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Formulas can be used to shape the “form” of the structure, as in the 
examples  expressed  before or to impose properties on the accessibility 
relation R .
Temporal logic: if the accessibility relation is supposed to represent a 
temporal  relation, and wRwl means that wl is a future world w.r.t. w, 
then R must be a  transitive relation. That is if wl is a future world of w, 
then any future world of  wl is also a  future world of w .
Logic of knowledge: if the accessibility relation is used to represent the  
knowledge of an agent A, and wRwl represents the fact that wl is a possible 
situation coherent with its actual situation w , then R must be reflexive, 
since w is always coherent with itself.

Properties of accessibility relation
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Properties of R

The following table summarizes the most relevant properties of the  
accessibility relation, which have been studied in modal logic, and  
for which it has been provided a sound and complete  
axiomatization

R is reflexive
R is transitive
R is symmetric
R is Euclidean
R  is serial
R  is weakly dense
R  is partly functional
R  is functional
R  is weakly connected

R  is weakly directed

∀w.R (w, w )
∀w v u.(R (w, v ) ∧ R (v , u) ⊃ R (w, u))
∀w v .(R (w, v ) ⊃ R (v , w ))
∀w v u.(R (w, v ) ∧ R (w, u) ⊃ R (v , u))
∀w.∃vR (w, v )
∀w v .R (w, v ) ⊃∃u.(R (w, u) ∧ R (u, v ))
∀w v u.(R (w, v ) ∧ R (v , u) ⊃ v = u)
∀w ∃!v.R (w, v )
∀u v w.(R (u, v ) ∧ R (u, w ) ⊃

R (v , w ) ∨ v = w ∨ R (w, v ))
∀u v w.(R (u, v ) ∧ R (u, w ) ⊃
∃t(R (v , t) ∧ R (w, t)))

We will investigate only the ones in red color.

Typical Properties of R
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The axiom T
If a frame is reflexive (we say that a frame has a property, when  the 
relation R  has such a property) then the formulas

T □φ⊃ φ

holds.  (Or alternatively φ⊃ ◊φ.)

R is reflexive
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Since R  is reflexive then wRw
Suppose that M ,  w ⊨ □φ (Hypothesis)
From the satisfiability condition of □, M ,  w ⊨ □φ, and wRw  imply 
that
M ,  w ⊨φ (Thesis)
Since from (Hypothesis) we  have derived (Thesis), we  can conclude  
that
M , w ⊨ □φ⊃ φ.

Let M be a model on a reflexive frame F =  (W , R ) and w any 
world in W . We prove  that M ,  w ⊨ □φ⊃φ.

1

2

3

4

R is reflexive - soundness
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Suppose that a frame F = (W , R ) is not 
reflexive.

1

2

3

4

5

If R is not reflexive then there is a w ∈W which does not access to 
itself. I.e.,  for some  w ∈W  it does  not hold that wRw .
Let M be any model on F ,  and let φ be the propositional formula 
p. Let V the  set p true in all the worlds of W but w where p is
set to be false.
From the fact that w  does  not access  to itself, we  have  that in all 
the worlds w
accessible from w , p is true, i.e, ∀w',  wRw',  M ,  w' ⊨ p.
Form the satisfiability condition of □ we have that M ,  

w ⊨ □p.

since M ,  w ⊨ p, we  have that M ,  w ⊨ □p ⊃ p.

R is reflexive - completeness
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The axiom B
If a frame is symmetric then the formula

B φ⊃ □◊φ

holds.

R is symmetric
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Suppose that M ,  w ⊨ φ (Hypothesis)
we  want to show that M ,  w ⊨ □◊φ (Thesis)
Form the satisfiability conditions of □, we  need  to prove that for every 
world   wl

accessible from w , M , wl ⊨ ◊φ.
Let wl, be any world accessible from w , i.e., wRwl

from the fact that R  is symmetric, we  have that wlRw
From the satisfiability condition of ◊, from the fact that wlRw  and  that
M ,  w ⊨ φ, we have that M ,  wl ⊨ ◊φ.
so  for every world wl accessible from w , we  have that M ,  wl ⊨ ◊φ.
From the satisfiability condition of □, M ,  w ⊨ □◊φ (Thesis)
Since from (Hypothesis) we  have derived (Thesis), we  can conclude  that
M ,  w ⊨ φ⊃□◊φ.

Let M  be a model on a symmetric frame F =  (W , R ) and w any world 
in W . We  prove that M ,  w ⊨ φ⊃ □◊φ.

1

2

3

4

5

6

7

9

R is symmetric - soundness

8
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Suppose that a frame F = (W , R ) is not 
Symmetric.

1

2

3

4

5

If R is not symmetric then there are two worlds w, wl ∈W such that 
wRwl and  not wlRw
Let M be any model on F, and let φ be the propositional formula p. Let V 
the  set p false in all the worlds of W but w where p is set to be true.
From the fact that wl does not access to w , it means that in all the 
worlds  accessible from wl, p is  false,
i.e. there is no world wll accessible from wl wuch that M, wll ⊨ p.
by the satisfiability conditions of ◊, we  have  that M, wl⊭ ◊p.
Since there is a world wl accessible from w , with M, w ⊭ ◊p, form 
the satisfiability condition of □ we  have  that M, w ⊭ □◊p.
since M, w ⊨ p, and M, w ⊭ □◊p.  we  have that M, w ⊭ p ⊃ □◊p.

R is symmetric - completeness

6

7
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The axiom D
If a frame is serial then the formula

D □φ⊃ ◊φ

holds.

R is serial
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Since R  is serial there is a  world wl ∈W  with  wRwl

Suppose that M, w ⊨ □φ (Hypothesis)
From the satisfiability condition of □, M, w ⊨ □φ implies that M, wl ⊨ φ
Since there is a world wl accessible from w that satisfies φ, from the  
satisfiability conditions of ◊ we  have that M, w ⊨ ◊φ (Thesis)  .
Since from (Hypothesis) we  have derived (Thesis), we  can conclude   
that
M, w ⊨ □φ⊃ ◊φ.

Let M be a model on a serial frame F = (W , R ) and w any world in W . 
We prove  that M, w ⊨ □φ⊃ ◊φ.

1

2

3

4

5

R is serial - soundness
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Suppose that a frame F = (W , R ) is not 
Serial.
1

2

3

4

5

If R is not serial then there is a w ∈W which does not have any 
accessible  world.  I.e., for all wl it does  not hold that wRwl.
Let M be any model on F .
Form the satisfiability condition of □ and from the fact that w does 
not have  any accessible world, we  have that M ,  w ⊨ □φ.
Form the satisfiability condition of ◊ and from the fact that w does 
not have  any accessible world, we  have that M ,  w ⊨ ◊φ.
this implies that M ,  w ⊨ □φ⊃ ◊φ

R is serial - completeness
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The axiom 4
If a frame is transitive then the formula

4 □φ⊃ □□φ

holds.

R is transitive
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Suppose that M ,  w ⊨ □φ (Hypothesis).
We have to prove that M ,  w ⊨ □□φ (Thesis)
From the satisfiability condition of □, this is equivalent to prove that for 
all  world wl accessible from w  M ,  wl ⊨ □φ.
Let wl be any world accessible from w . To prove that M ,  wl ⊨ □φ we have to  
prove that for all the world wll accessible from wl, M ,  wll ⊨ φ.
Let wll be a  world accessible from wl, i.e., wlRwll.
From the facts wRwl  and wlRwll and the fact that R  is transitive, we  have  
that
wRwll.
Since M ,  w ⊨ □φ, from the satisfiability conditions of □ we  have that
M , wll ⊨ φ.
Since M ,  wll ⊨ φ for every world wll accessible from wl, then M ,  wl ⊨ □φ.  and 
therefore M ,  w ⊨ □□φ. (Thesis)
Since from (Hypothesis) we  have derived (Thesis), we  can conclude that
M , w ⊨ □φ⊃ □□φ.

Let M be a model on a transitive frame F =  (W , R ) and w any world 
in W. We  prove that M ,  w ⊨ □φ⊃ □□φ.

1

2

3

4

5

8
9

R is	transitive	- soundness

6

7

10
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Suppose that a frame F  = (W , R ) is not transitive.

1

2

3

4

5

6

If R  is not transitive then there are  three worlds w, wl, wll ∈W , such 
that wRwl, wlRwll but not wRwll.
Let M be any model on F ,  and let φbe the propositional formula p. Let 
V the  set p true in all the worlds of W but wll where p is set to be
false.
From the fact that w does not access to wll, and that wll is the only 
world  where p is false, we have that in all the worlds accessible from
w , p is true.
This implies that M ,  w ⊨ □p.
On the other hand, we  have  that wlRwll, and wll ⊨ p implies  that
M , wl ⊨ □φ.
and since  wRwl, we  have that M ,  w ⊨ □□p.
In summary:  M ,  w ⊨ □□p, and M ,  w ⊨ □P; from which we  have
that M ,  w ⊨ □p ⊃□□p.

R is	transitive	- completeness

7
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The axiom 5
If a frame is euclidean then the formula

5 ◊φ⊃ □◊φ

holds.

R is euclidean
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Let M be a model on a euclidean frame F =  (W , R ) and w any world in W . We  prove 
that M ,  w ⊨ ◊φ⊃ □◊φ.

1

2

3

4

5

6

8

Suppose that M ,  w ⊨ ◊φ (Hypothesis).
The satisfiability condition of ◊ implies that there is  a  world wl accessible from
w such that M ,  wl ⊨ φ.

We have to prove that M ,  w ⊨ □◊φ (Thesis)

From the satisfiability condition of □, this is equivalent to prove that for all  world 
wll accessible from w  M ,  wll ⊨ ◊φ,

let wll be any world accessible from w . The fact that R is euclidean, the fact  that wRwl  

implies that wllRwl.

Since  M ,  wl ⊨ φ,  the satisfiability condition of ◊ implies that M ,  wll ⊨ ◊φ.
and therefore M ,  w ⊨ □◊φ. (Thesis)

Since from (Hypothesis) we  have derived (Thesis), we  can conclude  that
M , w ⊨ □φ⊃ □◊φ.

R is euclidean - soundness

7
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Suppose that a frame F = (W , R ) is not euclidean.
1

2

3

4

5

6

If R  is not euclidean then there are  three worlds w, wl, wll ∈ W , such  that
wRwl, wRwll  but not wlRwll.

Let M be any model on F, and let φ be the propositional formula p. Let V the set p false 
in all the worlds of W but wl where p is set to be true.

From the fact that wll does not access to wl, and in all the other worlds p is  false, we  
have that wll⊭ ◊p
this implies that M, w ⊭ □◊p.
On the other hand, we  have  that wRwl, and wl ⊨ p, and   therefore
M, w ⊨ ◊p. M, w ⊭ □p ⊃ □□p.

In summary:  M, w ⊭ □◊p, and M, w ⊨ ◊P; from which we  have that
M, w ⊭ ◊p ⊃ □◊p.

R is euclidean - completeness
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K the class of all frames
K4 4 the class of transitive frames
KT T the class of reflexive frames
KB B the class of symmetric frames
KD the class of serial frames
KT4 S4 the class of reflexive and transitive frames
KT4B S5 the class of frames with an equivalence relation
KT5 S5 the class of frames with an equivalence relation

Soundness and completeness
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All the definitions given for basic modal logic can be generalized in the case
in which we have n □-operators □1, . . . , □n (and also ◊1, . . . , ◊n),
which are interpreted in theframe

F = (W , R1, . . . Rn)

Every □i and ◊i is interpreted w.r.t. the relation Ri .

A logic with n modal operators is called Multi-Modal. Multi-Modal
logics are often used to model Multi-Agent systems where modality □i is
used to express the fact that “agent i knows (believes) . . . ”.

Multi-Modal Logics
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Exercise
Let F = (W , R1, . . . , Rn) be a frame for the modal language with n modal
operator □1, . . . , □n. Show that the following properties holds:

1

2

3

4

5

a Given two binary relations R and S on the set W ,
R ◦S = {(v, u)|(v, w)∈R and (w, u)∈S}

Exercises

F ⊨Ki (where Ki is obtained by replacing □ with □i in 
the  axiom K)

If Ri ⊆ Rj then F ⊨ ◊iφ ⊃ ◊jφ
If Ri ⊆ Rj then F ⊨□jφ ⊃ □iφ
F ⊭□ip ⊃ □jp for any primitive proposition p
If Ri ⊆ Rj ◦Rk , thena F ⊨ ◊iφ ⊃ ◊j◊kφ
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Definition
In artificial intelligence, an intelligent agent (IA) is an autonomous  entity 
which observes and acts upon an environment (i.e. it is an  agent) and 
directs its activity towards achieving goals (i.e. it is  rational). Intelligent 
agents may also learn or use knowledge to  achieve their goals. [Russell, 
Stuart J.; Norvig, Peter (2003),  Artificial Intelligence:  A Modern 
Approach (2nd ed.)]

Modal logics and agents.  What is an agent?
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Definition
An agent is a computer system capable of autonomous action in  some 
environment, in order to achieve its delegated  goals.[Wooldridge, Mike 
(2009), An Introduction to MultiAgent  Systems (2nd ed.)]

What is an agent?
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Definition
An agent is a computer system capable of autonomous action in  some 
environment, in order to achieve its delegated  goals.[Wooldridge, Mike 
(2009), An Introduction to MultiAgent  Systems (2nd ed.)]

What is an agent?
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Agents act;
Agents are able to achieve goals (often complex).

⇓

Agents are in a close-coupled, continual interaction with their  
environment:

sense - decide - act - sense - decide - . . .

Main building blocks
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Thermostat
delegated goal is maintain room temperature  
actions are heat on/off

UNIX biff program
delegated goal is monitor for incoming email and flag it  
actions are GUI actions.

They are trivial because the decision making they do is trivial.

Simple (Uninteresting) Agents
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When explaining human activity, we use statements like the  
following:

Janine took her umbrella because she believed it was  raining and 
she wanted to stay dry.

These statements make use of a folk psychology, by which human
behaviour is predicted and explained by attributing attitudes such
as believing, wanting, hoping, fearing, . . .

Intelligent Agents as Intentional systems
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(Intelligent) agents are usually described in terms of:
Informational attitudes:

Knowledge  
Belief

Motivational-attitudes:
Desire  
Intention  
Obligation  
Commitment  
Choice
...

Mental attitudes
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(Intelligent) agents are usually described in terms of:
Informational attitudes (modal logic):  
Motivational-attitudes (modal logic):

Dynamic component (temporal or dynamic logic).

Logical agent theories:
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Logic to reason about knowledge (and belief).
Seminal book: Jaakko Hintikka, “Knowledge and Belief - An  
Introduction to the Logic of the Two Notions” (1962).

□φ is used to express “an agent knows that φ” (Kφ) or “an  agent 
believes that φ” (Bφ).

The multi-modal version used to represent knowledge (beliefs)  of 
several agents

Example:  “Alice does not know that Bob knows its her Birthday”:

¬KAliceKBobAlicesBirthday

Informational attitudes via Epistemic Logic
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“Ann knows that P implies Q”

Examples

KAnn(P ⊃ Q)

“either Ann does or does not know P”  

“P is possible for Ann”

“Ann knows that she thinks P is possible”

KAnnP∨ KAnn¬P

LAnnP (where L is a shorthand for ¬K ¬)

KAnn(LAnnP)
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Axioms for modal K;

A characterization of knowledge

T: Kφ ⊃ φ (axiom ofNecessity)
“If an agent knows that φ, then φmust be true”. Or, . . . an  
agent cannot have wrong knowledge.
4:  Kφ ⊃ KKφ (axiom of Positive Introspection)
“If an agent knows that φ, then (s)he knows that s(he) knows  that φ”. 
Or, . . . an agent knows that s(he) knows.

The logic KT4 (better known as S4), provides a minimal  
characterization of knowledge, and corresponds to the set of  
reflexive and transitive frames.
But, what about ignorance?  We also know what we  do not know!
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5: ¬Kφ ⊃ K ¬Kφ (axiom of Negative Introspection)
“If an agent does not know that φ, then (s)he knows that  s(he) 
does not know knows that φ”. Or, . . . an agent knows  that s(he) 
does not know.

The logic KT45 (better known as S5), provides the standard  
characterization of knowledge, and corresponds to the set of  
reflexive, symmetric and transitive relations (that is, all the  
equivalence relations).

A characterization of knowledge
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Axioms for modal K;

A characterization of belief

Agents can have false beliefs.  Therefore T does not hold.

Bφ⊃ BBφ (axiom of Positive Introspection)
“If an agent believes that φ, then (s)he believes that s(he) believes that φ”.

5: ¬Bφ ⊃ B¬Bφ (axiom of NegativeIntrospection)
“If an agent does not believe that φ, then (s)he believes that s(he) does not
know knows that φ”. Or, . . . an agent believes that s(he) does not
believe.

The logic K45 provides a minimal characterization of belief, and  
corresponds to the set of transitive and euclidean.
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Are beliefs mutually consistent? If yes then ¬B(φ ∧ ¬φ)  
holds.  (Axiom of Consistency)
“an agent does not believe that” φ and ¬φ.
An alternative formulation of this property is via the axiom D:
□φ⊃ ◊φ.  (that is, Bφ⊃ ¬B¬φ)
“If an agent believes that φ then s(he) does not believe that notφ”.

The logic KD45 provides an alternative characterization of belief,  and 
corresponds to the set of transitive, euclidean and serial  relations

Note:  the axiom D is a typical axiom of Deontic logic.
Prove that ¬B(φ∧¬φ) is equivalent to □φ⊃ ◊φ.

A characterization of belief
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