
Dealing with Security Requirements for
Socio-Technical Systems: A Holistic Approach

Tong Li, Jennifer Horkoff

University of Trento, Trento, Italy
{tong.li,horkoff}@disi.unitn.it

Abstract. Security has been a growing concern for most large organiza-
tions, especially financial and government institutions, as security breaches
in the socio-technical systems they depend on are costing billions. A major
reason for these breaches is that socio-technical systems are designed in
a piecemeal rather than a holistic fashion that leaves parts of a system
vulnerable. To tackle this problem, we propose a three-layer security anal-
ysis framework for socio-technical systems involving business processes,
applications and physical infrastructure. In our proposal, global security
requirements lead to local security requirements that cut across layers and
upper-layer security analysis influences analysis at lower layers. More-
over, we propose a set of analytical methods and a systematic process that
together drive security requirements analysis throughout the three-layer
framework. Our proposal supports analysts who are not security experts
by defining transformation rules that guide the corresponding analysis.
We use a smart grid example to illustrate our approach.
Keyword: Security Requirements ¨ Goal Model ¨ Multilayer ¨ Socio-
Technical System ¨ Security Pattern

1 Introduction

Like all non-functional requirements, security requirements have a global in-
fluence over the design of a socio-technical system. Socio-technical systems
(STSs) are organizational systems consisting of people, business processes, soft-
ware applications, and hardware components. Such systems often include a
rich physical infrastructure consisting of not only computers, but also build-
ings, cable networks and the like. Due to their ever-increasing complexity, STSs
have been experiencing a growing number of security breaches [5], caused by
security flaws and vulnerabilities.

A common theme for many of these breaches is that security solutions are
not designed in a holistic fashion. Rather, they are dealt with in a piecemeal
fashion, by different analysts and at different times, using different analysis
techniques. For example, Mouratidis [13] and Liu [11] analyze security issues at
organizational level; Herrmann [9] analyzes security requirements in business
process level; Lamsweerde investigate security requirements for software [21].
This leads to security gaps and vulnerabilities for parts of a STS, while others
may be costly and over-protected. For example, when designing an encryption

function for a smart meter system, a designer may focus only on the software
(application layer). In this case, the software can implement encryption by
calling functions implemented by an external hardware chip. However, with
this design alternative, calling the external functions means that the software
first sends unencrypted text to the chip, creating a vulnerability which can be
exploited by non-authorized people (business layer) via bus-snooping (physical
layer) [1]. By focusing only on the software, vulnerabilities from the physical
layer and business layer perspectives are missed.

To tackle this problem, we propose a holistic approach to security engineer-
ing where STSs consist of three layers: a business layer, a (software) application
layer, and a physical infrastructure layer. Within this framework, each layer
focuses on particular concerns and has its own requirements and specifications,
which are captured by goal-oriented requirements modeling language. In par-
ticular, specifications in one layer dictate requirements in lower layers. In this
manner, the security requirements analysis carried out in one layer seamlessly
leads to the analysis in the next layer down. Thus, security requirements de-
rived in different layers can cooperate properly to deliver security to systems.
Go back to the aforementioned encryption example, if a holistic view is taken, al-
ternative security treatments are identified: 1) apply software-based encryption,
which avoid hardware access issues; 2) apply hardware-based encryption, as
well as additional protections on corresponding hardware. In this way, security
mechanisms applied in different layers are coordinated, and the aforementioned
vulnerability can be avoid.

Based on this framework, a systematic process is provided to drive security
analysis both within one layer and across layers. To support analysts without
much security knowledge, we propose a set of analytical methods and corre-
sponding transformation rules to facilitate the security analysis process. This
security analysis framework is particularly designed for existing systems that
have a determined functional design. Our approach takes a number of high-
level security requirements as input, analyzes their influences over three layers,
and produces holistic security treatments that consist of coordinated security
mechanisms in different layers.

In the reminder of this paper, we first describe a smart grid example in Sec-
tion 2, which is used to illustrate our approach throughout the paper. Next, in
Section 3 we introduce our research baseline on requirements and specification
models, and security requirements analysis. Section 4 presents the three-layer
security analysis framework, while Section 5 describes a set of security require-
ment analysis methods and a systematic analysis process. Section 6 compares
our proposal to other work, and finally in Section 7 we conclude the whole
paper and discuss future work.

2 Motivating Example

In this section, we introduce a smart grid example, which leverages information
and communication technologies to enable two-way communications between

customers and energy providers. This example involves a number of scenar-
ios, and we exclusively focus on a real-time pricing scenario. In this scenario,
the service provider periodically collects customer’s energy consumption data,
based on which they can create new prices to balance loads on the power grid.
A business layer requirement model for this scenario is shown in Fig. 1. We will
introduce details of the goal-oriented modeling language in Section 4.

Because this system involves a wide scope of artifacts, which vary from
business processes to physical devices, it is difficult to provide a cost-benefit
security treatment to protect the whole system from damages. As reported
by National Vulnerability Database, on average, 15 new vulnerabilities of the
Supervisory Control and Data Acquisition system (a major control system used
in power grid systems) are publicly disclosed each day. Not surprisingly, the
presence of these vulnerabilities leads to many attacks on smart grid systems [5].

(S)
High Confidentiality
[customer data, G1]

(S)
Low Availability

[G3, G3]

(S)
Medium Integrity

[energy consumption
 data, G2]

legend

Goal Task

Softgoal Domain
Assumptton

and-refine

refine operationalize

Low cost

Energy
provider

Real-time
pricing

Customers
response to current

price

Have a
proper
price

Send price
info to

customer

Have
current

load info

Calculate
price

Decide
price

Adjust usage of
customer device

Send price info via
AMI network

Customer
has an EMS

Collect
load info

Bill
customers

Charge
customers

Billing

Generate
 customer's

bill

G1

G2

G3

G4

G5

G6

G7

D1

T1

T2

T3

T4

T5

T6

T7

(S)
Security

Goal

Fig. 1: High-level requirements of real-time pricing scenario

3 Baseline

In this section, we introduce existing work, used as the baseline of our research.
We first introduce the requirements problem, which specifies fundamental tasks
that need to be addressed during requirements analysis. Then, we describe
several requirements modeling language [10, 22, 6, 2], which are intended to
capture requirements or tackle the requirements problem.

Requirements Problem. Zave and Jackson [23] define a Requirements Engi-
neering ontology to specify what is the requirements problem. This definition
consists of three concepts: a Requirement is an optative property that specifies
stakeholder’s needs on the system-to-be; a Domain Assumption is an indicative
property that is relevant to the system; a Specification is an optative property,
which is able to be directly implemented by the system-to-be. Based on these
three basic concepts, they define the requirements problem amounts to finding
a set of specifications S, which can satisfy all system requirements R under do-
main assumptions K. Thus, the requirements problem is represented as K,S $ R.

Requirements Modeling Language. Jureta et al. [10] propose a goal-oriented
requirements modeling language Techne, which includes all related concepts
for addressing the requirements problem as defined by Zave and Jackson. In
addition, it is able to model stakeholder’s priority over different requirements,
based on which, the best solution can be obtained amongst candidate solutions.
Yu [22] proposes the i* framework for modeling organizational environments
and system requirements. Specifically, it captures relationships among social
actors via dependency relations. Chung adopts NFR to analyze security re-
quirements [2]. In this work, a security requirement is represented as a security
goal, which is specified in terms of sort and parameter. Giorgini et al. [6] model
trusts relations between social actors in order to analyze social security issues.
In this work, we base our three-layer framework on a combination of above ap-
proaches to model both functional and non-functional requirements (including
security requirements), as well as social interactions. Particularly, we use the
concepts actor, goal, softgoal, quality constraint, task, and domain assumption and
the relations refine, preferredTo, dependency, contribution, and trust, provided by
those approaches. Fig. 3 shows how we combine these concepts and relations
in our conceptual model.

4 Three-Layer Security Analysis Framework

Stakeholder’s global security needs, which are captured as non-functional re-
quirements, influence designs in all parts of the system. We propose to structure
a system into three layers, and analyze security issues in each layer from a
holistic viewpoint.

4.1 Three-Layer Structure

In this work, we have focused on three particular layers, which have received
much attention from the security community. As shown in Fig. 2, at the most
abstract layer, we consider the business layer, which highlights social dependen-
cies, trusts, and business processes. At the next layer of abstraction, we consider
software applications and their related IT infrastructures. Finally, we consider
the physical infrastructure layer, which focuses on deployments of software
applications and placements of devices.

As an essential part of the three-layer structure, we propose to analyze
the requirements problem for each layer respectively. Each layer has its own
requirements R, which are operationalized into proper specifications S under
corresponding domain assumptions K. As shown in the left part of Fig. 2,
we apply goal-oriented modeling to each of the three layers with the aim of
analyzing their requirements problems respectively.

We base our three-layer security analysis approach on the proposed three-
layer structure, which is shown in the right part of Fig. 2. Our approach starts
with high-level stakeholder’s security requirements; and then analyzes them
throughout three layers with regard to layer-specific goal models; and finally
generates a set of alternative global security treatments.

Business layer
security analysis

Application layer
security analysis

Physical layer
security analysis

Business Goal Model
[S, K ⊢ R]

Security-Enhanced
Business Goal Model

Application Goal Model
[S, K ⊢ R]

Physical Goal Model
[S, K ⊢ R]

Security-Enhanced
Application Goal Model

Stakeholder's high-level
security needs

Global Security
Specification

Fig. 2: Framework overview

Goal

Domain
Assumption

Task

Quality
Constraint

operationalize operationalize

Softgoal

preferredTo,
refine,

and-refine

Requirement
Element

Security
Goal

Security
Mechanism

contribute

Business
Goal

Actor has

depend,
trust

support

Application
Goal

Physical
Goal

Business
Process
Activity

Application
Function

Deployment

Legend

Extended
Concept

Imported
Concept

Fig. 3: Conceptual model of the Goal Model
within the three-layer framework

4.2 Three-Layer Conceptual Models

In this section, we specify conceptual models that we use for modeling and
analyzing the three-layer architecture. Apart from concepts and relations we
adopt from existing approaches, mentioned in Section 3, we further extend and
make use of new concepts. Fig. 3 shows an overview of conceptual model of the
three-layer framework, where the newly introduced concepts are highlighted
in the dashed rectangles.

Extended Requirement Concepts and Relations. As we build goal models
for different layers capturing different concerns, we specialize Goal into layer-
specific goals that focus on a particular aspect. Business Goal represents stake-
holder’s high-level requirements for his business. Application Goal represents
stakeholder’s requirements regarding software applications that he uses to per-
form related business activities. Physical Goal represents stakeholder’s require-
ments on physical devices and facilities that support execution of software.
Accordingly, we assign Task in different layers with operational definitions. In
the business layer, a task is a Business Process Activity; in the application layer,
an Application Function is deemed as a task; and in the physical layer, a task is
specialized into a Deployment action.

Apart from that, a number of relations are also proposed. Operationalize is a
relation that presents how a goal/softgoal is operationalized into a task/quality
constraint. This relation emphasizes the relationship between requirements and
specifications, and indicates when a stakeholder’s requirements are translated
into operational specifications. For example, the business goal Have current load
info shown in Fig. 1, which is desired by the Energy Provider, is operationalized
into the task Collect load info in the same layer, which can accomplish this goal.
Support is a cross-layer relation, which specifies a task designed in one layer is
supported by requirements in the next layer down. Fig. 9 contains examples of
this relation.

Extended Security Requirement Concepts. Chung [2] leverages non-functional
requirements analysis to deal with security requirements, which are represented

as security goals. Each security goal consists of one sort and one or more parame-
ters. In our framework, we extend security goals to express more detailed security
requirements, and introduce security mechanisms to represent security solutions.

Security Goal represents stakeholder’s security needs with regard to asset and
interval. We define a security goal as a specialization of softgoal, which partic-
ularly focuses on security issues. A security goal is specified in the format: <im-
portance><security attribute>[<asset>,<interval>]. Take the security goal Medium
Integrity [energy consumption data, G2] (in Fig. 1) as an example, its four dimen-
sions together describe a security requirement “protecting integrity of energy
consumption data during the execution interval of G2 to a medium degree”.

– Security Attribute specifies a characteristic of security. Particularly, we adopt
security attributes use in [17, 4], which is shown in Fig. 5. The security
attributes we consider in our work constitute a minimum set, which serves
as a starting point and can be extended in the future.

– Asset is anything that has value to an organization, such as data, service.
Fig. 4 shows an overview of all the types of assets that we have considered
in our framework, as well as the interrelationships among them. Normally
different assets are concerned in different layers. For example, we only
consider Service and Data as assets in the business layer.

– Interval of a security goal indicates within which temporal interval the se-
curity goal is concerned. In this work, an interval is specified in terms of the
execution period of a goal or task.

– Importance of a security goal indicates to which degree stakeholders want
the security goal to be satisfied. We consider the value of importance within
an enumeration {very low, low, medium, high, very high}.

Service Data

Application

Hardware

execute

involve

deploy

Business
 Layer

Application
 Layer

Physical
 Layer

process Data

Datastore

Fig. 4: Overview of assets

Security

Confidentiality

ISA

Integrity

ISA Availability
ISA

Data
Confidentiality

ISA Data
Integrity

ISA

Application
Integrity

ISA

Hardware
Integrity

ISA
Application
Availability

ISA

Hardware
Availability

ISA

Service
Integrity

ISA
Service

Availability

ISA

Fig. 5: Hierarchy of security attributes
Security Mechanism is a concrete mechanism provided by the “system-to-be”

in order to achieve one or more security goals. We define the security mechanism
as a specialization of task in goal model, which contributes to security goals
and satisfies them. Thus, in our framework, security mechanisms are parts of
specifications, and also influences requirements in its lower layers.

5 Security Analysis Methods

In this section, we propose a systematic process and a set of security analysis
methods to guide security analysis both within one layer and across layers.

Fig. 6 shows an overview of the analysis process, which starts from security
analysis in the business layer and follows a top-down manner to propagate
influences of security analysis in one layer to lower layers. Within one single
layer, we refine and simplify security goals to identify concrete and critical ones,
which are then operationalized into possible security mechanisms that are left
to security analysts to select. After security analysis has been done for all layers,
security treatments applied in each layer are synthesized to generate holistic
security treatments.

We propose security analysis methods and corresponding transformation
rules to guide the aforementioned analysis steps, which have been implemented
using Datalog rules. We developed a prototype for a CASE tool, which auto-
mates some of the analysis steps as indicated in Fig. 6. Due to space limitation,
we only describe and illustrate a small part of the transformation rules. A full list
of the 23 transformation rules is available online 1. In the reminder of this sec-
tion, we describe details the proposed security analysis methods in subsections,
each of which support one or several analysis task shown in Fig. 6.

legend

Single-Layer Security Analysis

Obtain Holistic
security solutions

(Sect.5.5)

Refine
security goals

(Sect.5.1)

Simplify
security goals

(Sect.5.2)

Design
security

mechanisms
(Sect.5.3)

Transfer security
concerns across layers

(Sect.5.4)

Select
security

mechanisms

Refine security
concerns in next

layer Analysis reaches
bottom layer?

No Yes

User Task

Computer-aided
Task

Exclusive
Gateway

Sequence Flow

Refinement
Rules

Simplification
Rules

Operationaliz
ation Rules

Cross-Layer
Rules

Data
Object

Association Flow

Fig. 6: An overview of the three-layer security requirements analysis process

5.1 Refinement Methods

A coarse-grained security goal is normally more difficult to analyze and op-
erationalize than a fine-grained one, as it may be too abstract to be satisfied
by specific security mechanisms. Thus, it is advisable for an analyst to refine a
security goal till he obtains satisfiable ones. A security goal can be refined along
any of its dimensions (security attributes, asset, or interval), i.e. there are three
refinement methods. Fig. 7 shows an example of security goal refinements for
security goal Medium Integrity [energy consumption data, G2] (Fig. 1). Note that a
refinement process can be flexible in the sense that different refinement methods
can be applied in any sequence and to any extent. Given the reference models
that are shown in the left part of Fig. 7, the example presents only one possible
way to refine the goal.

– Security attributes-based refinement: refining security goals via security
attributes helps the security analysis to cover all possible aspects of security.
According to the hierarchy of security attributes shown in Fig. 5, a secu-
rity goal that talks about a high-level security attribute can be refined into

1 http://goo.gl/Pd0TGw

several sub-security goals that talks about corresponding low-level security
attributes. For example, in Fig. 7, the security goal Medium Integrity [energy
consumption data, G2] is refined into four sub-security goals.

– Asset-based refinement: refinement of security goals can also be done by
refining assets via part-of relations, which propagates a security goal on an
asset to all its components. The part-of relation is an abstract one, which can
be specialized into particular types of part-of relation of different conceptual
models, such as data schema, software architecture model etc. For example,
the security goal Medium Data Integrity [energy consumption data, G2] (Fig. 7)
is refined according to the part-of relations among energy consumption data,
water consumption data, and electricity data.

– Interval-based refinement: because an interval specifies the temporal pe-
riod, for which a security goal is concerned, the security analyst can put more
detailed constraints on a particular time intervals by refining a long inter-
val into smaller ones. Here, we use the execution periods of requirement
goal/tasks to represent intervals of time. Thus the interval-based security
goal refinements are carried out according to the refinement of system func-
tionality in the requirements models. For example, the four leaf nodes (in
Fig. 7) are refined according to the functional requirements model in Fig. 1.

Reference Models

Have a
proper price

Have current
load info

Calculate
price

Decide
price

Collect
load info

G2

G6G7

T1T2

Integrity

Data
Integrity

ISA

Application
Integrity

ISA

Hardware
Integrity

ISA

Service
Integrity

ISA

(S)
Medium Integrity

[energy consumption
 data, G2]

Energy
consumption

data

Water
consumption

data

part-of

Electricity
consumption

data

part-of

(S)
Medium Data Integrity
[energy consumption

 data, G2]

(S)
Medium Integrity

[energy consumption
 data, G2]

(S)
Medium Data Integrity
[water consumption

data, G2]
(S)

Medium Data Integrity
[electricity consumption

data, G2]
(S)

Medium Data Integrity
[water consumption

data, T1]

(S)
Medium Data Integrity
[water consumption

data, T2] (S)
Medium Data Integrity

[electricity consumption
data, T1]

(S)
Medium Data Integrity
[electicity consumption

data, T2]

(S)
Medium Application Integrity

[energy consumption
 data, G2]

(S)
Medium Service Integrity

[energy consumption
 data, G2]

(S)
Medium Hardware

Integrity [energy consumption
 data, G2]

Fig. 7: Security goals refinements

5.2 Simplification Methods

When dealing with a large number of security goals, analysts may not have
enough time to go through each of them to determine which is critical and
requires further treatments. Especially as the refinement methods, which are
intended to cover every potential facet of security goals, easily result in many
detailed security goals. To release analysts from scrutinizing all security goals,
we introduce simplification methods, which identify critical security goals that
need to be treated and exclude others.

In order to determine the criticality of security goal, we consider two par-
ticular factors: applicability and risk level. The applicability specifies whether
a security goal is sensible with regard to the content of the four dimensions

of a security goal. The risk level identifies to which extent the satisfaction of a
security goal is threatened. The criticality of a security goal is determined by
considering: 1) If a security goal is applicable and its risk level is either high or
very high, then we treat this security goal as a critical one, which is highlighted
with a character ‘‘C’’. 2) All other security goals are deemed as non-critical and
will be removed from following security analysis. It is worth noting that this
criticality analysis can be adjusted depending on analyst time and the domain.
For example, if analyst time allows, a security goal, which is at the medium risk
level, could be adjusted as critical security goal.

For the analysis of applicability, we consider not only related requirements
and simple specifications, but also detailed specifications, i.e. design informa-
tion. For instance, how business activities are arranged, how application com-
ponents interact with others, and where physical devices are placed. Based on
this information, we propose layer-specific inference rules to determine the ap-
plicability of a security goal in one layer. For example, the security goal Medium
Data Integrity [water consumption data, T1] (Fig. 7) is not suitable, because the
asset water consumption data would not be changed during the execution of T1.
Due to space limitation, in each layer we only present one rule as an example,
which are shown in Table 1.

Table 1: Rules for determining applicability of security goal
Rule Rationale

BUS.A.1
If a business process activity takes a data asset as input, the confidentiality of
this asset might be impaired within this activity. Thus, corresponding security
goals are identified as applicable.

APP.S.1

If an application component is called by another component for a data asset,
the integrity and confidentiality of that data asset may be impaired during
functioning of that component. Thus, corresponding security goals are identi-
fied as applicable.

INF.S.1
If a hardware device stores a data asset, the integrity and confidentiality of
that data asset may be impaired during deployment task of that device. Thus,
corresponding security goals are identified as applicable.

For the risk level analysis, we carry out a trust-based approach, which con-
sider the trust between the owner of a security goal and the actor that potentially
impairs the security goal. For example, the maintainer of a smart meter may
impair the integrity of that meter, if a customer owns a security goal that aims
to protect the integrity of the smart meter, then our analysis considers to which
extent the customer trusts the maintainer. Table 2 represents how we infer the
risk level of security goals with regard to the trust level and the importance of
security goals. Note that the letter L, M, H, V stands for low, medium, high, and
very high level of risk respectively.

5.3 Operationalization Methods

To bridge the gap between security requirements and security specifications
within an individual layer, we propose operationalization methods which gen-

Table 2: Risk level evaluation matrix
XXXXXXXXXTrust

Importance
very low low medium high very high

very bad H H V V V
bad M H H V V
neutral L M H H V
good L L M H H
very good L L L M H

erate possible security mechanisms that could satisfy critical security goals. As
security mechanism analysis and design requires additional security knowl-
edge, which is normally not easy to obtain in reality, we exploit the power of
security patterns to reuse security knowledge that tackles known security prob-
lems. Particularly, we survey existing work on security patterns [17, 8, 19], and
extract the parts of them that are suitable for our security analysis framework.
Note that the selection of security patterns is not intended to be exhaustive, and
may evolve over time.

A security pattern consists of a security attribute and a security mechanism
that is supposed to satisfy that security attribute. Each security mechanism can
contribute to one or several security attributes, and we use Make and Help links
to represent their contributions. For example, one security pattern shown in
Fig. 8 is Auditing has a Make contribution to Service Integrity. According to these
security patterns, when operationalizing a critical security goal, we identify
security mechanisms that contribute to the security attribute of the security
goal. It is worth noting that security patterns, shown in the Fig. 8, may also
have either positive or negative influences on other non-functional goals, such
as Time, Cost, which are documented in the specification of the security patterns.

5.4 Cross-Layer Analysis Methods

After finishing single-layer security analysis in one layer, indicated in Fig. 6,
we analyze its influences on lower-layers. In our framework, the influences are
reflected in two ways, which require different analysis methods. Accordingly,
a number of inference rules are proposed to automate the cross-layer transfor-
mations, parts of which are shown in Table 3.

Firstly, each of the security mechanisms should be transformed into at least
one goal in the lower-layer goal model. Because security mechanisms are criti-
cal for satisfying security goals, additional security goals are derived to ensure
correct implementations of the corresponding functional goals. Fig. 9(a) shows
an example of this transformation. The security mechanism Encryption is trans-
formed into a function goal of smart meter application, because that application is
supposed to execute the encryption activity. Apart from this functional goal, the
transformation also introduces two security goals, which concerns application

Cryptographic
control

Input
Guard Firewall

Data
Confidentiality

Data
Integrity

Make Make

Application
Integrity

Make

Server
sand box

Make

Replicated
System

Help

Application
Availability

Make

Access
Control

Service
Integrity

Auditing

Make

Hardware
Availability

Hardware
Integrity

Physical
Entry Control

Anti-tamper
Protection

Make
Make

UPS

Full View
with Errors

Limited
View

Business
 Layer

Application
 Layer

Physical
 Layer

Service
Availability

Alternative
service

MakeMake Help Help

Help
Help

Help

HelpHelp
Help

Help Help
Help

Help

Help

Monitor

Make

Load
Balancer

Make

Data
Confidentiality

Data
Integrity

Secure Pipe
Secure
Access
Layer

Make MakeMake Make

Encrypted
Storage

MakeMake

Data
Confidentiality

Data
Integrity

Make Make

Make

Secure office

Make Help
Help

Data
Backup

Make

Fig. 8: Applicable security patterns in three layers

integrity and application availability of the smart meter application during the
execution of encrypt data. Note that the importance of these two new security
goals is Medium, which is the same with the corresponding security goal in the
business layer.

Secondly, if a security goal has not been fully satisfied in one layer, this
security goal will be refined into security goals in next layer down according
to the newly available information in that layer. Fig. 9(b) shows an example of
this transformation. The security goal Medium Data Integrity [energy consumption
data, Measure energy data] is not treated in the business layer. Considering the
asset of this security goal is processed by the smart meter application in the
application layer, the transformation rule BUStoAPP.2 is applied, which results
in two sub-security goals.

5.5 Global Security Analysis

After security analysis has been done in each layer, we can derive alternative
global security treatments by synthesizing security analysis results of each layer.
Each global security treatment may consist of security mechanisms from one or

Table 3: Rules for cross-layer security goal refinements
Rule Rationale

BUStoAPP.1
If a security goal concerns a service asset, which is supported by an
application component, then the security goal introduces security goals
that concern the integrity and availability of that application.

BUStoAPP.2

If an untreated security goal that concerns data confidentiality or data
integrity targeting at a business process activity, which is supported by
an application in the application layer, then this security goal will be
refined to sub-goals that concern corresponding applications.

(S)
Encryption

(S)
Medium Data Integrity
[Energy consumption

 data, Send energy data]Business
 Layer

Application
 Layer

SM
Application

Encrypt
data

(S)
Medium

Application Integrity
[SM Application,

Encrypt data]

(S)
Medium

Application Availability
[SM Application,

Encrypt Data]

Measure
energy data

(S)
Medium Data Integrity

[energy consumption data,
 Measure energy data]

SM
Application

Measure
data

(S)
Medium

Application Integrity
[SM Application,
Measure data]

(S)
Medium

Data Integrity
[[energy

consumption data,
Measure Data]

make

(a) (b)

Legend

Goal
(S)

Security goal support

help/make(S)
Security

Mechanism and-refine

Fig. 9: Examples of security transformation

several layers. Take a snippet of the three-layer security analysis results of the
smart grid as an example, which is shown in Fig. 10.

In the business layer, the critical security goal can be either operationalized as
Auditing or left to the next layer. In the first case, the Auditing security mechanism
is transformed into a functional goal and two corresponding security goals.
As the two security goals are identified as non-critical after refinement and
simplification analysis, no further security treatments are required. Thus, we
derive the first global security treatment. In the second case, the security goal
is refined into two sub-security goals in the application layer, one of which
is identified as critical. This critical security goal can be operationalized as
either Firewall or Input Guard, each of which starts a new alternative. Apart
from the operationalization, the security goal can also be left to next layer,
which further introduces another two alternatives. Finally, we derive 5 global
security treatments in this example. Among these alternatives, the Alt.3 contains
a security mechanism from only one layer, i.e. Input Guard; while the Alt.2
contains two security mechanisms from two different layers, i.e. Firewall, Anti-
tamper protection.

6 Related Work

NFR-based Requirements Analysis. Chung proposes to treat security require-
ments as a class of NFRs, and apply a process-oriented approach to analyze
security requirements [2]. In a subsequent work, Chung and Supakkul inte-

Legend(S)
Medium Data Integrity
[energy consumption

 data, Measure energy data]

(S)
Medium

Application Integrity
[SM Application,
Measure data]

(S)
Medium Data

Integrity [energy
consumption data,

Measure Data]

(S)
Auditing

Server
Application

Audit
measurement

(S)
Medium

Application Integrity
[SM Application,

Encrypt data]

(S)
Medium

Application Availability
[SM Application,

Encrypt Data]

C

C

(S)
Input guardRecord

function

Record
measurement

info

Check
correctness

Check
function

(S)
Firewall

Router
Support
firewall

(S)
Medium

Hardware Integrity
[Router, Support

firewall]

(S)
Medium

Hardware Availability
[Router, Support

firewall]
Integrate
firewall

component

(S)
Medium

Hardware Integrity
[Router, Support

firewall]

C C
C

(S)
Physical entry

control
(S)

Monitor

(S)
Anti-tamper
protection

Alt.1

Alt.2 Alt.3

Alt.4 Alt.5

Make

Help Make

HelpMake Help
Help

Business
 Layer

Application
 Layer

Physical
 Layer

(S)
Critical

Security Goal

C

Fig. 10: A snippet of three-layer security analysis result of the smart grid example

grate NFRs with FRs in the UML use case model [3], which enable NFRs to be
refined through functional requirement models. Another complementary work
done by Gross and Yu propose to connect NFRs to designs via patterns [7].
However, all of these NFR-based approaches mainly focus on information sys-
tem analysis, and lack of supporting requirements analysis in the business layer
and the physical layer.

Security Requirement Analysis. A large number of security requirement
analysis approaches have been proposed over last two decades. Most of these
approaches focus on analyzing security requirements with regard to a particular
aspect of information system. There are approaches that focus on the social and
organizational aspect. Mouratidis et al. [13] capture security intentions of stake-
holders and interdependence among stakeholders; Giorgini et al. [6] investigate
social relationships by integrating trust and ownership into security analysis;
Liu et al. [11] analyze organizational risks by considering dependencies among
social actors. Another branch of work deals with security requirements for
business process. Rodríguez et al. [15] propose an extention of UML activity
diagram to model security requirements within business process model, as well
as a method that guides construction of the secure business process models.
Herrmann et al. [9] propose a systematic process to elicit and analyze secu-
rity requirements from business processes models. Most work is dedicated to
analyzing security requirements of software, such as Attack Tree [18], Misuse
case [20], and obstacle analysis [21]. All of these approaches are complementary
to our approaches, as each of them could fit into one layer of our framework.

From Security Requirements to System Design. A number of approaches
have been proposed to transform security requirements captured in the high-
abstraction level to the security design in the low-abstraction level in order
to maintain security requirements throughout the whole life-cycle of system
development. Mouratidis and Jürjen [14] translate security requirements into
design by combining Security Tropos with UMLsec. Menzel et al. [12] propose
an approach that transfers security requirements, which are captured at the busi-
ness process layer, to security configuration for service-based systems by using
patterns. Similarly, Rodríguez [16] et al. apply the MDA technique to transform
secure business process model into analysis class diagram and use case diagram.
The above approaches focus on maintaining security requirements identified in
the early stage during later design stages. Different from their work, we propose
to analyze security requirements in different layers from a holistic viewpoint
and capture influences between security requirements in different layers.

7 Conclusions and Future Work

In this paper, we propose a holistic approach to analyze security requirements
for STSs. Our approach consists of a three-layer conceptual model, a systematic
analysis process, a number of security analysis methods and transformation
rules. Given high-level security requirements, this approach could continuously
refine and propagate them into different layers of socio-technical systems. The
approach focuses on capturing the influence of upper-layer designs on the
requirements of lower layers, thus avoiding a piece-meal treatment of security.

As we use goal modeling for security requirement analysis, we are bound
to deal with complexity of such models. Compared to other goal-based ap-
proaches that model a system as a whole, ours structures STSs into three layers,
each of which is modeled separately and connected via a clearly defined con-
ceptual model. Thus, our approach contributes to reduce the scalability issues
in individual model. In addition, we develop a prototype tool to facilitate our
analysis, which supports graphic modeling and automates inferences over the
transformation rules. However, our approach has limitations on its evaluation.
So far, our approach is only applied to a single scenario of the Smart Grid case,
which is an illustrative example rather than a practical evaluation.

In the future, we plan to extend our framework by incorporating real security
regulations and laws, such as ISO standards, in order to provide more practical
and grounded security analysis. Moreover, the security patterns we leveraged
during security goal operationalization should be updated in light of recent
advances in the field [19] synchronized with the cutting edge of that field.
Finally, with the help of the prototype, we intend to apply our approach to a
practical case study that has a reasonable scale to evaluate and further improve
our work.

Acknowledgements This work was supported in part by ERC advanced grant
267856, titled “Lucretius: Foundations for Software Evolution”.

References

1. Carpenter, M., Goodspeed, T., Singletary, B., Skoudis, E., Wright, J.: Advanced me-
tering infrastructure attack methodology. InGuardians white paper (2009)

2. Chung, L.: Dealing with security requirements during the development of infor-
mation systems. In: Rolland, C., Bodart, F., Cauvet, C. (eds.) Advanced Information
Systems Engineering, LNCS, vol. 685, pp. 234–251. Springer Berlin Heidelberg (1993)

3. Chung, L., Supakkul, S.: Representing nfrs and frs: A goal-oriented and use case
driven approach. In: Dosch, W., Lee, R., Wu, C. (eds.) Software Engineering Research
and Applications, LNCS, vol. 3647, pp. 29–41. Springer Berlin Heidelberg (2006)

4. Firesmith, D.: Specifying reusable security requirements. Journal of Object Technol-
ogy 3(1), 61–75 (2004)

5. Flick, T., Morehouse, J.: Securing the smart grid: next generation power grid security.
Elsevier (2010)

6. Giorgini, P., Massacci, F., Zannone, N.: Security and trust requirements engineering.
In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) Foundations of Security Analysis and
Design III, LNCS, vol. 3655, pp. 237–272. Springer Berlin Heidelberg (2005)

7. Gross, D., Yu, E.: From non-functional requirements to design through patterns.
Requirements Engineering 6(1), 18–36 (2001)

8. Hafiz, M., Adamczyk, P., Johnson, R.E.: Organizing security patterns. IEEE Software
24(4), 52–60 (2007)

9. Herrmann, P., Herrmann, G.: Security requirement analysis of business processes.
Electronic Commerce Research 6(3-4), 305–335 (2006)

10. Jureta, I., Borgida, A., Ernst, N., Mylopoulos, J.: Techne: Towards a new genera-
tion of requirements modeling languages with goals, preferences, and inconsistency
handling. In: Proc. of RE’10. pp. 115–124 (2010)

11. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a
social setting. In: Proc. of RE’03. vol. 3, pp. 151–161. Monterey, California (2003)

12. Menzel, M., Thomas, I., Meinel, C.: Security requirements specification in service-
oriented business process management. In: Proceedings of International Conference
on Availability, Reliability and Security, 2009. ARES’09. pp. 41–48. Ieee (2009)

13. Mouratidis, H., Giorgini, P.: A natural extension of tropos methodology for modelling
security. In: Proc. of the Agent Oriented Methodologies Workshop (OOPSLA 2002).
Citeseer, Seattle-USA, (2002)

14. Mouratidis, H., Jurjens, J.: From goal-driven security requirements engineering to
secure design. International Journal of Intelligent System 25(8), 813–840 (2010)

15. Rodríguez, A., Fernández-Medina, E., Trujillo, J., Piattini, M.: Secure business process
model specification through a uml 2.0 activity diagram profile. Decision Support
Systems 51(3), 446–465 (2011)

16. Rodríŋguez, A., de Guzmán, I.G.R., Fernández-Medina, E., Piattini, M.: Semi-formal
transformation of secure business processes into analysis class and use case models:
An mda approach. Information and Software Technology 52(9), 945 – 971 (2010)

17. Scandariato, R., Yskout, K., Heyman, T., Joosen, W.: Architecting software with se-
curity patterns. Tech. rep., KU Leuven (2008)

18. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
19. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad,

P.: Security Patterns: Integrating security and systems engineering. John Wiley &
Sons (2013)

20. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Require-
ments Engineering 10(1), 34–44 (2005)

21. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software Engineering 26(10), 978–1005 (Oct 2000)

22. Yu, E.: Towards modelling and reasoning support for early-phase requirements en-
gineering. pp. 226–235. IEEE Computer Soc. Press (1997)

23. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

