Mathematical Logic

Propositional Logic and First Order Logic*

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Finite domain

If we are interested in representing facts on a finite domain that contains n elements we can use the following theorem:

Theorem

The formula

$$\varphi_{|\Delta|=n} = \exists x_1,...,x_n \qquad \left(\bigwedge_{i\neq j=1}^n x_i \neq x_j \land \forall x \left(\bigvee_{i=1}^n x_i = x \right) \right)$$

is true in $I=\langle \Delta^I,\ ^I \rangle$ if and only if $|\Delta^I|=n$, i.e., the cardinality of Δ is equal to n, i.e., Δ^I contains exactly n elements.

Finite domain

Proof.

We show that if $I = \varphi_n$ then $|\Delta^1| = n$

- If $I \models \varphi_n$ then there are $d_1, \ldots, d_n \subseteq \Delta^{\perp}$ s.t.

- From 3 we have that for all $1 \le i \ne j \le n$, $1 \models x_i \ne x_j [a[x_i := d_i, x_j = d_j]]$
- \bigcirc this implies that $d_i \neq d_j$ for $1 \leq i \neq j \leq n$.
- since $d_1,...,d_n \subseteq \Delta^1$, we have that $|\Delta^1| \ge n$.
- from 2 we have $I \models \forall x \ (\bigvee_{i=1}^n x_i = x) \ [a[x_1 := d_1, ..., x_n := d_n]]$
- ① the implies that for any $d \in \Delta^1$, $I = (\bigvee_{i=1}^n x_i = x)$ $[a[x_1 := d_1, \dots, x_n := d_n, x := d]]$
- which implies that for some i, $l \models x_i = x[a[x_i := d_i, x = d]]$, i.e., $d_i = d$ for some $1 \le i \le n$.
- ① Since this is true for all $d \in \Delta^{I}$, then $|\Delta^{I}| \leq n$.

Finite domain, with names for every element

Unique Name Assumption (UNA)

Is the assumption under which the language contains a name for each element of the domain, i.e., the language contains the constant c_1, \ldots, c_n , and each constant is the name of one and only one domain element.

Theorem

The formula

$$\varphi_{\Delta = \{c \mid \dots, cn\}} = \left(\bigwedge_{i \neq j=1}^{n} c_i \neq c_j \land \forall x (\bigvee_{i=1}^{n} c_i = x) \right)$$

 $\varphi_{\Delta=\{c_1,...,c_n\}}$ is also called Unique Name Assumption.

Proof.

The proof is similar to the one of the previous theorem. Try it by exercise.

Finite domain - Grounding

Under the hypothesis of finite domain with a constant name for every elements, First order formulas can be propositionalized, aka grounded as follows:

$$\varphi_{\lambda=\{c_1,\dots,c_n\}} \vDash \forall x \varphi(x) \equiv \varphi(c_1) \wedge \dots \wedge \varphi(c_n)$$
 (1)

$$\varphi_{\Delta=\{c_1,\ldots,c_n\}} \models \exists x\varphi(x) \equiv \varphi(c_1) \land \ldots \land \varphi(c_n)$$

Generalizing:

$$\varphi_{\Delta=\{c_1,\ldots,c_n\}} \vDash \forall x_1...x_k \varphi(x_1,\ldots,x_k) \equiv \bigwedge_{\substack{c_{i_1},\ldots,c_{i_k} \in \\ \{c_1,\ldots,c_n\}}} \varphi(c_{i_1},\ldots,c_{i_k})$$
(3)

$$\varphi_{\Delta = \{c_1, \dots, c_n\}} \models \exists x_1 \dots x_k \varphi(x_1, \dots, x_k) \qquad \bigvee_{\substack{c_1, \dots, c_k \in \\ \{c_1, \dots, c_n\}}} \varphi(c_1, \dots, c_k)$$

$$(4)$$

4

(2)

Finite predicate extension

The assumption that states that a predicate *P* is true only for a finite set of objects for which the language contains a name, can be formalized by the following formulas:

$$\forall x (P(x) \equiv x = c_1 \lor ... \lor x = c_n)$$

Example

• The days of the week are: Monday, Tuesday, . . . , Sunday.

$$\forall x (\text{WeekDay}(x) \equiv x = \text{Mon } \forall x = \text{Tue } \forall ... \forall x = \text{Sun}) \text{ The }$$

WorkingDays Monday, Tuesday, . . . , Friday:

$$\forall x (\text{WorkingDay}(x) \equiv x = \text{Mon } \forall x = \text{Tue } \forall ... \forall x = \text{Fri})$$

Infinite domain

Is it possible to write a (set of) formula(s) that are satisfied only by an interpretation with infinite domain

Theorem

Let $\varphi_{inf-dom}$ be the formula:

$$\mathcal{Q}_{\text{nf-dom}} = \forall x \neg R(x, x) \land \\
\forall x \forall y \forall z (R(x,y) \land R(y,z) \supset R(x,z)) \land \\
\forall x \exists y R(x,y)$$

If
$$| = \varphi_{inf-dom}|$$
 then $|\Delta^I| = \infty$.

Observe that:

- $\forall x \forall y \forall z (R(x,y) \land R(y,z) \supset R(x,z))$ represents the fact that R is interpreted in a transitive relation
- $\forall x \neg R(x, x)$ represents the fact that R is anti-reflexive

Infinite domain

Proof.

- By definition there is a $d_0 \subseteq \Delta^{-1}$.
 - Since $I \models \forall x \exists y R (x, y)$, there must be a $d_1 \in \Delta^1$ such that $\langle d_0, d_1 \rangle \in R^1$. For the same reason there must be a $d_2 \in \Delta^1$, such that $\langle d_1, d_2 \rangle \in R^1$. And so on This means that there must be an infinite sequence d_0, d_1, d_2, \ldots such that $\langle d_i, d_{i+1} \rangle$, for every $i \in \Delta^0$
- <u></u> ≥ 0.
 - Since I $\models \forall x \forall y \forall z (R(x,y) \land R(y,z) \supseteq R(x,z))$, then for all
- i < j, $\langle d_i, d_j \rangle \subseteq R^I$. suppose, by contradiction, that $|\Delta^I| = k$ for some finite number k.
 - This means there is an i, j with $0 \le i < j \le k + 1$ such that $d_i = d_j$.
 - The fact that $\langle d_i, d_j \rangle \subseteq R^I$ implies that $\langle d_i, d_j \rangle \subseteq R^I$. But this contradicts the fact that $I \models \forall x \neg R(x, x)$.