Mathematical Logic Propositional Logic - Tableaux*

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Tableaux

- Early work by Beth and Hintikka (around 1955). Later refined and popularised by Raymond Smullyan:
 - R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
- Modern expositions include:
 - M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
 - M. DAgostino, D. Gabbay, R. H'ahnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
 - R. H'ahnle Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
 - Proceedings of the yearly Tableaux conference:

http://il2www.ira.uka.de/TABLEAUX/

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated *deduction*:

Given : set of premises Γ and conclusion φ

Task: prove $\Gamma \vDash \varphi$

How? show $\Gamma \cup \neg \varphi$ is not satisfiable (which is equivalent), i.e. add the complement of the conclusion to the premises and derive a contradiction (refutation procedure)

Reduce Logical Consequence to (un)Satisfiability

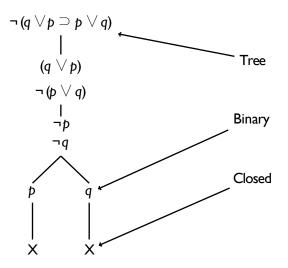
Theorem

Proof.

- ⇒ Suppose that $\Gamma \vDash \varphi$, this means that every interpretation *I* that satisfies Γ , it does satisfy φ , and therefore $I \nvDash \neg \varphi$. This implies that there is no interpretations that satisfies together Γ and $\neg \varphi$.
- $\begin{tabular}{ll} & \mbox{Suppose that } I \vDash \Gamma, \mbox{ let us prove that } I \vDash \varphi, \mbox{Since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{ is not satisfiable, then } I \nvDash \neg \varphi \end{tabular} \begin{tabular}{ll} & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{let} \neg \varphi \\ & \mbox{since } \Gamma \begin{tabular}{ll} & \mbox{since } \Gamma \be$

- **Data structure**: a proof is represented as a tableau i.e., a binary tree the nodes of which are labelled with formulas.
- **Start**: we start by putting the premises and the negated conclusion into the root of an otherwise empty tableau.
- **Expansion**: we apply expansion rules to the formulas on the tree, thereby adding new formulas and splitting branches.
- **Closure**: we close branches that are obviously contradictory.
- **Success:** a proof is successful iff we can close all branches.

An example



Expansion Rules of Propositional Tableau

	α rules	\neg \neg -Elimination		
$oldsymbol{arphi}\wedgeoldsymbol{\psi}$	$ eg (arphi ee \psi)$	$ eg (arphi \supseteq \psi)$	רר $arphi$	
φ	¬ φ	φ	φ	
ψ	$\neg \psi$	$\neg\psi$		
	β rules	Branch Closure		
$\begin{array}{c c} \varphi \lor \psi \\ \hline \varphi & \psi \end{array}$		$\begin{array}{c c} \varphi \supset \psi \\ \hline \neg \varphi & \psi \end{array}$	$\frac{\varphi}{\frac{\neg \varphi}{X}}$	

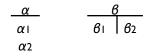
Note: These are the standard ("Smullyan-style") tableau rules.

We omit the rules for \equiv . We rewrite $\varphi \equiv \psi$ as $(\varphi \supset \psi) \land (\psi \supset \varphi)$

Two types of formulas: conjunctive (α) and disjunctive (β):

α			в	Bı	в2
φ ∧ ψ ¬ (φ ∨ ψ)	φ	ψ	$\phi \lor \psi$		
ר ($arphi \lor \psi$)	¬φ	¬ψ	$ eg (arphi \land \psi)$		
ר ($arphi \supset \psi$)	φ	$\neg \psi$	$\boldsymbol{\varphi} \supset \boldsymbol{\psi}$	¬φ	ψ

We can now state α and β rules as follows:



Note: α rules are also called deterministic rules. β rules are also called splitting rules.

$$\neg (q \lor p \supset p \lor q)$$

$$|$$

$$(q \lor p)$$

$$\neg (p \lor q)$$

$$|$$

$$\neg p$$

$$\neg q$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$X X$$

Some definitions for tableaux

Definition (type-alpha and type-& formulae)

- Formulae of the form $\varphi \land \psi$, $\neg (\varphi \lor \psi)$, and $\neg (\varphi \supseteq \psi)$ are called type- α formulae.
- Formulae of the form $\varphi \lor \psi$, $\neg (\varphi \land \psi)$, and $\varphi \supseteq \psi$ are called type- β formulae

Note: type-*alpha* formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \varphi$ **)**

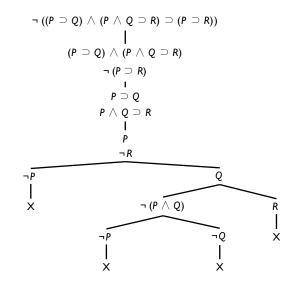
Let φ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \varphi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \varphi\}$

- A tableau for Γ attempts to build a propositional interpretation for
 Γ. If the tableaux is closed, it means that no model exist.
- We can use tableaux to check if a formula is satisfiable.

Exercise

Check whether the formula \neg (($P \supseteq Q$) \land ($P \land Q \supseteq R$) \supseteq ($P \supseteq R$)) is satisfiable

Solution



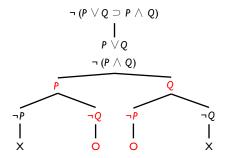
The tableau is closed and the formula is not satisfiable.

For each open branch in the tableau, and for each propositional atom p in the formula we define

$$I(p) = \begin{cases} \text{True} & \text{if } p \text{ belongs to the branch,} \\ \text{False} & \text{if } \neg p \text{ belongs to the branch.} \end{cases}$$

If neither p nor $\neg p$ belong to the branch we can define I(p) in an arbitrary way.

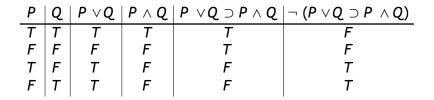
Models for \neg ($P \lor Q \supseteq P \land Q$)



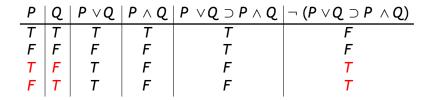
Two models:

- I(P) = True, I(Q) = False
- I(P) = False, I(Q) = True

Double-check with the truth tables!



Double-check with the truth tables!



Assuming we analyze each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever shorter formulas.

Note: Importantly, termination will *not* hold in the first-order case.

Definition

A literal is an atomic formula p or the negation $\neg p$ of an atomic formula.

Termination

Hint of proof:

Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a propositional variable and no expansion rules are applicable.

Inductive step Assume that the theorem holds for any formula with at most n connectives and prove it with a formula ϑ with n + 1 connectives.

Three cases:

• ϑ is a type- α formula (of the form $\varphi \land \psi$, $\neg (\varphi \lor \psi)$, or $\neg (\varphi \supseteq \psi)$)

We have to apply an α -rule

ϑ | αι α2

and we mark the formula ϑ as analysed once.

Since $\alpha 1$ and $\alpha 2$ contain less connectives than ϑ we can apply the inductive hypothesis and say that we can build a propositional tableau such that each formula is analyzed at most once and after a finite number of steps no more expansion rules will be applicable.

αι,α2

We concatenate the two trees and the proof is done.

Termination

Three cases:

o ϑ is a type- ϑ formula (of the form $\varphi \lor \psi$, $\neg (\varphi \land \psi)$, or $\varphi \supseteq \psi$)

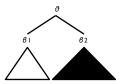
We have to apply a β -rule

and we mark the formula ϑ as analyzed once.

Since β_1 and β_2 contain less connectives than ϑ we can apply the inductive hypothesis and say that we can build two propositional tableaux, one for β_1 and one for β_2 such that each formula is analyzed at most once and after a finite number of steps no more expansion rules will be applicable.



We concatenate the 3 trees and the proof is done.



Termination

• ϑ is of the form $\neg \neg \varphi$.

We have to apply the ¬ ¬ -Elimination rule

and we mark the formula $\neg \neg \varphi$ as analyzed once.

Since φ contains less connectives than $\neg \neg \varphi$ we can apply the inductive hypothesis and say that we can build a propositional tableaux for it such that each formula is analyzed at most once and after a finite number of steps no more expansion rules will be applicable.

We concatenate the 2 trees and the proof is done.

To actually believe that the tableau method is a valid decision procedure we have to prove:

Theorem (Soundness)

If $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$

Theorem (Completeness)

If $\Gamma \vDash \varphi$ then $\Gamma \vdash \varphi$

Remember: We write $\Gamma \vdash \varphi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \varphi\}$.

Definition (Fairness)

We call a propositional tableau fair if every non-literal of a branch gets eventually analysed on this branch.

The proof of Soundness and Completeness confirms the decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical propositional logic.

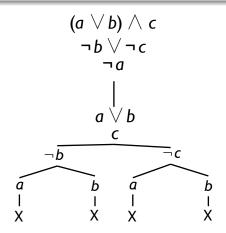
Proof. To check validity of φ , develop a tableau for $\neg \varphi$. Because of termination, we will eventually get a tableau that is either (1) closed or (2) that has a branch that cannot be closed.

- In case (1), the formula φ must be valid (soundness).
- In case (2), the branch that cannot be closed shows that $\neg \varphi$ is satisfiable (see completeness proof), i.e. φ cannot be valid.

This terminates the proof.

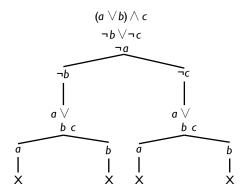
Exercise

Build a tableau for $\{(a \lor b) \land c, \neg b \lor \neg c, \neg a\}$



Another solution

What happens if we first expand the disjunction and then the conjunction?



Expanding β rules creates new branches. Then α rules may need to be expanded in all of them.

- Using the "wrong" policy (e.g., expanding disjunctions first) leads to an increase of size of the tableau, which leads to an increase of time;
- yet, unsatisfiability is still proved if set is unsatisfiable;
- this is not the case for other logics, where applying the wrong policy may inhibit proving unsatisfiability of some unsatisfiable sets.

- It is an open problem to find an efficient algorithm to decide in all cases which rule to use next in order to derive the shortest possible proof.
- However, as a rough guideline always apply any applicable *non-branching rules* first. In some cases, these may turn out to be redundant, but they will never cause an exponential blow-up of the proof.

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2ⁿ rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2ⁿ rows !!!