Mathematical Logics Modal Logic: Introductions

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Mental Model

Logical Model

Logical Model

TestBooks and Readings

- Hughes, G. E., and M.J. Cresswell (1996) A New Introduction to Modal Logic. Routledge.
 Introductory textbook. Provides an historic perspective and a lot of explanations.
- Blackburn, Patrick, Maarten de Rijke, and Yde Venema (2001)
 Modal Logic. Cambridge Univ. Press
 More modern approach. It focuses on the formalisation of frames and structures.
- Chellas, B. F. (1980) Modal Logic: An Introduction. Cambridge Univ. Press

The focus is on the axiomatization of the modal operators \Box and \Diamond

Origins of modal logics

- (Modern modal logic) Developed in the early twentieth century,
- Clarence Irving Lewis, thought that Russell's description of the truth-functional conditional operator as material implication (i.e, A ⊃ B is true if either A is false or B is true) was misleading. He suggested to define a new form of implication called strict implication which literally can be seen like this

it is not possible that A is true and B is false
$$(I)$$

He proposed to formalise (I) as

$$\neg \diamond (A \land \neg B)$$
 (2)

Origins of modal logics - ctn'd

The novelties in $\neg \lozenge (A \land \neg B)$ are:

- A modal operator ◊ for representing the fact that a statement is possibly true (impossible, necessary, . . .)
- The fact that the truth value of $\neg \lozenge(A \land \neg B)$ is not a function of the truth values of A and B as it refers to a set of possible situations (lately called possible worlds) in which you have to consider the truth of A and B.

What is Modality?

- A modality is an expression that is used to qualify the truth of a judgement (or, in other words, an operator that expresses a "mode" in which a proposition is true)
- It can be seen as an operator that takes a proposition and returns a more complex proposition.

Proposition	Modal Expression	
John drives a Ferrari Everybody pays taxes	John is able to drive a Ferrari It is obligatory that everybody pays taxes	

 Modalities are expressed in natural language through modal verbs such as can/could, may/might, must, will/would, and shall/should.

What is Modality?

- In logic modalities are formalized using an operator such as \Box (\Diamond) that can be applied to a formula φ to obtain another formula $\Box \varphi$ ($\Diamond \varphi$).
- The truth value of $\Box \varphi$ is not a function of the truth value of φ .

Example

- The fact that John is able to drive a Ferrari may be true independently from the fact that John is actually driving a Ferrari.
- The fact that it is obligatory that everybody pays taxes is typically true, and this is independent from the fact that everybody actually pays taxes.

Note: \neg is not a modal operator since the truth value of $\neg \varphi$ is a function of the truth value of φ .

Modalities

- A modality is an expression that is used to qualify the truth of a judgement.
- Historically, the first modalities formalized with modal logic were the so called alethic modalities i.e.,
 - lacktriangledown it is possible that a certain proposition holds, usually denoted with $\Diamond \varphi$
 - ${f 2}$ it is necessary that a certain proposition holds, usually denoted with ${f \Box} \varphi$
- Afterwards a number of modal logics for different "qualifications" have been studied. The most common are. . .

q

Modalities

Modality	Symbol	Expression Symbolised
Alethic	$\Box \varphi \\ \Diamond \varphi$	it is necessary that $ arphi $ it is possible that $ arphi $
Deontic	Οφ Ρφ Fφ	it is obligatory that $ arphi $ it is permitted that $ arphi $ it is forbidden that $ arphi $
Temporal	Gφ Fφ	it will always be the case that φ it will eventually be the case that φ
Epistemic	$B_a arphi$ $K_a arphi$	agent a believes that $arphi$ agent a knows that $arphi$
Contextual	$ist(c, \varphi)$	arphi is true in the context c
Dynamic	[α]φ (α)φ	arphi must be true after the execution of program $lpha$ $arphi$ can be true after the execution of program $lpha$
Computational	AΧφ AGφ AFφ AφUϑ EΧφ	φ is true for every immediate successor state φ is true for every successor state φ will eventually be true in all the possible evolutions φ is true until ϑ becomes true φ is true in at least one immediate successor state

Modal logics & relational structures

- Historically, modal logics were developed in order to formalise the different modalities that qualify the truth of a formula;
- Modern modal logics have a different goal. They are motivated by the study of relational structures.

□efinition (Relational structure)

A relational structure is a tuple

$$\langle W, Ra_1, \ldots, Ra_n \rangle$$
 where $Ra_i \subseteq W \times \ldots \times W$

- each w ∈ W is called, point (world, state, time instant, situation, . . .)
- each R_{ai} is called accessibility relation (or simply relation)

The importance of relational structures

- In Computer Science, Artificial Intelligence and Knowledge Representation there are many examples of relational structures:
 - Graphs and labelled graphs;
 - Ontologies;
 - Finite state machines;
 - Computation paths; . ..
- Modal logics allow us to predicate on properties of relational structures.
 - Loop detection;
 - Reachability of a (set of) node(s);
 - Properties of a relation such as Transitivity, Reflexivity,

Examples of Relational structures

- Strict partial order (SPO)
 < W , < > < is transitive and irreflexive
- Strict linear order

$$\langle W, \langle \rangle$$
 (SPO) + for each $v \neq w \in W, v \langle w \text{ or } w \langle v \rangle$

Partial order (PO)

$$\langle W, \leq \rangle \leq \text{ is transitive, reflexive, and antisymmetric}$$

Linear order

$$\langle W, \leq \rangle$$
 (PO) + for each $v, w \in W, v \leq w$ or $w \leq v$

Labeled transition system (LTS)

$$\langle W, R_a \rangle_{a \in A}$$
 and $R_a \subseteq W \times W$

XML document.

 $\langle W, R_l \rangle_{l \in L}$, W contains the components of an XML document and L is the set of labels that appear in the document

¹Antisymmetry follows.

XML document as a relational stucture

Relational structures in FOL

- Relational structures can be investigated in FOL;
- The language must contain at least a binary relation R, and we can formalize the properties of a relational structure using formulae such as
 - $\forall xR(x, x)$ (R is reflexive)
 - $\forall x \exists yR(x, y)$ (R is serial)
 - $\forall xy (R(x, y) \supset R(y, x)) (R \text{ is symmetric})$
 - . . .
- So, why do we need modal logics?

Relational structures in first order and modal logic

- In First Order Logic we describes a relational structure from an external point of view, (and our description is not relative to a particular point).
- Modal logics describe relational structures from an internal point of view, rather than from the top perspective
- A formula has a meaning in a point $w \in W$ of a structure

Relational structures in first order and modal logic

In first order logic, relational structures are described from the top point of view. each point of W and the re-lation R can benamed.

Relational structures in first order and modal logic

In modal logics, relational structures are described from an internal perspective there is no way to mention points of W and the relation R.

An example: seriality

Let us assume to have a strict linear serial order.

- In first order logic I can observe an infinite sequence of points;
- in modal logic I know that I can always move to the next point (that is, from the point where I am I can always see (and move to) a successor point).

The Language of a basic modal logic

If P is a set of primitive proposition, the set of formulas of the basic modal logic is defined as follows:

- each $p \in P$ is a formula (atomic formula);
- if A and B are formulas then $\neg A$, $A \land B$, $A \lor B$, $A \supset B$ and $A \equiv B$ are formulas
- if A is a formula $\Box A$ and $\Diamond A$ are formulas.

Intuitive interpretation of the basic modal logic

The formula $\Box \varphi$ can be intuitively interpreted in many ways

- $m{\phi}$ is necessarily true (classical modal logic)
- φ is known/believed to be true (epistemic logic)
- $oldsymbol{\phi}$ is provable in a theory (provability logic)
- ullet φ will be always true (temporal logic)
- · . . .

In all these cases $\Diamond \varphi$ is interpreted as $\neg \Box \neg \varphi$.

In other words, $\Diamond \varphi$, stands for $\neg \varphi$ is not necessarily true, that is, φ is possibly true.

Semantics for the basic modal logic

A basic frame (or simply a frame) is an algebraic structure

$$F = \langle W, R \rangle$$

where $R \subseteq W \times W$.

An interpretation I (or assignment) of a modal language in a frame F, is a function

$$I: P \rightarrow 2^W$$

Intuitively $w \in I(p)$ means that p is true in w, or that w is of type p. A model M is a pair (frame, interpretation). I.e.:

$$M = \langle F, I \rangle$$

Satisfiability of modal formulas

Truth is relative to a world, so we define that relation of between a world in a model and a formula

$$M, w \models p \text{ iff } w \subseteq I(p)$$
 $M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi$
 $M, w \models \varphi \lor \psi \text{ iff } M, w \models \varphi \text{ or } M, w \models \psi$
 $M, w \models \varphi \supset \psi \text{ iff } M, w \models \varphi \implies implies } M, w \models \psi$
 $M, w \models \varphi \equiv \psi \text{ iff } M, w \models \varphi \text{ iff } M, w \models \psi$
 $M, w \models \neg \varphi \text{ iff not } M, w \models \varphi$
 $M, w \models \neg \varphi \text{ iff for all } w \land \text{s.t. } w \text{Rw} \land M, w \land \varphi \Leftrightarrow \psi$
 $M, w \models \neg \varphi \text{ iff there is a } w \land \text{s.t. } w \text{Rw} \land M, w \land \varphi \Leftrightarrow \psi$
 $\varphi \text{ is globally satisfied in a model } M, \text{ in symbols, } M \models \varphi \text{ if } \psi \text{ if } \psi \text{ or } W \Rightarrow \psi \text{ if } \psi \text{ or } W \Rightarrow \psi \text{ if } \psi \text{ or } W \Rightarrow \psi$

 $M, w \models \varphi$ for all $w \in W$

Satisfiability example

Validity relation on frames

A formula φ is valid in a world w of a frame F, in symbols F, $w \models \varphi$ iff

$$M, w \models \varphi$$
 for all I with $M = \langle F, I \rangle$

A formula φ is valid in a frame F, in symbols $F \models \varphi$ iff

$$F, w \models \varphi \text{ for all } w \subseteq W$$

If C is a class of frames, then a formula φ is valid in the class of frames C, in symbols $\models_{\mathsf{C}} \varphi$ iff

$$F \models \varphi$$
 for all $F \in C$

A formula φ is valid, in symbols $\models \varphi$ iff

 $F \models \varphi$ for all models frames F

Logical consequence

• φ is a local logical consequence of Γ , in symbols $\Gamma \vDash \varphi$, if for every model $M = \langle F, I \rangle$ and every point $w \in W$,

$$M$$
, $w \models \Gamma$ implies that M , $w \models \varphi$

• φ is a local logical consequence of Γ in a class of frames C, in symbols $\Gamma \vDash_C \varphi$ if for avery model $M = \langle F, I \rangle$ with $F \subseteq C$ and every point $w \subseteq W$,

$$M$$
, $w \models \Gamma$ implies that M , $w \models \varphi$

Hilbert axioms for normal modal logic

AI
$$\varphi \supset (\psi \supset \varphi)$$
A2 $(\varphi \supset (\psi \supset \vartheta)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \varphi)$
A3 $\vartheta)) (\neg \psi \supset \neg \varphi) \supset ((\neg \psi \supset \varphi) \supset \varphi)$
MP $\frac{\varphi \varphi \supset \psi}{\psi}$
K $\Box (\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi)$
Nec $\frac{\varphi}{\Box \varphi}$ the necessitation rule

The above set of axioms and rules is called K, and every modal logic with a validity relation closed under the rules of K is a Normal Modal Logic.

Remark on Nec

Notice that **Nec** rule is not the same as

$$\varphi \supset \Box \varphi$$
 (3)

indeed formula (3) is not valid.

Assignment Find a model in which (3) is false

Satisfiability – exercises

Exercise

Show that each of the following formulas is not valid by constructing a frame F = (W, R) that contains a world that does not satisfy them.

- **○** □⊥

Multi-Modal Logics

All the definitions given for basic modal logic can be generalized in the case in which we have n operators op!, ..., operators op!, operators op!, ..., operators op!, ..., operators op!, ..., operators op!, ope

$$F = (W,R_1,...R_n)$$

Every $\Box i$ and $\Diamond i$ is interpreted w.r.t. the relation Ri .

A logic with n modal operators is called Multi-Modal.

Multi-Modal logics are often used to model Multi-Agent systems where modality $\Box i$ is used to express the fact that "agent i knows (believes) that φ ".

Exercises

Exercise

Let $F = (W, R_1, ..., R_n)$ be a frame for the modal language with n modal operator $\square_1, ..., \square_n$. Show that the following properties holds:

- $F \models \mathbf{K}i$ (where $\mathbf{K}i$ is obtained by replacing \square with $\square i$ in the axiom \mathbf{K})

- **②** $F \models \Box ip$ ⊃ $\Box jp$ for any primitive proposition p

^aGiven two binary relations R and S on the set W, $R \circ S = \{(v, u) | (v, w) \in R \text{ and } (w, u) \in S \}$

Other exercises

Exercise

Prove that the following formulae are valid:

- $\bullet \vdash \Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$
- $\bullet \vdash \Diamond (\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$
- $_{\bullet}$ $\vDash \neg \Diamond \varphi \equiv \Box \neg \varphi$
- ¬□◊◊□□◊□ φ ≡ ◊□□◊◊□◊¬ φ (i.e., pushing in ¬ changes □ into ◊ and ◊ into □)

Suggestion: keep in mind the analogy \Box/\forall and \Diamond/\exists .

Exercise

Exercise

Consider the frame F = (W, R) with

- $W = \{0, 1, ..., n-1\}$
- $R = \{(0, 1), (1, 2), \ldots, (n 1, 0)\}$

Show that the following formulas are valid in F

Answers also the following questions:

- can you explain which property of the frame R is formalized by formula 1 and 2?
- Can you imagine another frame F^{I} , different from F that satisfies formulas I and I?

Expressing properties on structures

formula true at w	property of w
♦T	w has a successor point
♦♦T	w has a successor point with a successor point
<u>◊</u>	there is a path of length <i>n</i> starting at <i>w</i>
□⊥	w does not have any successor point
	every successor of w does not have a successor point
	every path starting form w has length less then n

Expressing properties on structures

formula true at w	property of w
♦p	w has a successor point which is p
♦♦₽	w has a successor point with a successor
	point which is p
<u>◊</u> ◊ <i>p</i>	there is a path of length n starting at w
n n	and ending at a point which is p
□Þ	every successor of w are p
□□⊅	all the successors of the successors of w
	are p
p	all the paths of length n starting form w
n	ends in a point which is p