Mathematical Logic Tableaux Reasoning for Propositional Logic

Chiara Ghidini

FBK-IRST, Trento, Italy

- An introduction to Automated Reasoning with Analytic Tableaux;
- Today we will be looking into tableau methods for classical propositional logic (we will discuss first-order tableaux later).
- Analytic Tableaux are a a family of mechanical proof methods, developed for a variety of different logics. Tableaux are nice, because they are both easy to grasp for *humans* and easy to implement on *machines*.

Tableaux

- Early work by Beth and Hintikka (around 1955). Later refined and popularised by Raymond Smullyan:
 - R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
- Modern expositions include:
 - M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
 - M. DAgostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
 - R. Hähnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
 - Proceedings of the yearly Tableaux conference: http://i12www.ira.uka.de/TABLEAUX/

- 4 回 🖌 - 4 目 🖌 - 4 目 🕨

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated *deduction*:

Given : set of premises Γ and conclusion ϕ

Task : prove $\Gamma \models \phi$

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated *deduction*:

- Given : set of premises Γ and conclusion ϕ
- $\mathsf{Task}: \quad \mathsf{prove} \ \mathsf{\Gamma} \models \phi$
- How? show $\Gamma \cup \neg \phi$ is not satisfiable (which is equivalent),

i.e. add the complement of the conclusion to the premises and derive a contradiction (refutation procedure)

Theorem

 $\Gamma \models \phi$ if and only if $\Gamma \cup \{\neg \phi\}$ is unsatisfiable

Proof.

- ⇒ Suppose that $\Gamma \models \phi$, this means that every interpretation \mathcal{I} that satisfies Γ , it does satisfy ϕ , and therefore $\mathcal{I} \not\models \neg \phi$. This implies that there is no interpretations that satisfies together Γ and $\neg \phi$.
- $\label{eq:suppose that $\mathcal{I} \models \Gamma$, let us prove that $\mathcal{I} \models \phi$, Since $\Gamma \cup \{\neg \phi\}$ is not satisfiable, then $\mathcal{I} \not\models \neg \phi$ and therefore $\mathcal{I} \models \phi$. }$

・ロト ・回ト ・ヨト ・ヨト

Theorem

 $\Gamma \models \phi$ if and only if $\Gamma \cup \{\neg \phi\}$ is unsatisfiable

Proof.

- ⇒ Suppose that $\Gamma \models \phi$, this means that every interpretation \mathcal{I} that satisfies Γ , it does satisfy ϕ , and therefore $\mathcal{I} \not\models \neg \phi$. This implies that there is no interpretations that satisfies together Γ and $\neg \phi$.
- $\Leftarrow \text{ Suppose that } \mathcal{I} \models \Gamma \text{, let us prove that } \mathcal{I} \models \phi \text{, Since } \Gamma \cup \{\neg \phi\} \\ \text{ is not satisfiable, then } \mathcal{I} \not\models \neg \phi \text{ and therefore } \mathcal{I} \models \phi. \end{cases}$

イロン イ部ン イヨン イヨン 三日

- **Data structure**: a proof is represented as a tableau i.e., a binary tree the nodes of which are labelled with formulas.
- **Start**: we start by putting the premises and the negated conclusion into the root of an otherwise empty tableau.
- **Expansion**: we apply expansion rules to the formulas on the tree, thereby adding new formulas and splitting branches.
- Closure: we close branches that are obviously contradictory.
- Success: a proof is successful iff we can close all branches.

<->→ □→ < ≥→</>

- < ≣ →

Expansion Rules of Propositional Tableau

Note: These are the standard ("Smullyan-style") tableau rules.

We omit the rules for \equiv . We rewrite $\phi \equiv \psi$ as $(\phi \supset \psi) \land (\psi \supset \phi)$

・ロン ・回 ・ モン・ モン・ モー うへつ

Smullyans Uniform Notation

Two types of formulas: conjunctive (α) and disjunctive (β):

α	α_1	α_2	β	β_1	β_2
$\phi \wedge \psi$	ϕ	ψ	$\phi \lor \psi$	ϕ	ψ
$\neg(\phi \lor \psi)$	$\neg \phi$	$\neg \psi$	$\neg(\phi \land \psi)$	$\neg \phi$	$\neg\psi$
$\neg(\phi \supset \psi)$	ϕ	$\neg\psi$	$\phi \supset \psi$	$\neg \phi$	ψ

We can now state α and β rules as follows:

Note: α rules are also called deterministic rules. β rules are also called splitting rules.

Two types of formulas: conjunctive (α) and disjunctive (β):

α	α_1	α_2	β	β_1	β_2
$\phi \wedge \psi$	ϕ	ψ	$\phi \lor \psi$	ϕ	ψ
$\neg(\phi \lor \psi)$	$\neg \phi$	$\neg\psi$	$ eg(\phi \wedge \psi)$	$\neg \phi$	$\neg \psi$
$\neg(\phi \supset \psi)$	ϕ	$\neg \psi$	$\phi \supset \psi$	$\neg \phi$	ψ

We can now state α and β rules as follows:

$$\begin{array}{c|c} \alpha & & \beta \\ \hline \alpha_1 & & \hline \beta_1 \mid \beta_2 \\ \alpha_2 & & \end{array}$$

Note: α rules are also called deterministic rules. β rules are also called splitting rules.

$$\neg(q \lor p \supset p \lor q)$$

Chiara Ghidini Mathematical Logic

・ロン ・四と ・ヨン ・ヨン

$$egreen (q \lor p \supset p \lor q) \ ert \ (q \lor p) \ \neg (p \lor q)$$

< □ > < □ > < □ > < □ > < □ > .

 $\neg(q \lor p \supset p \lor q)$ $(q \lor p)$ $\neg(p \lor q)$ $\neg p$ $\neg q$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Definition (type-alpha and type- β formulae)

- Formulae of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, and $\neg(\phi \supset \psi)$ are called type- α formulae.
- Formulae of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, and $\phi \supset \psi$ are called type- β formulae

Note: type-*alpha* formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \phi$)

Let ϕ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg\phi\}$

Definition (type-*alpha* and type- β formulae)

- Formulae of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, and $\neg(\phi \supset \psi)$ are called type- α formulae.
- Formulae of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, and $\phi \supset \psi$ are called type- β formulae

Note: type-alpha formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \phi$)

Let ϕ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$

Definition (type-*alpha* and type- β formulae)

- Formulae of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, and $\neg(\phi \supset \psi)$ are called type- α formulae.
- Formulae of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, and $\phi \supset \psi$ are called type- β formulae

Note: type-alpha formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \phi$)

Let ϕ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$

Definition (type-*alpha* and type- β formulae)

- Formulae of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, and $\neg(\phi \supset \psi)$ are called type- α formulae.
- Formulae of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, and $\phi \supset \psi$ are called type- β formulae

Note: type-alpha formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \phi$ **)**

Let ϕ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg\phi\}$

Exercise

Show that the following are valid arguments:

$$\bullet \models ((P \supset Q) \supset P) \supset P$$

•
$$P \supset (Q \land R), \neg Q \lor \neg R \models \neg P$$

・ロト ・回ト ・ヨト

문 🕨 👘 문

Solutions

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Solutions

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Solutions

Note: different orderings of expansion rules are possible! But all lead to unsatisfiability.

・ロト ・四ト ・ヨト ・ヨトー

 A tableau for Γ attempts to build a propositional interpretation for Γ. If the tableaux is closed, it means that no model exist.

• We can use tableaux to check if a formula is satisfiable.

Exercise

Check whether the formula $\neg((P \supset Q) \land (P \land Q \supset R) \supset (P \supset R))$ is satisfiable

▲ 同 ▶ | ▲ 臣 ▶

- A tableau for Γ attempts to build a propositional interpretation for Γ. If the tableaux is closed, it means that no model exist.
- We can use tableaux to check if a formula is satisfiable.

Exercise

Check whether the formula $\neg((P \supset Q) \land (P \land Q \supset R) \supset (P \supset R))$ is satisfiable

・ 戸 ・ ・ 三 ・ ・

- A tableau for Γ attempts to build a propositional interpretation for Γ. If the tableaux is closed, it means that no model exist.
- We can use tableaux to check if a formula is satisfiable.

Exercise

Check whether the formula $\neg((P \supset Q) \land (P \land Q \supset R) \supset (P \supset R))$ is satisfiable

Solution

Exercise

Check whether the formula $\neg(P \lor Q \supset P \land Q)$ is satisfiable

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Two open branches. The formula is satisfiable.

The tableau shows us all the possible interpretations $(\{P\}, \{Q\})$ that satisfy the formula.

・ロト ・回ト ・ヨト ・ヨト

Two open branches. The formula is satisfiable.

The tableau shows us all the possible interpretations ($\{P\},\{Q\}$) that satisfy the formula.

・ロト ・回ト ・ヨト

< ∃⇒

For each open branch in the tableau, and for each propositional atom p in the formula we define

$$\mathcal{I}(p) = \begin{cases} \mathsf{True} & \text{if } p \text{ belongs to the branch,} \\ \mathsf{False} & \text{if } \neg p \text{ belongs to the branch.} \end{cases}$$

If neither p nor $\neg p$ belong to the branch we can define $\mathcal{I}(p)$ in an arbitrary way.

回 と く ヨ と く ヨ と

Models for $\neg (P \lor Q \supset P \land Q)$

Two models:

- $\mathcal{I}(P) = \mathsf{True}, \mathcal{I}(Q) = \mathsf{False}$
- $\mathcal{I}(P) = \mathsf{False}, \mathcal{I}(Q) = \mathsf{True}$

・ロン ・団 と ・ 国 と ・ 国 と

Double-check with the truth tables!

Double-check with the truth tables!

Exercise

Show unsatisfiability of each of the following formulae using tableaux:

- $(p \equiv q) \equiv (\neg q \equiv p);$
- $\neg((\neg q \supset \neg p) \supset ((\neg q \supset p) \supset q))$

Show satisfiability of each of the following formulae using tableaux:

- $(p \equiv q) \supset (\neg q \equiv p);$
- $\neg (p \lor q \supset ((\neg p \land q) \lor p \lor \neg q)).$

Show validity of each of the following formulae using tableaux:

- $(p \supset q) \supset ((p \supset \neg q) \supset \neg p);$
- $(p \supset r) \supset (p \lor q \supset r \lor q).$

For each of the following formulae, *describe all models* of this formula using tableaux:

$$(q \supset (p \land r)) \land \neg (p \lor r \supset q); \neg ((p \supset q) \land (p \land q \supset r) \supset (\neg p \supset r)).$$

Establish the equivalences between the following pairs of formulae using tableaux:

•
$$(p \supset \neg p), \neg p;$$

•
$$(p \supset q), (\neg q \supset \neg p);$$

•
$$(p \lor q) \land (p \lor \neg q), p.$$

Assuming we analyse each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever shorter formulas.

Note: Importantly, termination will not hold in the first-order case.

Definition (Literal)

A literal is an atomic formula p or the negation $\neg p$ of an atomic formula.

æ

Hint of proof:

- Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a propositional variable and no expansion rules are applicable.
- **Inductive step** Assume that the theorem holds for any formula with at most *n* connectives and prove it with a formula θ with n + 1 connectives. Three cases:

• θ is a type- α formula (of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, or $\neg(\phi \supset \psi)$)

Hint of proof:

- Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a propositional variable and no expansion rules are applicable.
- **Inductive step** Assume that the theorem holds for any formula with at most *n* connectives and prove it with a formula θ with n + 1 connectives. Three cases:

• θ is a type- α formula (of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, or $\neg(\phi \supset \psi)$)

We have to apply an α -rule

```
\begin{array}{c} \theta \\ | \\ \alpha_1 \\ \alpha_2 \end{array}
```

and we mark the formula $\boldsymbol{\theta}$ as analysed once.

Since α_1 and α_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build a propositional tableau such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

æ

Hint of proof:

- Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a propositional variable and no expansion rules are applicable.
- **Inductive step** Assume that the theorem holds for any formula with at most *n* connectives and prove it with a formula θ with n + 1 connectives. Three cases:

• θ is a type- α formula (of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, or $\neg(\phi \supset \psi)$)

We have to apply an α -rule

θ α_1 α_2

and we mark the formula θ as analysed once.

Since α_1 and α_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build a propositional tableau such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

・ロン ・回と ・ヨン ・ヨン

æ

Hint of proof:

- Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a propositional variable and no expansion rules are applicable.
- **Inductive step** Assume that the theorem holds for any formula with at most *n* connectives and prove it with a formula θ with n + 1 connectives. Three cases:

• θ is a type- α formula (of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, or $\neg(\phi \supset \psi)$)

We have to apply an α -rule

θ α_1 α_2

and we mark the formula θ as analysed once.

Since α_1 and α_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build a propositional tableau such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

 α_1, α_2

・ロト ・回ト ・ヨト ・ヨト

æ

Three cases:

• θ is a type- β formula (of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, or $\phi \supset \psi$)

We have to apply a β -rule

and we mark the formula θ as analysed once.

Since β_1 and β_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build two propositional tableaux, one for β_1 and one for β_2 such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

Three cases:

• θ is a type- β formula (of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, or $\phi \supset \psi$)

We have to apply a β -rule

and we mark the formula $\boldsymbol{\theta}$ as analysed once.

Since β_1 and β_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build two propositional tableaux, one for β_1 and one for β_2 such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

Three cases:

• θ is a type- β formula (of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, or $\phi \supset \psi$)

We have to apply a β -rule

and we mark the formula $\boldsymbol{\theta}$ as analysed once.

Since β_1 and β_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build two propositional tableaux, one for β_1 and one for β_2 such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

Three cases:

• θ is a type- β formula (of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, or $\phi \supset \psi$)

We have to apply a β -rule

and we mark the formula $\boldsymbol{\theta}$ as analysed once.

Since β_1 and β_2 contain less connectives than θ we can apply the inductive hypothesis and say that we can build two propositional tableaux, one for β_1 and one for β_2 such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

• θ is of the form $\neg \neg \phi$.

We have to apply the ¬¬-Elimination rule

and we mark the formula $\neg \neg \phi$ as analysed once

Since ϕ contains less connectives than $\neg \neg \phi$ we can apply the inductive hypothesis and say that we can build a propositional tableaux for it such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

We concatenate the 2 trees and the proof is done.

・ロン ・四 と ・ 臣 と ・ 臣 と

• θ is of the form $\neg \neg \phi$.

We have to apply the ¬¬-Elimination rule

and we mark the formula $\neg \neg \phi$ as analysed once.

Since ϕ contains less connectives than $\neg \neg \phi$ we can apply the inductive hypothesis and say that we can build a propositional tableaux for it such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

We concatenate the 2 trees and the proof is done.

・ロン ・回 と ・ ヨン ・ ヨン

• θ is of the form $\neg \neg \phi$.

We have to apply the ¬¬-Elimination rule

and we mark the formula $\neg \neg \phi$ as analysed once.

Since ϕ contains less connectives than $\neg \neg \phi$ we can apply the inductive hypothesis and say that we can build a propositional tableaux for it such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

We concatenate the 2 trees and the proof is done.

・ロト ・回ト ・ヨト ・ヨト

• θ is of the form $\neg \neg \phi$.

We have to apply the ¬¬-Elimination rule

and we mark the formula $\neg \neg \phi$ as analysed once.

Since ϕ contains less connectives than $\neg \neg \phi$ we can apply the inductive hypothesis and say that we can build a propositional tableaux for it such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

We concatenate the 2 trees and the proof is done.

・ロト ・日本 ・モト ・モト

To actually believe that the tableau method is a valid decision procedure we have to prove:

Theorem (Soundness)If $\Gamma \vdash \phi$ then $\Gamma \models \phi$

Theorem (Completeness)

If $\Gamma \models \phi$ then $\Gamma \vdash \phi$

Remember: We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$.

イロン 不同と 不同と 不同と

Definition (Saturated propositional tableau)

A branch of a propositional tableau is saturated if all the (non-literal) formulae occurring in the branch have been analysed. A tableau is saturated if all its branches are saturated.

Definition (Satisfiable branch)

A branch β of a tableaux τ is satisfiable if the set of formulas that occurs in β is satisfiable. I.e., if there is an interpretation \mathcal{I} , such that $\mathcal{I} \models \phi$ for all $\phi \in \beta$.

▲ @ > < ≥ >

Definition (Saturated propositional tableau)

A branch of a propositional tableau is saturated if all the (non-literal) formulae occurring in the branch have been analysed. A tableau is saturated if all its branches are saturated.

Definition (Satisfiable branch)

A branch β of a tableaux τ is satisfiable if the set of formulas that occurs in β is satisfiable. I.e., if there is an interpretation \mathcal{I} , such that $\mathcal{I} \models \phi$ for all $\phi \in \beta$.

A (1) < (1)</p>

First prove the following lemma:

Lemma (Satisfiable Branches)

- If a non-branching rule is applied to a satisfiable branch, the result is another satisfiable branch.
- If a branching rule is applied to a satisfiable branch, at least one of the resulting branches is also satisfiable.

Hint for proof: prove for all the expansion rules that they extend a satisfiable branch sb to (at least) a branch sb' which is satisfiable.

- let \mathcal{I} be such that $\mathcal{I} \models sb$
- since $\phi \land \psi \in sb$ then $\mathcal{I} \models \phi \land \psi$
- which implies that $\mathcal{I} \models \phi$ and $\mathcal{I} \models \psi$
- which implies that $\mathcal{I} \models sb'$ with $sb' = sb \cup \{\phi, \psi\}$.

Propositional β -rules: the example of \vee

$$\frac{\phi \lor \psi}{\phi \mid \psi}$$

- let \mathcal{I} be such that $\mathcal{I} \models sb$
- since $\phi \lor \psi \in sb$ then $\mathcal{I} \models \phi \lor \psi$
- which implies that $\mathcal{I} \models \phi$ or $\mathcal{I} \models \psi$
- which implies that *I* ⊨ sb' with sb' = sb ∪ {φ} or *I* ⊨ sb'' with sb'' = sb ∪ {ψ}.

A (1) > A (1) > A

Proof of Soundness (II)

We have to show that $\Gamma \vdash \phi$ implies $\Gamma \models \phi$. We prove it by contradiction, that is, assume $\Gamma \vdash \phi$ but $\Gamma \not\models \phi$ and try to derive a contradiction.

- If Γ ⊭ φ then Γ ∪ {¬φ} is satisfiable (see theorem on relation between logical consequence and (un) satisfiability)
- therefore the initial branch of the tableau (the root $\Gamma \cup \{\neg \phi\}$) is satisfiable
- therefore the tableau for this formula will always have a satisfiable branch (see previouls Lemma on satisfiable branches)
- This contradicts our assumption that at one point all branches will be closed (Γ ⊢ φ), because a closed branch clearly is not satisfiable.
- Therefore we can conclude that Γ ⊭ φ cannot be and therefore that Γ ⊨ φ holds.

< □ > < @ > < 注 > < 注 > ... 注

Definition (Hintikka set)

A set of propositional formulas Γ is called a Hintikka set provided the following hold:

- **()** not both $p \in H$ and $\neg p \in H$ for all propositional atoms p;
- 2 if $\neg \neg \phi \in H$ then $\phi \in H$ for all formulas ϕ ;
- **3** if $\phi \in H$ and ϕ is a type- α formula then $\alpha_1 \in H$ and $\alpha_2 \in H$;
- if $\phi \in H$ and ϕ is a type- β formula then either $\beta_1 \in H$ or $\beta_2 \in H$.

Remember:

- type- α formulae are of the form $\phi \land \psi$, $\neg(\phi \lor \psi)$, or $\neg(\phi \supset \psi)$
- type- β formulae are of the form $\phi \lor \psi$, $\neg(\phi \land \psi)$, or $\phi \supset \psi$

→ 御 → → 注 → → 注 →

Proof of Completeness - Hintikkas Lemma (c'nd)

Lemma (Hintikka Lemma)

Every Hintikka set is satisfiable

Proof:

• We construct a model $\mathcal{I}: \mathcal{P} \to \{\text{True}, \text{False}\}$ from a given Hintikka set H as follows:

Let \mathcal{P} be the set of propositional variables occurring in literals of H,

$$\mathcal{I}(p) = \begin{cases} \mathsf{True} & \text{if } p \in H, \\ \mathsf{False} & \text{if } p \notin H. \end{cases}$$

• We now prove that \mathcal{I} is a propositional model that satisfies all the formulae in H. That is, if $\phi \in H$ then $\mathcal{I} \models \phi$.

Base case We investigate literal formulae. Let p be an atomic formula in H. Then $\mathcal{I}(p) = True$ by definition of \mathcal{I} . Thus, $\mathcal{I} \models p$ Let $\neg p$ be a negation of an atomic formula in H. From the property (1) of Hintikka set, the fact that $\neg p$ belongs to H implies that $p \notin H$. Therefore from the definition of \mathcal{I} we have that $\mathcal{I}(p) = False$, and therefore $\mathcal{I} \models \neg p$

・ロン ・回と ・ヨン・

Inductive step We prove the theorem for all non-literal formulae.

- Let θ be of the form ¬¬φ. Then because of the property (2) of Hintikka sets φ ∈ H. Therefore I ⊨ φ because of the inductive hypothesis. Then I ⊭ ¬φ and I ⊨ ¬¬φ because of the definition of propositonal satisfiability of ¬.
- Let θ be a type-α formula. Then, its components α₁ and α₂ belong to H because of property (3) of the Hintikka set. We can apply the inductive hypothesis to α₁ and α₂ and derive that *I* ⊨ α₁ and *I* ⊨ α₂. It is now easy to prove that *I* ⊨ θ
- Let θ be a type-β formula. Then, at least one of its components β₁ or β₂ belong to H because of property (4) of the Hintikka set.
 We can apply the inductive hypothesis to β₁ or β₂ and derive that I ⊨ β₁ or I ⊨ β₂

イロン イヨン イヨン イヨン

It is now easy to prove that $\mathcal{I} \models \theta$

Inductive step We prove the theorem for all non-literal formulae.

- Let θ be of the form ¬¬φ. Then because of the property (2) of Hintikka sets φ ∈ H. Therefore I ⊨ φ because of the inductive hypothesis. Then I ⊭ ¬φ and I ⊨ ¬¬φ because of the definition of propositonal satisfiability of ¬.
- Let θ be a type-α formula. Then, its components α₁ and α₂ belong to H because of property (3) of the Hintikka set. We can apply the inductive hypothesis to α₁ and α₂ and derive that *I* ⊨ α₁ and *I* ⊨ α₂ It is now easy to prove that *I* ⊨ θ
- Let θ be a type-β formula. Then, at least one of its components β₁ or β₂ belong to H because of property (4) of the Hintikka set.
 We can apply the inductive hypothesis to β₁ or β₂ and derive that *I* ⊨ β₁ or *I* ⊨ β₂
 It is now each to prove that *T* ⊨ θ

イロン スポン イヨン イヨン

Inductive step We prove the theorem for all non-literal formulae.

- Let θ be of the form ¬¬φ. Then because of the property (2) of Hintikka sets φ ∈ H. Therefore I ⊨ φ because of the inductive hypothesis. Then I ⊭ ¬φ and I ⊨ ¬¬φ because of the definition of propositonal satisfiability of ¬.
- Let θ be a type-α formula. Then, its components α₁ and α₂ belong to H because of property (3) of the Hintikka set. We can apply the inductive hypothesis to α₁ and α₂ and derive that *I* ⊨ α₁ and *I* ⊨ α₂ It is now easy to prove that *I* ⊨ θ
- Let θ be a type-β formula. Then, at least one of its components β₁ or β₂ belong to H because of property (4) of the Hintikka set.

We can apply the inductive hypothesis to β_1 or β_2 and derive that $\mathcal{I} \models \beta_1$ or $\mathcal{I} \models \beta_2$

イロン イヨン イヨン イヨン

It is now easy to prove that $\mathcal{I} \models \theta$

Definition (Fairness)

We call a propositional tableau fair if every non-literal of a branch gets eventually analysed on this branch.

A⊒ ▶ ∢ ∃

Proof of Completeness

Completeness proof (sketch).

- We show that $\Gamma \not\vdash \phi$ implies $\Gamma \not\models \phi$.
- Suppose that there is no proof for $\Gamma \cup \{\neg \phi\}$
- Let τ a fair tableaux that start with $\Gamma \cup \{\neg \phi\}$,
- The fact that Γ ⊢ φ implies that there is at least an open branch ob.
- fairness condition implies that the set of formulas in ob constitute an Hintikka set H_{ob}
- From Hintikka lemma we have that there is an interpretation \mathcal{I}_{ob} that satisfies *ob*.
- since every branch of τ contains its root we have that $\Gamma \cup \{\neg \phi\} \subseteq ob$ and therefore $\mathcal{I}_{ob} \models \Gamma \cup \{\neg \phi\}$.
- which implies that $\Gamma \not\models \phi$.

The proof of Soundness and Completeness confirms the decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical propositional logic.

Proof. To check validity of ϕ , develop a tableau for $\neg \phi$. Because of termination, we will eventually get a tableau that is either (1) closed or (2) that has a branch that cannot be closed.

- In case (1), the formula ϕ must be valid (soundness).
- In case (2), the branch that cannot be closed shows that ¬φ is satisfiable (see completeness proof), i.e. φ cannot be valid.

This terminates the proof.

- - 4 回 ト - 4 回 ト

Exercise

Build a tableau for $\{(a \lor b) \land c, \neg b \lor \neg c, \neg a\}$

・ロン ・回と ・ ヨン・

Exercise

Build a tableau for $\{(a \lor b) \land c, \neg b \lor \neg c, \neg a\}$

・回・ ・ヨ・ ・ヨ・

Another solution

What happens if we first expand the disjunction and then the conjunction?

Expanding β rules creates new branches. Then α rules may need to be expanded in all of them.

- Using the "wrong" policy (e.g., expanding disjunctions first) leads to an increase of *size* of the tableau, which leads to an increase of *time*;
- yet, unsatisfiability is still proved if set is unsatisfiable;
- this is not the case for other logics, where applying the wrong policy may inhibit proving unsatisfiability of some unsatisfiable sets.

- It is an open problem to find an efficient algorithm to decide in all cases which rule to use next in order to derive the shortest possible proof.
- However, as a rough guideline always apply any applicable *non-branching rules* first. In some cases, these may turn out to be redundant, but they will never cause an exponential blow-up of the proof.

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving *n* propositional atoms requires filling in 2ⁿ rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2ⁿ rows !!!
- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2ⁿ rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2ⁿ rows !!!

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2ⁿ rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2ⁿ rows !!!

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2ⁿ rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2ⁿ rows !!!

Exercise

Give proofs for the unsatisfiability of the following formula using (1) truth-tables, and (2) Smullyan-style tableaux.

$$(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

▲ □ ► ▲ □ ►

æ