. THE EXTENDED GOAL MODEL

1. THE SI* MODELING FRAMEWORK In order to automatically detect threats on resources we

SI* [d], [6] is a modeling framework extending the i* rely on a subset of the basic concepts of S[* [1] and we
framework [6] which supports security requirement analysi Propose some extensions to the SI* modeling language to
SI* is part of a complete security methodology, which aimsrepresent different types of actors’ permissions on resssur
at analyzing and modeling organizational settings and it@nd different types of relationships between resources.
security and dependability requirements. We inherit from SI* the concepts dactor, resource and

The SI* Ianguag@ is founded on the concepts attor, goal and a subset of SI* relations such dscomposition
goal, resourceand relations such asND/OR decomposition means-endprovide request own, and the social relations
and means-endAn actor is an entity which has intentions, delegationandtrust of permissions and execution that have
capabilities, and entitlements;gmal captures a strategic in- Peen introduced in Sectiénlill.
terest that is intended to be fulfilled;r@sourceis an artifact In this work, goals and resources are considered as assets
produced/consumed by a go#ND/OR decompositiois ~ that need to be protected because they bring values to
used to refine a goameans-enddentifies goals that provide ©Organizations. In order to specify how an asset needs to

means for achieving another goal or resources produced &€ protected, we use the concept s#fcurity requirement
consumed by a goal/task. defining a specific security property, such as confidentjalit

i integrity, and availability, to be preserved for a resource
Example 11l.1. Figure 8 shows the goal model for the \joreover, a security requirement might also be related to a
Drugs Management scenario involving six actors: H@s- g45] pecause this goal produces or consumes the resource.
1We only mention concepts that are relevant to this work Figgre[} illustrates the. extended .SI*. conceptual model
2We useitalic fontsto indicate the basic concepts of SI* framework, and used in this work where in gray we indicate concepts and
sans-serif fonts to denote the one related to the running example. relations that belong to SI* and in black we denote our

Prescription

Manage drug

Drug info

PComputer

Smart T-shirt

Provide medical
service

Patient data

Diagnose

Sell drug Monitor patient
Manage

patient data

Manage drug

Intearity

Confidentiality

Sensor data ——
Prescription

Provide drug

Prescription

Actor

o HComputer
Drug info Prescription /
/ part] of
in store_j
require/ Availability
—\ Patient data
PComputer Smart T-shirt

Resource

Figure 1. Goal Model of Drugs Management Scenario
» Delegater | Delegation/ I Example IV.1. Considering thg scena.rioiin Figuﬁ' 1, the
Trustor Trust _IV T Drug Manager needs the modify permission drug info
l S e l to fulfill its goal Manage drug. However, it can be the case
I
ADclegateefTrustee | pssets that theDrug Manager is given an higher permission (e.g.,
W Provide, Permission ™ O ~ manage) orDrug info yvhich gives him also the cap_ability
I I to revoke the permission given to other actorshmug info
Store_in, and thus to make no longer available the resource to these
'Eiﬁa?rfé Goal]v Subgoal actors. This situation might be a problem if the actors need

[
<fSecurity Property

<4Means-endp

Security Req

Figure 2. Conceptual model of the extended goal modeling framew

extensions. We introduce our extensions to SI* in the next

two subsections.

A. Types of Resource Permissions

SI* framework can only capture whether an actor has
a permission on a resource or not but it does not allow
one to specify which is the type of permission the actor is
granted on the resource. Specifying the permission type is

to acces®Drug info to fulfill their goals.

Therefore, we refine the notion of permission in SI*
by introducing three different types of permissioascess
modify, andmanageas described in Tab[g I.

Table |
PERMISSIONS ON RESOURCE

- (Possible)
Pel:lr_nlsesmn Description Affected Sec.
yp Property
Access Actor only has the permission) o
(low-level) to access/read/use the resour :e.C onfidentiality

Modify Actor can change the content

of the resource. Integrity

Actor has the permission tg
modify the resource, delegate
permissions to other actors and Availability
modify permissions to other acr
tors.

(medium-level)

Manage
(high-level)

crucial because it determines the type of actions an actor
can perform on a resource. Some of these actions might be Each permission type determines the set of actions that

used by an actor to un/intentionally harm a resource.

an actor can perform on a resource. Thus, a permission type

might lead to the violation of a specific security property if Pharmacy’s computer. This means that the actors who
the actor misuses the actions associated with the permissidiave the permission to manage tAkarmacy’s computer
type. In Tablell we show the relation between permissiorcan also access/modify/manage fPrscriptions.

types and security propgrtlgs that might be wolaFed it an The part_of relation indicates a composition relation
actor abuses of the permission type. For example, if an actcbr

e . etween resources. If an actor has some permission on a
has anaccesgermission on a resource, he can accidentally

. .) fesource, it implies s/he has the same permission on its.part
disclose the resource and thus violate the resource’s confi- , . . .
dentiality. Therequire relation denotes that a resource might require

another resource to function. In contrast wjitvt_ of and
Example 1V.2. In Example[1V1, theDrug Manager has a store_in, require does not need that the same permissions
modifypermission orDrug info. If Drug Manager misuses apply to both resources linked by the relation.

this permissions he/she un/intentionally compromise the Moreover, all the relations require the same security
integrity of Drug info. requirement is preserved for the linked resources.

We also assume that there is a hierarchy between thExample IV.5. In order to guarantee the availability of
different permission types: theanagepermission implies the Sensor data also the availability of theSmart T-shirt
themodifyone, and thenodifyimplies theaccessbecause in needs to preserved. Similarly, in Examp?@ to preserve
an information system theanagepermission is considered the confidentiality ofPatient data we need to guarantee the
the most powerful right. confidentiality of Prescription and Sensor data.

Example 1V.3. The Drug manager hasmodify permission V. THREAT IDENTIFICATION
on Drug info resource therefore s/he can alaccesfead

. The threat identification reasoning process aims at identi-
the Drug info.

fying potential security threats for resources in a goal ehod
Note that if a resource is a physical resource (e.g., DBMSWe consider as dhreat a situation where an actor has a

computer), we consider ongccessandmanagepermission particular permission on a resource/goal but the owner of

because for such kind of resource it does not make sendbe resource/goal does not trust the actor.

to distinguishmodify and managepermissions; while on an ~ The reasoning process is based on ASP logic rules for

informational resource we might grant all three permission) formalizing the goal model (Tables] Il arid]ll), ii) de-

types. termining the actors’ permission on resources (TabE V),
Since an actor is able to delegate a permission to anothéf) determining the security requirements that are asgedi

actor, we need to extend thdelegation of permissioin ~ Wwith resources and goals (Tablg V), and iv) identifying

order to specify which permission type is delegated. Thehreats (Tablé V).

delegation of the different types of permissions - delegati A Build the Goal Model

of access/modify/manage- is graphically represented by an _ _ _

edge labeled wittDpa, Dpmd and Dpma respectively as ~ The aim of this step is to draw a SI* model that cap-

depicted in Figur€ll. Note that, a delegator can only detegattures the system’s stakeholders requirements as depicted

a permission on a resource when s/he has rﬂmqage in Figure[]. This means Identlfylng the actors with their

permission on the resource. goals and resources and tasks to fulfill them, and the
delegation and trust relationships between actors. Marmreov
B. Relationships between Resources it is important to identify the relationships between rases

and resources’ security requirements.

In order to identify the threats automatically, the SI*
model has to be formalized. As we have doné€_in [7], we use
an ASP system (i.e., DLV) to formalize the new concepts
and relations introduced in this work. Talld Il lists the
The store_in relation captures a situation where an predicates to formalize a SI* model similar with the one
informational resource is stored in a physical resourcé& sucProro sed inl[l]. There are new pred|_c ates 1o express the
as a file stored on a computer. By using this relation Werelatlons between resources, the permission an _actor ha_s on
can determine all locations where a resource is stored an‘%i1 resource, the extended delegation of permission rejation

e security requirements of resources and goals, and the

which actors have access to those locations; and Whethtr
reats on resources and goals.
The predicatestored in, part_of andrequire denote the

a particular security property of the resource might be

violated. . . . X
possible relationships between resources. The predieaite

Example IV.4. Patients’ prescriptions are not onlystored missionrepresents the permission an actor has on a resource

in the Hospital’s computer system, but alsostored inthe where PT € {access, modify, manage}. An actor can

The other important extension we propose to SI* mod-
eling language is the ability to specify relations between
resources. Essentially, resources in an information syste
can be structured using three relatiosgire_in, part_of,
andrequire.

. . Table 11l
delegate its permissiord¢l_perm) to another actor when AXIOMS FOR GOAL MODEL EXTENSIONS

he has sufficient permission on the resource (irewnage). Relation implication
Moreover, the predicat&rust_perm indicates the belief of [TAT own(A, RI) — part_of(RI, R) A own(A, R)

an actor that the other actor will not misuse the granted A2 provide(A, ST) < subgoal(S1, S) A provide(4, S)
trust_perm(A, A2, R) «— trust_perm(A, Al, R)

perm|SS|on.- . . A3 A trust_perm(Al, A2, R)
The predicatesecure req represents the security require- pa Drust_perm(A, AL R1) — part_of (RL, R)
ment associated with resources and goals. This predicate A trust_perm(A, Al, R)

holds when a resource needs to meet a specific security prop-
erty (SP € {confidentiality, integrity, availability}), or
a goal needs to meet a security property which holds for a Permission propagation
specific resource that is produced or required by the goakp1 permission(A, R, modify) — permission(A, R, manage)

Finally, the predicat¢éhreatholds if an actor is a threat agent. | P2 permission(A, R, access) «— permission(A, R, modify)
))) P3 permission(A, R, manage) < own(A, R)

Example V.1. The SI* model, presented in Figuté 1, is [, permission(AL R, PT) — del_perm(A, AL R, PT)

formalized as depicted in the snip of the DLV input in — RlAP@TmiSSiO“(tAvRvmagilgE)

Figure[3. Lines 1 to 17 show the predicates to denote the P5 permission(4, 7/1;”;67:"(;!1];35;;(21:%71:151na’ge))

actors, goals and resources in the SI* model. The remaining_ -~ permission(A, R1, PT) — part_of (RL R)

lines show the predicates that encode relations betweén A permission(A, R, PT)

actors, goals and resources. For example, lines 39 repsesen

the delegation of execution of golanage Drug between .

the Pharmacy and theDrug Manager. Line 42 shows the data therefore s/he is also the owner of resource’s subparts:

delegation ofmanagepermission orPComputer from the ~ S€nsor data and Prescription as stated in AxiomAl.
Pharmacy to the Drug Manager. Assuming theHospital has the capability to provide the

goal Provide medical service, according to AxiomA2,

We also introduce axioms (Tablellll) to derive implicit then the Hospital also has capabilities to fulfilProvide
relationships between resources and actors in the modehedical service’s subgoals: Monitor patient, Manage
Axiom Al specifies that if an actor is the owner of a patient data, and Diagnose. According to axiomA3, the
resourceR?, he also owns each resource subgayt AXiom patient believes theDoctor will not misuse any given
A2 specifies that if an actor has the capability to providepermission on théPatient data because théatient trusts
a goal G, he is also able to providé’s subgoals. In this the Hospital and theHospital trusts theDoctor§ Since the
work, we assume th&ust relationship is transitive across patient trusts theHospital upon the managepermission
actors (AxiomA3) or via part-of relation (Axiom A4). to his/herPatient data, then indirectly s/he also trusts the
Hospital to managePatient data’s subparts:Sensor data
and Prescription(axiom S4).

Table IV
RULES FOR ACTORS PERMISSIONS DETERMINATION

Example V.2. The Patient is the owner of thePatient

Note that the quality of a goal model is crucial for the

Table 1l . 2,

PREDICATES FOR AN EXTENDED GOAL MODEL FORMALIZATION validity of the analysis’s results. Iri|[8] the authors have
Goal model illustrated several best practices to build a “good” goal
goal(Goal:g) model.
resource(Resource:r)) o
actor(Actor:a) B. Determine Actor’s Permission on Resources
provide(Actor:a, Goal:g)
own(Actor:a, Goal:g) By applying the automated reasoning formalized in Ta-
own(Actor:a, Resource:r) ble [Vl we can determine the actors’ permissions on each
subgoal(Goal g1, Goal:g) resource. AxiomsP1 and P2 represent the hierarchy of
means end(Resource:r, Goal:g) . .
means end(Goal:g, Resource:r) permissions. AxiomP3 assume the owner of a resource
Resource model will have the highest permission on the resource (i.e.,
stored in(Resource:r, Resource:rl) managé. Axiom P4 specifies that an actor (with tmeanage
part_of(Resource:r, Resource:rl) el . ..
require(Resource:r, Resource:rl) permission on a resource) can give any permission type
Permission model on the resource to another actor. Additionally, other actor
selrmissio&(Atctor:aAR’teSOL:JchFe;r, PType:ptF))T . permissions can be derived from the relationships between

€l_perm(Actoria, Actor:al, resource:r, ype:p . e .
trust_perm(Actor-a, Actor-al, Resource-r) resources. AxionP5 specifies that if an actor hash@anage
Security requirements and Threats model permission on a resourck which stores a resourc&,
secure req(Resource:r, SProperty:sp) s/he then has thenanagepermission also orR;. Axiom
secure req(Goal:g, SProperty:sp, Resource:r)
threat(Actor:a, Resource:r, SProperty:sp) . 3We are aware that in some domain the transitivity of trust it
threat(Actor:a, Goal:g, SProperty:sp, Resource: might not be applicable.

1 actor {doctor).
2 actor{drug_manager).

gonl(munuge_drug):.'
goal{manage_patient_data}.
10 goal {monitor_patienty.

14 resource(drug_info).

15 resourcelhoonputar).

16 resource(patient_data).

17 resource(poonputer).

21 own{patient ,prescription).

24 own{pharmacy , peonputer .

25 provide(doctor ,diagnose).

26 provide(drug_manoger menoge_drug’.

30 request(hospital ,provide_medical _service).

31 request {pharnacy ,sell_drug).

32 requiresensor_data,snort_t_shirt).

33 subgoal (manage_drud,sal l_drug).

34 subgoal (provide_drug,zell_drug).

10 del_exec{pharnacy ,drug_nanoger ,manage_drug).

40 del_exec(pharnacy ,phornacist provide_drug).

41 del_perm{patient ,pharmacy prescription,qccess).
42 del_perm{pharmacy ,drug_nanager ,promputer ,manage) .

2 ieans_end{patient_data,manage_patient_data).
3 means_end{ prescription,provide_drug).
54 part_of (prescription,patient_data).

5 port_of (zensor_dota,potient _data}.

f store_in{drug_info,pcomputer).

57 store_in(potient_data,hoonputer).

5§ store_in{prescription,poomputer .

59 trust_perm{patient ,hospital ,patient_dota).

60 trust_perm{patient ,pharmacy ,prescription).

£1 trust_perm{pharmocy ,pharmocist ,prescription’).
g2 =zecurity_req_ri{=ensor_dota,integrity}.

€3 security_req_r{potient_data,ovailaobiLity).

zecurity_req riprescription,confidentiality).
Figure 3. Drugs Management Goal Model Formalization

P6 specifies that if an actor has a permissiBi’ on a

resource bymeans — end relation. Table[V specifies the
axioms to determine the security requirement for resources
which are linked via astore_in, part_of, and require
relationship (axiomS1-S7). Axiom S3 states that if the
integrity of a resourceR; is critical and R; is stored
inside another resourc®, than also the integrity ofR
should be guaranteed. The security requirement of a goal
can be derived from the resource’s security requirement to
which the goal is connected via a means-end relationship
as specified by axiom$8 and S9. Axiom S10 specifies
that the same security requirement that applies to a Goal
should be applied to its subgoals.

Example V.4. Since the confidentiality oPrescription is
required andPrescription is stored inPComputer because
of Axiom S1 and S2 the confidentiality and integrity of
PComputer has to be preserved as well. By applying axiom
S4, in order to guarantee the availability 8gatient Data,
HComputer must be available. Moreover, sincgensor
Data requires theSmart T-shirt and integrity of Sensor
Data has to be preserved, the integrity ®fart T-shirt has

to be guaranteed (axiot$i6).

D. Identify Potential Threats

Table[V] lists all the axioms used for identifying poten-
tial threatd] Essentially, once the security requirement of
resources and goals and actors’ permissions are defined,
we can determine possible threats on resources following
axiomsT'1-T'3. The axioms state that we have a threat when
an actor has a permission sufficient to violate the security
requirement associated with the resource and the actor is
not trusted by the resource’s owner. Then, the threat for

resourcefz, then s/he has the same permission on subpagogals are identified by applying axiorigl-77. A goal G is

R; of resourceR.

Example V.3. Since thePatient has delegated thaccess
permission to théharmacy, the Pharmacy has theaccess
permission orPrescription. Moreover, thePharmacy has
themanagepermission orPComputer following axiom P3,

and themanagepermission orDrug Info and Prescription

based on axionP5. By applying axiomP4 the Pharmacist

and theDrug Manager obtains themanagepermission on
the PComputer from the Pharmacy. Apart from this, the
Pharmacist also gainsaccesspermission on thérescrip-

tion from the Pharmacy. Since theDrug Manager has
managepermission on th@Computer (axiomsP1 and P2)

and Prescription is stored inPComputer,Drug Manager

hasmanagepermission orPrescription (axioms P5).

threatened when the goal is provided by an actorthat is

a threat agent for a resouréethat is linked to the goal by

a means — end relation. For each threat, we also identify
the threat agent, the resource being harmed and the security
property being violated.

Example V.5. Table[VIl summarizes the threats identified.
Drug Manager is a threat agent for botlPrescription
and PComputer because he hamanagepermission on
PComputer and PComputer storesPrescription but the
Patient does not trust th®rug Manager.

The list of threats can be useful for different stakeholders
in the security engineering process. The risk analyst, for
example, can assess the level of risk associated with the
threats: if the risk is unacceptable, some treatments are

C. Determine Goals and Resources Security Requirementsequired to mitigate the risk level. These treatments can be

We assume that if a security requirement has to be fulfilled®turned back to the requirement analyst who revises the SI*
for the resourceR, then the same security requirement model with tasks representing the treatments. Alternigtive

should be fulfilled for another resourde that is linked to
R, by a relationshipstore_in, part_of, andrequire. The
same assumption applies to a géalwhich is linked to the

4 The complexity of identifying threats is the same as the onéetking
a DLV program [[9] because the model and the axioms are formaklsed
a DLV program.

Table V
AXIOMS FOR DERIVING SECURITY REQUIREMENTS

Security requirement propagation

S1 secure_req(R, con fidentiality) < store_in(R1, R) A secure_req(R1, confidentiality)
S2 secure_req(R,integrity) — store_in(R1, R) A secure_req(R1, con fidentiality)

S3 secure_req(R,integrity) «— store_in(R1, R) A secure_req(R1, integrity)

S4 secure_req(R, availability) — store_in(R1, R) A secure_req(R1, availability)

S5 secure_req(R1,SP) — part_of(R1, R) A secure_req(R, SP)

S6 secure_req(R,integrity) < require(R1, R) A secure_req(R1,integrity)

S7 secure_req(R, availability) <« require(R1, R) A secure_req(R1, avatlability)

S8 secure_req(G, SP, R) «— secure_req(R, SP) A means_end(G, R)

S9 secure_req(G, confidentiality, R) «— secure_req(R, confidentiality) A means_end(R,G)
S10 secure_req(G1, SP, R) «— subgoal(G1,G) A secure_req(G, SP, R)

Table VI
AXIOMS FOR THREAT IDENTIFICATION

Threat Identification
T1 threat(Al, R, con fidentiality) — own(A, R) A secure_req(R, con fidentiality)
A permission(Al, R, access) A not trust_perm(A, A1, R) N A1 # A
T threat(Al, R, integrity) «— own(A, R) A secure_req(R, integrity) A permission(Al, R, modify)
A not trust_perm(A, Al, R) A del_perm(A, A1, R, PT) N A1 # A
T3 threat(Al, R, availability) < own(A, R) A secure_req(R, availability)
A permission(Al, R, manage) A not trust_perm(A, A1, R) N A1 # A
T4 threat(Al, G, confidentiality, R) «— threat(Al, R, confidentiality) A means_end(R,G) A
provide(Al, G)
T threat(Al, G, confidentiality, R) — threat(Al, R, confidentiality) A means_end(G, R) A
provide(Al, G)
T6 threat(Al, G,integrity, R) < threat(Al, R, integrity) A means_end(G, R) A provide(Al, G)
T7 threat(Al, G, availability, R) < threat(Al, R, availability) Ameans_end(G, R)Aprovide(Al, G)

Table VII

IDENTIFIED THREATS

threat(drug_manager, prescription, con fidentiality)
threat(drug_manager, prescription, availability)

threat(drug_manager, pcomputer, con fidentiality)

and to generate resolutions to those obstacles. KAOS anti-
goal captures the intention of an attacker or considers it
as a malicious obstacle. In comparison to ours, the security
analysis proposed in these works does not take in to account

threat(drug_manager, pcomputer, integrity)
threat(drug_manager, pcomputer, availability)

(

(

(

E actors’ permissions and relations in the organization tvhic

threat(pharmacist, prescription, con fidentiality)

(

(

(

(

(

can be considered as the main sources of security risks in
an organization. Moreover, there is lack of guidance on how
to specify domain properties so that the obstacles/araisgo
elicitation is complete and relevant.

threat(pharmacist, prescription, availability)
threat(pharmacist, pcomputer, con fidentiality)
threat(pharmacist, pcomputer, integrity)

threat(pharmacist, pcomputer, availability)

threat(pharmacist, provide_drug, con fidentiality, prescription)

Liu et al. [3] proposes an extension of the i* frame-
work [6] to identify attackers, and analyze vulnerabiktie
the threat list can be piped to the security architect Wh&;crtc:)l#gharaec?c:r?s'ggrr):;daincﬁtgglt('zll gqttatlcj;(serzems:;?or!r(é ?r:le
identify possible security solutions at architecturaleleto ! P '

prevent such threats to occur. An example of how to tocapabilities are analyzed and possible damages caused by

transform security requirements into architecture sotuts actors are assessed. In Li et all[12], the aUthorS pro p'osed a
. formal framework to support the attacker analysis. SiryiJar
presented in [[10]. .) .
Elahi et al. [4] propose extensions to i* to model and analyze
the vulnerabilities affecting systems requirements. Tmou
In this work, we consider several requirement frameworksthese works conS|der.reIat|ons betwegn actors, they'elw r
on the level of expertise of the security analysts to idgntif

that have attempted to include security analysis into thep ossible attackers (i.e.. even they have already been part
requirement elicitation process. Among goal-oriented ap! e .)
d b g9 b f the model) and vulnerability. Moreover, the notion of

proaches, van Lamsweerde extends KAOS by introducin% o i . B . TR
ermission (including the “delegation of permission”) @ n

the notions of obstaclé [11] and anti-goal [2] to analyze idered to be critical in thei deli d vsisevhi
the security concerns of a system. KAOS obstacle capture pnsiderec to be critical in (heir modeting and analysisievnl
is crucial in our framework.

an undesired state of affairs that might harm safety goalé
(i.e., hazard) or threaten security goals (i.e., threat). | In addition, some works focus on integrating risk analysis
the framework, the authors propose a formal framework tdnto the requirement analysis process, such as ISSRM [13],
identify the obstacles to a goal in a given domain propertieshe GR framework[[5], and CORAS [14]. In Information

VI. RELATED WORK

System Security Risk Management, Mayer et [all [13] pro- [2] A. Van Lamsweerde, “Elaborating security requirements by

posed a conceptual model for managing security of an
information system based on several security methods (e.g.

CORAS, ISO 27001). Unlike ISSRM, Asnar et all [5]

propose a concrete methodology, namely the Goal-Risk[3]
framework to analyze and model security problems. It
captures the stakeholders’ goals, risks that might thneate

construction of intentional anti-modelsProceedings. 26th
International Conference on Software Engineeripg. 148—
157, 2004.

L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy
requirements analysis within a social settin§foc.of RE
vol. 3, pp. 151-161, 2003.

the goals, and countermeasures required to mitigate thq4] G. Elahi, E. Yu, and N. Zannone, “A vulnerability-centric

unacceptable the risk. Similarly, CORAS [14] provides a
comprehensive method for managing risk (i.e., not only
information security risk). The CORAS analysis is centered
on analyzing “unwanted incidents” for a defined asset model.

requirements engineering framework: analyzing security at-
tacks, countermeasures, and requirements based on vulnera-
bilities,” Requirements Engineeringol. 15, no. 1, pp. 41-62,
Nov. 2009.

When the risk level of those unwanted incidents is beyond [5] Y. Asnar, P. Giorgini, and J. Mylopoulos, “Goal-driven risk

the acceptable one, several treatments will be introduced
to the system. Though these frameworks support the risk

assessment process of possible threats, the elicitatidakof

(i.e., event in the GR or unwanted incident in the CORAS) is

a manual process which depends on the analysts’ knowledge
and there is no technique to ensure that the identification of
threats is complete and exhaustive. Through our approach,7]

analysts can identify automatically the threats that eixist

a given organization and permission setting. However, the
outcome (i.e., threats) of our analysis can be considered as

an input for further risk assessment.
VIl. CONCLUSION AND FUTURE WORK

In this paper we propose a framework to automatically

identify threats that is complementary to other threatstide
fication approaches that rely on the analyst level of experti

assessment in requirements engineeriRgtjuirements Engi-
neering vol. 16, no. 2, pp. 101-116, 2011.

E. Yu, “Modelling strategic relationships for process reengi-
neering,” Ph.D. dissertation, University of Toronto, Canada,
1995.

P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
“Modeling security requirements through ownership, permis-
sion and delegation,” irRequirements Engineering, 2005.
Proceedings. 13th IEEE International Conference, aro.
July. |EEE, 2005, pp. 167-176.

[8] Y. Asnar, R. Bonato, P. Giorgini, F. Massacci, V. Meduri,

C. Riccucci, and A. Saidane, “Secure and Dependable Pat-
terns in Organizations: An Empirical Approach,” Require-
ments Engineering, 2007. Proceedings. 15th IEEE Interna-
tional Conference an2007.

such as risk assessment. The threats are derived from po®l T. Del’Armi, W. Faber, G. lelpa, N. Leone, and G. Pfeifer,

tential misuse of actors’ permissions on resources. Inrorde

to identity potential threats, we have extended SI* with:

1) relationships between resources, 2) actors’ permission
on such resources, 3) security requirements on goals and
resources, and 4) delegation of a particular permissioa typ[lo]

to the other actor.

We are planning to extend the framework, by considering
other relationships between resources and identify more

complex threat patterns that lead to the violation of séguri
properties.

ACKNOWLEDGMENTS
This work has been partially funded by NFSC of

China (Grant No0.60873064), the 973 Program (Gran{12]

N0.2009CB320706), EU-FP7-ICT-IP-ANIKETOS (Grant
N0.257930), EU-FP7-ICT- IP-SecureChange

N0.256980).
REFERENCES
[1] F. Massacci, J. Mylopoulos, and N. Zannone, “Security

Requirements Engineering : The SI * Modeling Language

and the Secure Tropos Methodology,” #&dvances in In-
telligent Information Systemser. Studies in Computational

Intelligence, Z. Ras and L.-S. Tsay, Eds. Springer Berlin /

Heidelberg, 2010, vol. 265, pp. 147-174.

(Grant
N0.231101), and EU-FP7-ICT-NoE-NESSo0S project (Grant

“Aggregate functions in disjunctive logic programming: Se-
mantics,complexity,and implementation in dlv,” Proceed-
ings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI) 2003 Elsevier Science Publishers, 2003,
pp. 847-852.

K. Yskout, R. Scandariato, B. De Win, and W. Joosen,
“Transforming security requirements into architecture,” in
Third International Conference on Availability, Reliability

and Security, 2008. ARES 08IEEE, Mar. 2008, pp. 1421—

1428.

A. Van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineerintfEE Transactions
on Software Engineeringol. 26, no. 10, pp. 978-1005, 2000.

T. Li, L. Liu, and B. R. Bryant, “Service Security Analysis
Based on i*: An Approach from the Attacker Viewpoint,” in
Security, Trust, and Privacy for Software Applications (STPSA
2010) Seoul, 2010, pp. 127-133.

N. Mayer, P. Heymans, and R. Matulevicius, “Design of a
modelling language for information system security risk man-
agement,” inProceedings of the 1st International Conference
on Research Challenges in Information Science (RCIS 2007)
2007, p. 121-131.

M. S. Lund, B. Solhaug, and K. StoleModel-Driven Risk
Analysis - The CORAS Approach Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011.

	Introduction
	Running Example - Drugs Management
	The SI* Modeling Framework
	The Extended Goal Model
	Types of Resource Permissions
	Relationships between Resources

	Threat Identification
	Build the Goal Model
	Determine Actor's Permission on Resources
	Determine Goals and Resources Security Requirements
	Identify Potential Threats

	Related Work
	Conclusion and Future work
	References

