Mathematical Logics Propositional Logic - Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Mental Model

Logical Model

Logical Model

Domain D

Theory T Model M

$$L = "C, A, B, N, R, G, \land, \lor, \neg, \rightarrow, \dots"$$

$$T = "G* \rightarrow (A \lor N)"$$

$$I: "I(A) = #I, I(N) = #2, I(G) = #3"$$

$$M \models A$$

$$M \models N$$

$$M \models A \lor N$$
"

SEMANTIC GAP

Propositional logic - Intuition

- Propositional logic is the logic of propositions
- a proposition can be true or false in the state of the world. the
- same proposition can be expressed in different ways.
 E.g.
 - "B. Obama is drinking a bier"
 - "The U.S.A. president is drinking a bier", and
 - "B. Obama si sta facendo una birra"

express the same proposition.

 The language of propositional logic allows us to express propositions.

Propositional logic language

Definition (Propositional alphabet)

Logical symbols \neg , \land , \lor , \supset , and \equiv

Non logical symbols A set \mathcal{P} of symbols called propositional variables

Separator symbols "(" and ")"

Definition (Well formed formulas (or simply formulas))

- ullet every $\mathcal{P} \subseteq \mathcal{P}$ is an atomic formula
- every atomic formula is a formula
- if A and B are formulas then \neg A, $A \land B$, $A \lor B \land A \supset B$, e $A \equiv B$ are formulas

Formulas cont'd

Example ((non) formulas)FormulasNon formulas $P \rightarrow Q$ PQ $P \rightarrow (Q \rightarrow R)$ $P \rightarrow ((Q \rightarrow R))$ $P \land Q \rightarrow R$ $P \land Q \rightarrow R$

Reading formulas

Problem

How do we read the formula $P \land Q \rightarrow R$?

The formula $P \wedge Q \rightarrow R$ can be read in two ways:

- $\bigcirc \land (Q \rightarrow R)$

Symbol priority

¬ has higher priority, then \land , \lor , \rightarrow and \equiv . Parenthesis can be used around formulas to stress or change the priority.

Symbol	Priority
	1
\wedge	2
V	3
\rightarrow	4
≡	5

Formulas as trees

A formula can be seen as a tree. Leaf nodes are associated to propositional variables, while intermediate (non-leaf) nodes are associated to connectives.

For instance the formula $(A \land \neg B) \equiv (B \rightarrow C)$ can be represented as the tree

Subformulas

Definition

(Proper) Subformula

- A is a subformula of itself
- A and B are subformulas of $A \land B$, $A \lor B A \supset B$, $eA \equiv B A$ is a
- subformula of ¬A
- if A is a subformula of B and B is a subformula of C, then A is a subformula of C.
- A is a proper subformula of B if A is a subformula of B and A is different from B.

Remark

The subformulas of a formula represented as a tree correspond to all the different subtrees of the tree associated to the formula, one for each node.

Subformulas

Example

The subformulas of $(p \rightarrow (q \lor r)) \rightarrow (p \land \neg p)$ are

$$(p \rightarrow (q \lor r)) \rightarrow (p \land \neg p)$$

$$(p \rightarrow (q \lor r))$$

$$p \land \neg p$$

$$p$$

$$\neg p$$

$$q \lor r$$

$$q$$

$$r$$

Proposition

Every formula has a finite number of subformulas

Interpretation of Propositional Logic

Definition (Interpretation)

A Propositional interpretation is a function $I : P \rightarrow \{True, False\}$

Remark

If |P| is the cardinality of P, then there are $2^{|P|}$ different interpretations, i.e. all the different subsets of P. If |P| is finite then there is a finite number of interpretations.

Remark

A propositional interpretation can be thought as a subset Sof P, and I is the characteristic function of S, i.e., $A \subseteq S$ iff I(A) = True.

Interpretation of Propositional Logic

Example				
	р	q	r	Set theoretic representation
	True	True	True	$\{p,q,r\}$
12	True	True	False	$\{p,q\}$
13	True	False	True	{ <i>p</i> , <i>r</i> }
14	True	False	False	{ <i>p</i> }
15	False	True	True	$\{q,r\}$
l 6	False	True	False	$\{q\}$
17	False	False	True	{ <i>r</i> }
18	False	False	False	{}

Satisfiability of a propositional formula

Definition (I satisfies a formula, $I \models A$)

A formula A is true in/satisfied by an interpretation I, in symbols I \models A, according to the following inductive definition:

- If $P \subseteq P$, $I \models P$ if I(P) = True.
- $I \models \neg A \text{ if not } I \models A \text{ (also written } I \models A\text{)}$
- I $\models A \land B$ if, I $\models A$ and I $\models B$
- I $\models A \lor B \text{ if, I } \models A \text{ or I } \models B$
- I $\models A \equiv B \text{ if, } I \models A \text{ iff } I \models B$

Satisfiability of a propositional formula

Example (interpretation)

Let $P = \{P, Q\}$. I(P) = True and I(Q) = False can be also expressed with $I = \{P\}$.

Example (Satisfiability)

Let $I = \{P\}$. Check if $I \models (P \land Q) \lor (R \rightarrow S)$:

Replace each occurrence of each primitive propositions of the formula with the truth value assigned by I, and apply the definition for connectives.

$$(\text{True } \land \text{False}) \lor (\text{False} \rightarrow \text{False})$$
 (1)

False
$$\vee$$
True (2)

Satisfiability of a propositional formula

Proposition

If for any propositional variable P appearing in a formula A, I(P) = I'(P), then $I \models A$ iff $I' \models A$

Checking if I ⊨A

Lazy evaluation algorithm (1/2)

```
check(l ⊨p)
(A = p)
                                      if I(p) = true
                                          then return YES
                                      else return NO
                                  check(I \models B \land C) if
(A = B \wedge C)
                                      check(I \models B)
                                          then return check(I \models C)
                                      else return NO
                                  check(I \models B \lor C) if
(A = B \lor C)
                                      check(I \models B)
                                          then return YES
                                      else return check(I \models C)
```

Checking if I ⊨A

Lazy evaluation algorithm (2/2)

```
check(I \models B \Rightarrow C) if check(I \models B) then return check(I \models C) else return YES

(A = B \equiv C) check(I \models B \equiv C) if check(I \models B) then return check(I \models C) else return not(check(I \models C)
```

Formalizing English Sentences

Exercise

Let's consider a propositional language where p means "Paola is happy", q means "Paola paints a picture", and r means "Renzo is happy".

Formalize the following sentences:

- **1** "if Paola is happy and paints a picture then Renzo isn't happy" $p \land q \Rightarrow \neg r$
- ② "if Paola is happy, then she paints a picture" $p \rightarrow q$
- 3 "Paola is happy only if she paints a picture" $\neg (p \land \neg q)$ which is equivalent to $p \rightarrow q$!!!

The precision of formal languages avoid the ambiguities of natural languages.

Valid, Satisfiable, and Unsatisfiable formulas

Definition

A formula A is

Valid if for all interpretations I, $I \models A$

Satisfiable if there is an interpretations I s.t., I ⊨A

Unsatisfiable if for no interpretations I, $I \models A$

Proposition

A Valid \rightarrow A satisfiable $\leftarrow \rightarrow$ A not unsatisfiable

A unsatisfiable $\leftarrow \rightarrow$ A not satisfiable \rightarrow A not Valid

Valid, Satisfiable, and Unsatisfiable formulas

Proposition		
	if A is	then ¬A is
	Valid	Unsatisfiable
	Satisfiable	not Valid
	not Valid	Satisfiable
	Unsatisfiable	Valid

Chesking Validity and (un)satisfiability of a formula

Truth Table

Checking (un)satisfiability and validity of a formula A can be done by enumerating all the interpretations which are relevant for S, and for each interpretation I check if $I \models A$.

Example (of truth table)

Α	В	С	$A \rightarrow (B \lor \neg C)$
true	true	true	true
true	true	false	true
true	false	true	false
true	false	false	true
false	true	true	true
false	true	false	true
false	false	true	true
false	false	false	true

Valid, Satisfiable, and Unsatisfiable formulas

Valid, Satisfiable, and Unsatisfiable sets of formulas

Definition

A set of formulas Γ is

Valid if for all interpretations I, $I \models A$ for all formulas $A \in \Gamma$

Satisfiable if there is an interpretations I, $I \models A$ for all $A \subseteq \Gamma$ Unsatisfiable if for no interpretations I, s.t. $I \models A$ for all $A \subseteq \Gamma$

Proposition

For any finite set of formulas Γ , (i.e., $\Gamma = \{A_1, \ldots, A_n\}$ for some $n \ge 1$), Γ is valid (resp. satisfiable and unsatisfiable) if and only if $A_1 \land \ldots \land A_n$ (resp, satisfiable and unsatisfiable).

Truth Tables: Example

Compute the truth table of $(F \lor G) \land \neg (F \land G)$.

F	G	$F \vee G$	$F \wedge G$	$\neg (F \land G)$	$(F \vee G) \wedge \neg (F \wedge G)$
T T	TFT	T T T	T F	F T T	F T T
F	F	F	F	Ť	F

Intuitively, what does this formula represent?

Truth Tables

Recall some definitions

- Let F be a formula:
 - F is valid if every interpretation satisfies F
 - F is satisfiable if F is satisfied by some interpretation
 - F is unsatisfiable if there isn't any interpretation satisfying F

Truth Tables: Example (2)

Use the truth tables method to determine whether $(p \to q) \lor (p \to \neg q)$ is valid.

р	q	$p \rightarrow q$	$\neg q$	$p \rightarrow \neg q$	$(p \to q) \lor (p \to \neg q)$
T T F	TFTF	T F T	F T F T	F T T	T T T

The formula is valid since it is satisfied by every interpretation.

Truth Tables: Example (3)

Use the truth tables method to determine whether $(\neg p \lor q) \land (q \Rightarrow \neg r \land \neg p) \land (p \lor r)$ (denoted with F) is satisfiable.

р	q	r	$\neg p \lor q$	$\neg r \land \neg p$	$q \rightarrow \neg r \land \neg p$	(<i>p</i> ∨ <i>r</i>)	F
T T T	T T F	TFTF	T T F	F F F	F F T T	T T T	F F F
F	Т	Т	Т	F	F	Т	F
F	Т	F	Т	Т	Т	F	F
F	F	Т	Т	F	T	Т	Т
F	F	F	Т	Т	Т	F	F

There exists an interpretation satisfying F, thus F is satisfiable.

Example (The colored blanket)

- $P = \{B, R, Y, G\}$
- the intuitive interpretation of B (R, Y, and G) is that the blanket is completely blue (red, yellow and green)

Exercise

Find all the interpretations that, according to the intuitive interpretation given above, represent a possible situation. Consider the three cases in which

- the blanket is composed of exactly 4 pieces, and yellow, red, blue and green are the only allowed colors;
- the blanket can be composed of any number of pieces (at least I), and yellow, red, blue and green are the only allowed colors;
- the blanket can be composed of any number of pieces and there can be other colors.

Exercise (Solution)

- \bullet I = {B} corrisponding to
- \bullet I₂ = {Y} corresponding to
- $I_3 = \{R\}$ corresponding to
- $I_4 = \{G\}$ corrisponding to \blacksquare
- Is = ∅ corresponding to any blanket that is not monochrome,
 e.g. , ...
- 16 = {R, B} does not correspond to any blanket, since a blanket cannot be both completely blue and red. More in general all the interpretations that satisfies more than one proposition do not correspond to any real situation.
- **...**

Exercise (Solution)

- I = $\{B\}$ corrisponding to any blue blankets, no matter its shape, e.g. \P , and \P
- I₂ = {Y} corrisponding to any blue blankets, no matter its shape, e.g. , , and ,
- ...
- Is = ∅ corresponds to any blanket which is not monochrome no matter of its shape, e.g.
 Is = ∅ corresponds to any blanket which is not monochrome monochrome.
- 16 = {R, B} does not correspond to any blanket, since a blanket cannot be both completely blue and red. More in general all the interpretations that satisfies more than one proposition do not correspond to any real situation.
 - ...

Exercise (Solution)

- I = $\{B\}$ corrisponding to any blue blankets, no matter its shape, n e.g. \blacksquare , \blacksquare , and \blacksquare
- 12 = {Y} corrisponding to any yellow blankets, no matter its shape, e.g. , and , and
- **...**
- Is = ∅ corresponds to any blanket which is neither completely blue, red, yellow, nor green, no matter of its shape, e.g.,
- 16 = {R, B} does not correspond to any blanket, since a blanket cannot be both completely blue and red. More in general all the interpretations that satisfies more than one proposition do not correspond to any real situation.
- ٠...

Logical consequence

Definition (Logical consequence)

A formula A is a logical consequence of a set of formulas Γ , in symbols

Iff for any interpretation I that satisfies all the formulas in Γ , I satisfies A,

Example (Logical consequence)

- p > p \ q
- \bullet $q \lor p \models p \lor q$
- \bullet $p \lor q, p \rightarrow r, q \rightarrow r \models r$
- $\bullet p \rightarrow q, p \models q$
- p, ¬p⊨q

Proving Logical consequence in a direct manner

Example

- Proof of $p \models p \lor q$ Suppose that $I \models p$, then by definition $I \models p \lor q$.
- Proof of $q \lor p \models p \lor q$ Suppose that $I \models q \lor p$, then either $I \models q$ or $I \models p$. In both cases we have that $I \models p \lor q$.
- Proof of $p \lor q$, $p \to r$, $q \to r \vDash r$ Suppose that $I \vDash p \lor q$ and $I \vDash p \to r$ and $I \vDash q \to r$. Then either $I \vDash p$ or $I \vDash q$. In the first case, since $I \vDash p \to r$, then $I \vDash r$, in the second case, since $I \vDash q \to r$, then $I \vDash r$.
- Proof of p, $\neg p \models q$ Suppose that $I \models \neg p$, then not $I \models p$, which implies that there is no I such that $I \models p$ and $I \models \neg p$. This implies that all the interpretations that satisfy p and $\neg p$ (actually none) satisfy also q.
- Proof of $(p \land q) \lor (\neg p \land \neg q) \models p \equiv q)$ Left as an exercise
- Proof of $(p \to q) \models \neg p \lor q$ Left as an exercise

Proving Logical consequence using the truth tables

Use the truth tables method to determine whether $p \land \neg q \Rightarrow p \land q$ is a logical consequence of $\neg p$.

р	q	$\neg p$	$p \land \neg q$	p∧q	$p \land \neg q \rightarrow p \land q$
T T F		F F T T	F T F	T F F	T F T T

Logical Equivalence

Definition

Logical Equivalence Two formulas F and G are logically equivalent (denoted with $F \equiv G$) if for each interpretation I, I(F) = I(G).

Truth Tables: Example (5)

Use the truth tables method to determine whether $p \to (q \land \neg q)$ and $\neg p$ are logically equivalent.

р	q	$q \land \neg q$	$p \rightarrow (q \land \neg q)$	$\neg p$
T T F	T F T F	F F F	F F T T	F F T T

Properties of propositional logical consequence

Proposition

If Γ and Σ are two sets of propositional formulas and A and B two formulas, then the following properties hold:

```
Reflexivity {A} ⊨A
```

Monotonicity If $\Gamma \vDash A$ then $\Gamma \cup \Sigma \vDash A$

Cut If
$$\Gamma \models A$$
 and $\Sigma \cup \{A\} \models B$ then $\Gamma \cup \Sigma \models B$

Compactness If $\Gamma \models A$, then there is a finite subset $\Gamma_0 \subseteq \Gamma$, such that $\Gamma_0 \models A$

Deduction theorem If Γ , $A \models B$ then $\Gamma \models A \rightarrow B$

Refutation principle $\Gamma \models A \text{ iff } \Gamma \cup \{\neg A\}$ is unsatisfiable

```
Reflexivity \{A\} \models A.
                       PROOF: For all I if I \models A, then I \models A.
Monotonicity If \Gamma \models A then \Gamma \cup \Sigma \models A
                        PROOF: For all I if I \models \Gamma \cup \Sigma, then I \models \Gamma, by
                        hypothesis (\Gamma \models A) we can infer that I \models A, and therefore
                       that \Gamma \cup \Sigma \models A
              Cut If \Gamma \models A and \Sigma \cup \{A\} \models B then \Gamma \cup \Sigma \models B.
                        PROOF: For all I, if I \models \Gamma \cup \Sigma, then I \models \Gamma and I \models \Sigma.
                        The hypothesis \Gamma \models A implies that I \models A. Since I \models \Sigma, then
                        I \models \Sigma \cup \{A\}.
                        The hypothesis \Sigma \cup \{A\} \models B, implies that I \models B.
                        We can therefore conclude that \Gamma \cup \Sigma \models B.
```

Compactness If $\Gamma \models A$, then there is a finite subset $\Gamma_0 \subseteq \Gamma$, such that $\Gamma_0 \models A$.

PROOF: Let P_A be the primitive propositions occurring in A. Let I_1, \ldots, I_n (with $n \leq 2^{|P_A|}$), be all the interpretations of the language P_A that do not satisfy A. Since $\Gamma \vDash A$, then there should be I'_1, \ldots, I'_n interpretations of the language of Γ , which are extensions of I_1, \ldots, I_n , and such that $I' \nvDash \Gamma_k$ for some $\Gamma_k \subseteq \Gamma$.

Let $\Gamma_0 = \{\Gamma_1, \ldots, \Gamma_k\}$. Then $\Gamma_0 \models A$. Indeed if $I \models \Gamma_0$ then I is an extension of an interpretation J of P_A that satisfies A, and therefore $I \models A$.

Deduction theorem If Γ , $A \models B$ then $\Gamma \models A \rightarrow B$

PROOF: Suppose that $I \models \Gamma$. If $I \models A$, then $I \models A \rightarrow B$.

If instead $I \models A$, then by the hypothesis Γ , $A \models B$, implies that $I \models B$, which implies that $I \models B$. We can therefore conclude that $I \models A \rightarrow B$.

Refutation principle $\Gamma \models A$ iff $\Gamma \cup \{\neg A\}$ is unsatisfiable

PROOF:

- (⇒) Suppose by contradiction that $\Gamma \cup \{\neg A\}$ is satisfiable. This implies that there is an interpretation I such that $I \models \Gamma$ and $I \models \neg A$, i.e., $I \not\models A$. This contradicts that fact that for all interpretations that satisfies Γ , they satisfy A
- (\Leftarrow) Let $I \vDash \Gamma$, then by the fact that $\Gamma \cup \{\neg A\}$ is unsatisfiable, we have that $I \not\vDash \neg A$, and therefore $I \vDash A$. We can conclude that $\Gamma \vDash A$.

Propositional theory

Definition (Propositional theory)

A theory is a set of formulas closed under the logical consequence relation. I.e. T is a theory iff $T \models A$ implies that $A \subseteq T$

Example (Of theory)

- T_1 is the set of valid formulas $\{A|A \text{ is valid}\}$
- T_2 is the set of formulas which are true in the interpretation $I = \{P, Q, R\}$
- T₃ is the set of formulas which are true in the set of interpretations {I₁, I₂, I₃}
- T4 is the set of all formulas

Show that T_1 , T_2 , T_3 and T_4 are theories

Propositional theory (2)

Example (Of non theory)

- N_1 is the set $\{A, A \rightarrow B, C\}$
- N_2 is the set $\{A, A \rightarrow B, B, C\}$
- N3 is the set of all formulas containing P

Show that N_1 , N_2 and N_3 are not theories

Axiomatization

Remark

A propositional theory always contains an infinite set of formulas. Indeed any theory T contains at least all the valid formulas, which are infinite) (e.g., $A \rightarrow A$ for all formulas A)

Definition (Set of axioms for a theory)

A set of formulas Ω is a set of axioms for a theory T if for all $A \in T$, $\Omega \models A$.

Definition

Finitely axiomatizable theory A theory T is finitely axiomatizable if it has a finite set of axioms.

Propositional theory (cont'd)

Definition (Logical closure)

For any set Γ , $d(\Gamma) = \{A | \Gamma \models A\}$

Proposition (Logical closure)

For any set Γ , the logical dosure of Γ , $cl(\Gamma)$ is a theory

Proposition

 Γ is a set of axioms for $cl(\Gamma)$.

Axioms and theory - intuition

Compact representation of knowldge

The axiomatization of a theory is a compact way to represent a set of interpretations, and thus to represent a set of possible (acceptable) world states. In other words is a way to represent all the knowledge we have of the real world.

minimality

The axioms of a theory constitute the basic knowledge, and all the generable knowledge is obtained by logical consequence. An important feature of a set of axioms, is that they are minimal, i.e., no axioms can be derived from the others.

Axioms and theory - intuition

Example

```
\label{eq:pam_Attends_Logic_Course} $$Pam_is_a_Phd Student$$ Pam_is_a_Ms_Student $\lor$ Pam_is_a_Ms_Student $\lor$ Pam_is_a_Ba_Student $\lor$ Pam_is_a_Ba_Student$$ Pam_is_a_PhD_Student $\lor$ Pam_is_a_Ba_Student$$ $\lnot$ (John_is_a_Phd_Student $\land$ John_is_a_Ba_Student)$$
```

The axioms above constitute the basic knowledge about the people that attend logic course. The facts ¬Pam_is_a_Ba_Student and ¬John_is_a_Ba_Student don't need to be added to this basic knowledge, as they can be derived via logical consequence.

Logic based systems

A logic-based system for representing and reasoning about knowledge is composed by a Knowledge base and a Reasoning system. A knowledge base consists of a finite collection of formulas in a logical language. The main task of the knowledge base is to answer queries which are submitted to it by means of a Reasoning system

Tell: this action incorporates the new knowledge encoded in an axiom (formula). This allows to build a KB.

Ask: allows to query what is known, i.e., whether a formula ϕ is a logical consequences of the axioms contained in the KB (KB = ϕ)

Propositional theory (cont'd)

Proposition

Given a set of interpretations S, the set of formulas A which are satisfied by all the interpretations in S is a theory. i.e.

$$T_S = \{A | I \models A \text{ for all } I \in S\}$$

is a theory.

Knowledge representation problem

Given a set of interpretations Swhich correspond to admissible situations find a set of axioms Ω for T_S .