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*Where G informally means “Monkey gets banana”
*Where #3 stands for “Monkey actually gets Banana”.

Logical Model

Logical
Model

Model
M

Theory
T

Language
L

Domain
D

L = “AboveTree, NearBanana, GetBanana 1, 2, Ù, Ú, ¬, 
®, □, ◊, …”

T = “{<1, 2>, <1, 3>, <2, 3>}”

D: {1, 2, 3}

I: “I(AboveTree) = 1, I(NearBanana) = 2, I(GetBanana) 
= 3”

M,1 ⊨ AboveTree, M,2 ⊨□GetBanana, …
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TestBooks and Readings

Hughes, G. E., and M.J. Cresswell (1996) A New Introduction  to Modal 
Logic. Routledge.
Introductory textbook. Provides an historic perspective and a  lot of 
explanations.

Blackburn, Patrick, Maarten de Rijke, and Yde Venema  (2001) 
Modal Logic.  Cambridge Univ. Press
More modern approach. It focuses on the formalisation of  
frames and structures.

Chellas, B. F. (1980) Modal Logic: An Introduction.  Cambridge 
Univ. Press
The focus is on the axiomatization of the modal operators □
and◊
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Origins of modal logics

(Modern modal logic) Developed in the early twentieth  
century,

Clarence Irving Lewis, thought that Russell’s description of  the 
truth-functional conditional operator as material  implication (i.e, A ⊃
B is true if either A is false or B is true)  was misleading.
He suggested to define a new form of implication called strict  
implication which literally can be seen like this

it is not possible that A is true and B is false (1)

He proposed to formalise (1) as

¬◊ (A ∧¬B) (2)
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Origins  of modal logics  - ctn’d

The novelties in ¬◊(A ∧¬B) are:
A modal operator ◊ for representing the fact that a statement  is 
possibly true (impossible, necessary, . . . )

The fact that the truth value of ¬◊(A ∧¬B) is not a function  of the 
truth values of A and B as it refers to a set of possible  situations (lately 
called possible worlds) in which you have to  consider the truth of A 
and B .
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What is Modality?

A modality is an expression that is used to qualify the truth of  a 
judgement (or, in other words, an operator that expresses a  “mode” 
in which a proposition is true)

It can be seen as an operator that takes a proposition and  returns a 
more complex proposition.

Proposition Modal Expression

John drives a Ferrari  
Everybody pays taxes

John is able to drive a  Ferrari
It is obligatory that everybody pays taxes

Modalities are expressed in natural language through modal verbs
such as can/could, may/might, must, will/would, and shall/should.
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What is Modality?

In logic modalities are formalized using an operator such as □
(◊) that can be applied to a formula φ to obtain another  
formula □φ (◊φ).

The truth value of □φ is not a function of the truth value of φ.

Example

The fact that John is able to drive a Ferrari may be true  
independently from the fact that John is actually driving a  Ferrari.

The fact that it is obligatory that everybody pays taxes is typically
true, and this is independent from the fact that everybody actually
pays taxes.

Note: ¬ is not a modal operator since the truth value of ¬φ is a function of the truth  value 
of φ.
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Modalities

A modality is an expression that is used to qualify the truth of  a 
judgement.
Historically, the first modalities formalized with modal 
logic  were the so called alethic modalities  i.e.,

1

2

it is possible that a certain proposition holds, usually denoted  
with ◊φ
it is necessary that a certain proposition holds, usually denoted  
with □φ

Afterwards a number of modal logics for different  
“qualifications” have been studied.  The most common are. . .
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Modalities
Modality Symbol Expression Symbolised

Alethic
□φ
◊φ

it is necessary that φ
it is possible that φ

Deontic Oφ it is obligatory that φ
Pφ it is permitted that φ
Fφ it is forbidden that φ

Temporal Gφ it will always  be the case  that φ
Fφ it will eventually be the case  that φ

Epistemic
Baφ
Kaφ

agent a  believes that φ
agent a  knows that φ

Contextual ist(c,φ) φ is true in the context c

Dynamic [α]φ φ must be true after the execution of program  α
(α)φ φ can be true after the execution of program  α

Computational AXφ φ is true for every immediate successor  state
AGφ φ is true for every successor state
AFφ φ will eventually be true in all the possible evolutions
AφUθ φ is true until θ becomes  true
EXφ φ is true in at least one  immediate successor state
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Modal logics  & relational structures

Historically, modal logics were developed in order to formalise  the 
different modalities that qualify the truth of a  formula;
Modern modal logics have a different goal. They are  
motivated by the study of relational  structures.

□efinition (Relational structure)
A relational structure is a tuple

‹W , Ra1 , . . . , Ran ›

where Rai  ⊆W × . . . × W

each w ∈W is called, point (world, state, time instant,  
situation, . . . )
each Rai   is called accessibility relation (or simply  relation)

Alternative notation ‹W , Ra›a∈A 11



The importance of relational structures

In Computer Science, Artificial Intelligence and Knowledge  
Representation there are many examples of relational structures:

Graphs and labelled graphs;  
Ontologies;
Finite state machines;  
Computation paths; . ..

Modal logics allow us to predicate on properties of relational  
structures.

Loop detection;
Reachability of a (set of) node(s);
Properties of a relation such as Transitivity, Reflexivity, . . . . . .

12



Examples of Relational structures

Strict partial order (SPO)
‹W , < › < is transitive and irreflexive1

1Antisymmetry follows.

Strict linear order
‹W , < › (SPO) + for each v ≠ w  ∈ W , v < w  or w  < v

Partial order (PO)
‹W , ≤ › ≤ is transitive, reflexive, and antisymmetric

Linear order
‹W , ≤ › (PO) + for each v , w ∈W , v ≤ w  or w ≤ v

Labeled transition system (LTS)
‹W , Ra›a∈A and Ra ⊆W × W

XML document
‹W , Rl ›l∈L, W contains the components of an XML document  

and L is the set of labels that appear in the document
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il nome dellarosa

title

12

author
living_town
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umbertoeco Venezia

name

book

XML document as a relational stucture
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Relational structures in  FOL

Relational structures can be investigated in FOL;
The language must contain at least a binary relation R, and  we 
can formalize the properties of a relational structure using  
formulae such as

∀xR(x, x ) (R is reflexive)
∀x ∃yR(x, y ) (R is serial)
∀xy (R(x, y ) ⊃ R(y, x )) (R is symmetric)
. . .

So, why do we need modal  logics?

15



Relational structures in first order and modal logic

In First Order Logic we describes a relational structure from  
an external point of view, (and our description is not relative  
to a particular point).

Modal logics describe relational structures from an internal  
point of view, rather than from the top perspective
A formula has a meaning in a point w  ∈ W of a structure
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Relational structures  in  first order  and  modal
logic

In first order logic, re-
lational structures are
described from the top
point of view. each point
of W and the re-lation R
can benamed.

R(b,c)
~R(a,c)

R(a,b) R(b,b)

a b

c

R
R

R

R
R

Relational structures in first order and modal logic
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Relational structures in first order and modal logic

In modal logics, relational structures are described from an internal  
perspective there is no way to mention points of W and the relation R.

I can reach anotherblue point 
In 3 steps I can go to ayellow point 

There is no red point I canreach
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An example: seriality

Let us assume to have a strict linear serial order.

In first order logic I can observe an infinite sequence of points;
in modal logic I know that I can always move to the next point
(that is, from the point where I am Ican always see (and move to)
a successor point).
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The Language of a basic modal logic

If P is a set of primitive proposition, the set of formulas of the  
basic modal logic is defined as follows:

each p ∈ P is a formula (atomic formula);
if A and B are formulas then ¬A, A ∧ B, A ∨ B, A ⊃ B and
A ≡ B are formulas
if A is a formula □A and ◊A are formulas.
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Intuitive interpretation of the basic  modal logic

The formula □φ can be intuitively interpreted in many ways

φ is necessarily true (classical modal logic)
φ is known/believed to be true (epistemic logic)
φ is provable in a theory (provability logic)
φ will be always true (temporal logic)

. . .
In all these cases ◊φ is interpreted as ¬ □¬φ.

In other words, ◊φ, stands for ¬φ is not necessarily true, that is, φ
is possibly true.
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Semantics  for the basic  modal logic

I : P → 2W

Intuitively w ∈ I(p) means that p is true in w, or that w is of type p.
A model M is a pair (frame, interpretation). I.e.:

M = ‹F, I›

A basic frame (or simply a frame) is an algebraic  structure

F = ‹W , R›

where R ⊆W × W .
An interpretation I (or assignment) of a modal language in a  
frame F, is a function
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Satisfiability of modal formulas

Truth is relative to a world, so we define that relation of ⊨
between a world in a model and a formula

M, w ⊨ p iff w ∈ I(p)
M, w ⊨ φ∧ ψ iff M, w ⊨ φ and M, w ⊨ ψ
M, w ⊨ φ∨ ψ iff M, w ⊨ φ or M, w ⊨ ψ
M, w ⊨ φ⊃ ψ iff M, w ⊨ φ =⇒ implies M, w ⊨ ψ
M, w ⊨ φ ≡ ψ iff M, w ⊨ φ iff M, w ⊨ ψ

M, w ⊨ ¬φ iff not M, w ⊨ φ
M, w ⊨ □φ iff for all w / s.t. wRw /, M, w / ⊨ φ
M, w ⊨ ◊φ iff there is a w / s.t. wRw / and M, w / ⊨ φ

φ is globally satisfied in a model M, in symbols, M ⊨ φ if

M, w  ⊨ φ for all w ∈W
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w1 w2 w3

w4 w5

w6

Satisfiability example

p,q p,¬q

□p,◊q
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Validity relation on frames

A formula φ is valid in a world w of a frame F, in symbols
F, w ⊨ φ iff

M, w ⊨ φ for all I with M = ‹F, I › 

A formula φ is valid in a frame F, in symbols F ⊨ φ iff

F, w ⊨ φ for all w ∈ W

If C is a class of frames, then a formula φ is valid in the class of frames 
C, in symbols ⊨C   φ iff

F ⊨ φ for all F∈ C

A formula φ is valid, in symbols ⊨ φ iff

F ⊨ φ for all models frames F
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Logical consequence

φ is a local logical consequence of Γ, in symbols Γ ⊨ φ, if for  
every model M = ‹F, I › and every point w ∈W ,

M, w ⊨ Γ implies that M, w ⊨ φ

φ is a local logical consequence of Γ in a class of frames C , in  
symbols Γ ⊨C φ if for avery model M = ‹F, I › with F∈ C  and 
every point w ∈W ,

M, w ⊨ Γ implies that M, w ⊨ φ
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Hilbert axioms for normal modal logic

A1
A2
A3

MP

K

Nec

φ ⊃ (ψ⊃ φ)
(φ⊃ (ψ⊃ θ)) ⊃ ((φ⊃ ψ) ⊃ (φ⊃
θ))  (¬ψ⊃ ¬φ) ⊃ ((¬ψ⊃ φ) ⊃ φ)

φ φ ⊃ ψ
ψ

□(φ⊃ ψ) ⊃ (□φ⊃ □ψ)

φ 
□φ the necessitation rule

The above set of axioms and rules is called K, and every modal  
logic with a validity relation closed under the rules of K is a  
Normal Modal Logic.
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Remark on Nec

Notice that Nec rule is not the same as

(3)φ⊃□φ

indeed formula (3) is not valid.

Assignment Find a model in which (3) is false
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Satisfiability – exercises

Exercise
Show that each of the following formulas is not valid by  
constructing a frame F = (W , R) that contains a world that does  
not satisfy them.

1

2

3

□⊥
◊φ⊃ □φ
◊□φ⊃ □◊φ
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Multi-Modal Logics

All the definitions given for basic modal logic can be generalized in  the case 
in which we  have n □-operators □1,  . . . , □n  (and also ◊1, . . . ,  ◊n), which are 
interpreted in the frame

F = (W ,R1, ...Rn)

Every □i and ◊i is interpreted w.r.t.  the relation Ri .

A logic with n modal operators is called Multi-Modal.

Multi-Modal logics are often used to model Multi-Agent systems  where 
modality □i is used to express the fact that “agent i knows  (believes) that
φ”.
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Exercises

Exercise
Let F = (W , R1, . . . , Rn) be a frame for the modal language with n
modal operator □1, . . . , □n. Show that the following properties
holds:

1

2

3

4

5

F⊨ Ki (where Ki is obtained by replacing □ with □i in the  
axiom K)

If Ri  ⊆ Rj  then F ⊨ ◊iφ⊃ ◊jφ
If Ri  ⊆ Rj  then F ⊨ □jφ⊃ □iφ
F⊭ □ip⊃ □jp for any primitive proposition p
If Ri ⊆ Rj ◦ Rk , thena  F ⊨ ◊iφ⊃ ◊j ◊kφ

aGiven two binary relations R and S on the set W ,
R ◦ S = {(v, u)|(v , w ) ∈ R and (w, u) ∈ S }
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Other exercises

Exercise
Prove that the following formulae are  valid:
⊨ □(φ∧ ψ) ≡ □φ∧ □ψ
⊨ ◊(φ∨ ψ) ≡ ◊φ∨ ◊ψ
⊨ ¬◊φ ≡ □¬φ
¬□◊◊□□◊□φ ≡ ◊□□◊◊□◊¬φ (i.e., pushing in ¬  changes
□ into ◊ and ◊ into □)

Suggestion:  keep in mind the analogy □/∀ and ◊/∃.
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Exercise

Exercise
Consider the frame F = (W , R) with

W = {0, 1, . . . n − 1}
R = {(0, 1), (1, 2), . . . , (n − 1, 0)}

Show that the following formulas are valid in F

1 □φ ≡ ◊φ
2 φ ≡ □ . . .  □φ

3

4

can you explain which property of the frame R is formalized  
by formula 1 and 2?
Can you imagine another frame F/, different from F that  
satisfies formulas 1 and 2?

Answers also the following questions:
n
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Expressing  properties on structures

formula true at w property of w
◊T w  has a successor point

◊◊T w  has a successor point with a successor
point

◊ . . . ◊ T there is a path of length n starting at w

□⊥ w  does not have any successor point

□□⊥ every successor of w does not have asuc-
cessor point

□. . . □⊥ every  path  starting form  w  haslength
less then n

n

n
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Expressing  properties on structures

formula true at w property of w
◊p w  has a successor point which is  p
◊◊p w  has a successor point with a successor

point which is p
◊ . . . ◊ p there is a path of length n starting at  w

and ending at a point which is  p
□p every successor of w  are p
□□p all the successors of the successors of  w

are p
□ . . .□ p all the paths of length n starting form w

ends in a point which is  pn

n
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