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Outline of this lecture

An introduction to Automated Reasoning with Analytic
Tableaux;

Today we will be looking into tableau methods for classical
propositional logic (we will discuss first-order tableaux later).

Analytic Tableaux are a a family of mechanical proof
methods, developed for a variety of different logics. Tableaux
are nice, because they are both easy to grasp for humans and
easy to implement on machines.
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Tableaux

Early work by Beth and Hintikka (around 1955). Later refined
and popularised by Raymond Smullyan:

R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.

Modern expositions include:

M. Fitting. First-order Logic and Automated Theorem
Proving. 2nd edition. Springer-Verlag, 1996.
M. DAgostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.).
Handbook of Tableau Methods. Kluwer, 1999.
R. Hähnle. Tableaux and Related Methods. In: A. Robinson
and A. Voronkov (eds.), Handbook of Automated Reasoning,
Elsevier Science and MIT Press, 2001.
Proceedings of the yearly Tableaux conference:
http://i12www.ira.uka.de/TABLEAUX/
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How does it work?

The tableau method is a method for proving, in a mechanical
manner, that a given set of formulas is not satisfiable. In
particular, this allows us to perform automated deduction:

Given : set of premises Γ and conclusion φ

Task : prove Γ |= φ

How? show Γ ∪ ¬φ is not satisfiable (which is equivalent),

i.e. add the complement of the conclusion to the premises

and derive a contradiction (refutation procedure)
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Reduce Logical Consequence to (un)Satisfiability

Theorem

Γ |= φ if and only if Γ ∪ {¬φ} is unsatisfiable

Proof.

⇒ Suppose that Γ |= φ, this means that every interpretation I
that satisfies Γ, it does satisfy φ, and therefore I 6|= ¬φ. This
implies that there is no interpretations that satisfies together
Γ and ¬φ.

⇐ Suppose that I |= Γ, let us prove that I |= φ, Since Γ ∪ {¬φ}
is not satisfiable, then I 6|= ¬φ and therefore I |= φ.
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Constructing Tableau Proofs

Data structure: a proof is represented as a tableau - i.e., a
binary tree - the nodes of which are labelled with formulas.

Start: we start by putting the premises and the negated
conclusion into the root of an otherwise empty tableau.

Expansion: we apply expansion rules to the formulas on the
tree, thereby adding new formulas and splitting branches.

Closure: we close branches that are obviously contradictory.

Success: a proof is successful iff we can close all branches.
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An example

¬(q ∨ p ⊃ p ∨ q)

(q ∨ p)

¬(p ∨ q)

¬p
¬q

p

X

q

X

Tree

Binary

Closed
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Expansion Rules of Propositional Tableau

α rules ¬¬-Elimination

φ ∧ ψ
φ
ψ

¬(φ ∨ ψ)

¬φ
¬ψ

¬(φ ⊃ ψ)

φ
¬ψ

¬¬φ
φ

β rules Branch Closure

φ ∨ ψ
φ ψ

¬(φ ∧ ψ)

¬φ ¬ψ
φ ⊃ ψ
¬φ ψ

φ
¬φ
X

Note: These are the standard (“Smullyan-style”) tableau rules.

We omit the rules for ≡. We rewrite φ ≡ ψ as (φ ⊃ ψ) ∧ (ψ ⊃ φ)
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Smullyans Uniform Notation

Two types of formulas: conjunctive (α) and disjunctive (β):

α α1 α2

φ ∧ ψ φ ψ
¬(φ ∨ ψ) ¬φ ¬ψ
¬(φ ⊃ ψ) φ ¬ψ

β β1 β2

φ ∨ ψ φ ψ
¬(φ ∧ ψ) ¬φ ¬ψ
φ ⊃ ψ ¬φ ψ

We can now state α and β rules as follows:

α

α1

α2

β

β1 β2

Note: α rules are also called deterministic rules. β rules are also
called splitting rules.
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An example

¬(q ∨ p ⊃ p ∨ q)

(q ∨ p)

¬(p ∨ q)

¬p
¬q

p q
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An example
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¬p
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p

X

q

X
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Some definition for tableaux

Definition (type-alpha and type-β formulae)

Formulae of the form φ∧ψ, ¬(φ∨ψ), and ¬(φ ⊃ ψ) are called type-α formulae.

Formulae of the form φ ∨ ψ, ¬(φ ∧ ψ), and φ ⊃ ψ are called type-β formulae

Note: type-alpha formulae are the ones where we use α rules. type-β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation Γ ` φ)

Let φ and Γ be a propositional formula and a finite set of propositional formulae,
respectively. We write Γ ` φ to say that there exists a closed tableau for Γ ∪ {¬φ}
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Exercises

Exercise

Show that the following are valid arguments:

|= ((P ⊃ Q) ⊃ P) ⊃ P

P ⊃ (Q ∧ R),¬Q ∨ ¬R |= ¬P
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Solutions

¬(((P ⊃ Q) ⊃ P) ⊃ P)

(P ⊃ Q) ⊃ P

¬P

¬(P ⊃ Q)

P

¬Q

X

P

X
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Solutions

P ⊃ Q ∧ R

¬Q ∨ ¬R
¬¬P

P

¬Q

¬P

X

Q ∧ R

Q

R

X

¬R

¬P

X

Q ∧ R

Q

R

X
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Solutions

P ⊃ Q ∧ R

¬Q ∨ ¬R
¬¬P

P

¬Q

¬P

X

Q ∧ R

Q

R

X

¬R

¬P

X

Q ∧ R

Q

R

X

Note: different orderings of expansion rules are possible! But all lead to unsatisfiability.
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Tableaux and satisfiability

A tableau for Γ attempts to build a propositional interpretation
for Γ. If the tableaux is closed, it means that no model exist.

We can use tableaux to check if a formula is satisfiable.

Exercise

Check whether the formula ¬((P ⊃ Q)∧ (P ∧Q ⊃ R) ⊃ (P ⊃ R))
is satisfiable
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Solution

¬((P ⊃ Q) ∧ (P ∧ Q ⊃ R) ⊃ (P ⊃ R))

(P ⊃ Q) ∧ (P ∧ Q ⊃ R)

¬(P ⊃ R)

P ⊃ Q

P ∧ Q ⊃ R

P

¬R

¬P

X

Q

¬(P ∧ Q)

¬P

X

¬Q

X

R

X

The tableau is closed and the formula is not satisfiable.
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Satisfiability: An example

Exercise

Check whether the formula ¬(P ∨ Q ⊃ P ∧ Q) is satisfiable
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Solution

¬(P ∨ Q ⊃ P ∧ Q)

P ∨ Q

¬(P ∧ Q)

P

¬P

X

¬Q

O

Q

¬P

O

¬Q

X

Two open branches. The formula is satisfiable.
The tableau shows us all the possible interpretations ({P}, {Q}) that satisfy the
formula.
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Solution
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P

¬P

X

¬Q

O

Q

¬P

O

¬Q

X
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Using the tableau to build interpretations.

For each open branch in the tableau, and for each propositional
atom p in the formula we define

I(p) =

{
True if p belongs to the branch,

False if ¬p belongs to the branch.

If neither p nor ¬p belong to the branch we can define I(p) in an
arbitrary way.
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Models for ¬(P ∨ Q ⊃ P ∧ Q)

¬(P ∨ Q ⊃ P ∧ Q)

P ∨ Q

¬(P ∧ Q)

P

¬P

X

¬Q

O

Q

¬P

O

¬Q

X

Two models:

I(P) = True, I(Q) = False

I(P) = False, I(Q) = True
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Double-check with the truth tables!

P Q P ∨ Q P ∧ Q P ∨ Q ⊃ P ∧ Q ¬(P ∨ Q ⊃ P ∧ Q)

T T T T T F
F F F F T F
T F T F F T
F T T F F T
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Homeworks!

Exercise

Show unsatisfiability of each of the following formulae using tableaux:

(p ≡ q) ≡ (¬q ≡ p);

¬((¬q ⊃ ¬p) ⊃ ((¬q ⊃ p) ⊃ q)).

Show satisfiability of each of the following formulae using tableaux:

(p ≡ q) ⊃ (¬q ≡ p);

¬(p ∨ q ⊃ ((¬p ∧ q) ∨ p ∨ ¬q)).

Show validity of each of the following formulae using tableaux:

(p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p);

(p ⊃ r) ⊃ (p ∨ q ⊃ r ∨ q).

For each of the following formulae, describe all models of this formula using tableaux:

(q ⊃ (p ∧ r)) ∧ ¬(p ∨ r ⊃ q);

¬((p ⊃ q) ∧ (p ∧ q ⊃ r) ⊃ (¬p ⊃ r)).

Establish the equivalences between the following pairs of formulae using tableaux:

(p ⊃ ¬p),¬p;

(p ⊃ q), (¬q ⊃ ¬p);

(p ∨ q) ∧ (p ∨ ¬q), p.
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Termination

Assuming we analyse each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no
more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever
shorter formulas.

Note: Importantly, termination will not hold in the first-order case.
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Preliminary definition

Definition (Literal)

A literal is an atomic formula p or the negation ¬p of an atomic
formula.
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Termination

Hint of proof:

Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a
propositional variable and no expansion rules are applicable.

Inductive step Assume that the theorem holds for any formula with at most n connectives and prove it
with a formula θ with n + 1 connectives.
Three cases:

θ is a type-α formula (of the form φ ∧ ψ, ¬(φ ∨ ψ), or ¬(φ ⊃ ψ))

We have to apply an α-rule

θ

α1

α2

and we mark the formula θ as analysed once.

Since α1 and α2 contain less connectives than θ we can apply the inductive
hypothesis and say that we can build a propositional tableau such that each
formula is analysed at most once and after a finite number of steps no more
expansion rules will be applicable.

α1, α2

We concatenate the two trees and the proof is done.

Chiara Ghidini Mathematical Logic



Termination

Hint of proof:

Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a
propositional variable and no expansion rules are applicable.

Inductive step Assume that the theorem holds for any formula with at most n connectives and prove it
with a formula θ with n + 1 connectives.
Three cases:

θ is a type-α formula (of the form φ ∧ ψ, ¬(φ ∨ ψ), or ¬(φ ⊃ ψ))

We have to apply an α-rule

θ

α1

α2

and we mark the formula θ as analysed once.

Since α1 and α2 contain less connectives than θ we can apply the inductive
hypothesis and say that we can build a propositional tableau such that each
formula is analysed at most once and after a finite number of steps no more
expansion rules will be applicable.

α1, α2

We concatenate the two trees and the proof is done.

Chiara Ghidini Mathematical Logic



Termination

Hint of proof:

Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a
propositional variable and no expansion rules are applicable.

Inductive step Assume that the theorem holds for any formula with at most n connectives and prove it
with a formula θ with n + 1 connectives.
Three cases:

θ is a type-α formula (of the form φ ∧ ψ, ¬(φ ∨ ψ), or ¬(φ ⊃ ψ))

We have to apply an α-rule

θ

α1

α2

and we mark the formula θ as analysed once.

Since α1 and α2 contain less connectives than θ we can apply the inductive
hypothesis and say that we can build a propositional tableau such that each
formula is analysed at most once and after a finite number of steps no more
expansion rules will be applicable.

α1, α2

We concatenate the two trees and the proof is done.

Chiara Ghidini Mathematical Logic



Termination

Hint of proof:

Base case Assume that we have a literal formula. Then it is a propositional variable or a negation of a
propositional variable and no expansion rules are applicable.

Inductive step Assume that the theorem holds for any formula with at most n connectives and prove it
with a formula θ with n + 1 connectives.
Three cases:

θ is a type-α formula (of the form φ ∧ ψ, ¬(φ ∨ ψ), or ¬(φ ⊃ ψ))

We have to apply an α-rule

θ

α1

α2

and we mark the formula θ as analysed once.

Since α1 and α2 contain less connectives than θ we can apply the inductive
hypothesis and say that we can build a propositional tableau such that each
formula is analysed at most once and after a finite number of steps no more
expansion rules will be applicable.

α1, α2

We concatenate the two trees and the proof is done.

Chiara Ghidini Mathematical Logic



Termination
Three cases:

θ is a type-β formula (of the form φ ∨ ψ, ¬(φ ∧ ψ), or φ ⊃ ψ)

We have to apply a β-rule

θ

β1 β2

and we mark the formula θ as analysed once.

Since β1 and β2 contain less connectives than θ we can apply the inductive hypothesis and say that we
can build two propositional tableaux, one for β1 and one for β2 such that each formula is analysed at most
once and after a finite number of steps no more expansion rules will be applicable.

β1 β2

We concatenate the 3 trees and the proof is done.

θ

β2β1
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Termination

θ is of the form ¬¬φ.

We have to apply the ¬¬-Elimination rule

¬¬φ

φ

and we mark the formula ¬¬φ as analysed once.

Since φ contains less connectives than ¬¬φ we can apply the inductive hypothesis and say that we can
build a propositional tableaux for it such that each formula is analysed at most once and after a finite
number of steps no more expansion rules will be applicable.

φ

We concatenate the 2 trees and the proof is done.
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Soundness and Completeness

To actually believe that the tableau method is a valid decision
procedure we have to prove:

Theorem (Soundness)

If Γ ` φ then Γ |= φ

Theorem (Completeness)

If Γ |= φ then Γ ` φ

Remember: We write Γ ` φ to say that there exists a closed
tableau for Γ ∪ {¬φ}.
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Proof of Soundness - preliminary definitions

Definition (Saturated propositional tableau)

A branch of a propositional tableau is saturated if all the
(non-literal) formulae occurring in the branch have been analysed.
A tableau is saturated if all its branches are saturated.

Definition (Satisfiable branch)

A branch β of a tableaux τ is satisfiable if the set of formulas that
occurs in β is satisfiable. I.e., if there is an interpretation I, such
that I |= φ for all φ ∈ β.
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Proof of Soundness - preliminary lemma

First prove the following lemma:

Lemma (Satisfiable Branches)

If a non-branching rule is applied to a satisfiable branch, the
result is another satisfiable branch.

If a branching rule is applied to a satisfiable branch, at least
one of the resulting branches is also satisfiable.

Hint for proof: prove for all the expansion rules that they extend a
satisfiable branch sb to (at least) a branch sb′ which is satisfiable.
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Proof of Soundness - proof of preliminary lemma

Propositional α-rules: the example of ∧
φ ∧ ψ
φ
ψ

let I be such that I |= sb

since φ ∧ ψ ∈ sb then I |= φ ∧ ψ
which implies that I |= φ and I |= ψ

which implies that I |= sb′ with sb′ = sb ∪ {φ, ψ}.
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Proof of Soundness - proof of preliminary lemma

Propositional β-rules: the example of ∨
φ ∨ ψ
φ ψ

let I be such that I |= sb

since φ ∨ ψ ∈ sb then I |= φ ∨ ψ
which implies that I |= φ or I |= ψ

which implies that I |= sb′ with sb′ = sb ∪ {φ} or I |= sb
′′

with sb
′′

= sb ∪ {ψ}.
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Proof of Soundness (II)

We have to show that Γ ` φ implies Γ |= φ. We prove it by
contradiction, that is, assume Γ ` φ but Γ 6|= φ and try to derive a
contradiction.

If Γ 6|= φ then Γ ∪ {¬φ} is satisfiable (see theorem on relation
between logical consequence and (un) satisfiability)

therefore the initial branch of the tableau (the root Γ ∪ {¬φ})
is satisfiable

therefore the tableau for this formula will always have a
satisfiable branch (see previouls Lemma on satisfiable
branches)

This contradicts our assumption that at one point all branches
will be closed (Γ ` φ), because a closed branch clearly is not
satisfiable.

Therefore we can conclude that Γ 6|= φ cannot be and
therefore that Γ |= φ holds.

Chiara Ghidini Mathematical Logic



Proof of Completeness - the Hintikkas Lemma

Definition (Hintikka set)

A set of propositional formulas Γ is called a Hintikka set provided
the following hold:

1 not both p ∈ H and ¬p ∈ H for all propositional atoms p;

2 if ¬¬φ ∈ H then φ ∈ H for all formulas φ ;

3 if φ ∈ H and φ is a type-α formula then α1 ∈ H and α2 ∈ H;

4 if φ ∈ H and φ is a type-β formula then either β1 ∈ H or
β2 ∈ H.

Remember:

type-α formulae are of the form φ∧ψ, ¬(φ∨ψ), or ¬(φ ⊃ ψ)

type-β formulae are of the form φ ∨ ψ, ¬(φ ∧ ψ), or φ ⊃ ψ
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Proof of Completeness - Hintikkas Lemma (c’nd)

Lemma (Hintikka Lemma)

Every Hintikka set is satisfiable

Proof:

We construct a model I : P → {True,False} from a given Hintikka set H as
follows:
Let P be the set of propositional variables occurring in literals of H,

I(p) =

{
True if p ∈ H,

False if p 6∈ H.

We now prove that I is a propositional model that satisfies all the formulae in
H. That is, if φ ∈ H then I |= φ.

Base case We investigate literal formulae.
Let p be an atomic formula in H. Then I(p) = True by
definition of I. Thus, I |= p
Let ¬p be a negation of an atomic formula in H. From the
property (1) of Hintikka set, the fact that ¬p belongs to H
implies that p 6∈ H. Therefore from the definition of I we have
that I(p) = False, and therefore I |= ¬p
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Proof of Completeness - Hintikkas Lemma (c’nd)

Inductive step We prove the theorem for all non-literal formulae.

Let θ be of the form ¬¬φ.
Then because of the property (2) of Hintikka sets φ ∈ H.
Therefore I |= φ because of the inductive hypothesis.
Then I 6|= ¬φ and I |= ¬¬φ because of the definition of
propositonal satisfiability of ¬.
Let θ be a type-α formula. Then, its components α1 and α2

belong to H because of property (3) of the Hintikka set.
We can apply the inductive hypothesis to α1 and α2 and
derive that I |= α1 and I |= α2

It is now easy to prove that I |= θ
Let θ be a type-β formula. Then, at least one of its
components β1 or β2 belong to H because of property (4) of
the Hintikka set.
We can apply the inductive hypothesis to β1 or β2 and derive
that I |= β1 or I |= β2

It is now easy to prove that I |= θ
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A last definition - Fairness

Definition (Fairness)

We call a propositional tableau fair if every non-literal of a branch
gets eventually analysed on this branch.
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Proof of Completeness

Completeness proof (sketch).

We show that Γ 6` φ implies Γ 6|= φ.

Suppose that there is no proof for Γ ∪ {¬φ}
Let τ a fair tableaux that start with Γ ∪ {¬φ},
The fact that Γ 6` φ implies that there is at least an open
branch ob.

fairness condition implies that the set of formulas in ob
constitute an Hintikka set Hob

From Hintikka lemma we have that there is an interpretation
Iob that satisfies ob.

since every branch of τ contains its root we have that
Γ ∪ {¬φ} ⊆ ob and therefore Iob |= Γ ∪ {¬φ}.
which implies that Γ 6|= φ.
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Decidability

The proof of Soundness and Completeness confirms the
decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical
propositional logic.

Proof. To check validity of φ, develop a tableau for ¬φ. Because
of termination, we will eventually get a tableau that is either (1)
closed or (2) that has a branch that cannot be closed.

In case (1), the formula φ must be valid (soundness).

In case (2), the branch that cannot be closed shows that ¬φ
is satisfiable (see completeness proof), i.e. φ cannot be valid.

This terminates the proof.
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Exercise

Exercise

Build a tableau for {(a ∨ b) ∧ c,¬b ∨ ¬c ,¬a}

(a ∨ b) ∧ c

¬b ∨ ¬c
¬a

a ∨ b
c

¬b

a

X

b

X

¬c

a

X

b

X

Chiara Ghidini Mathematical Logic



Exercise

Exercise

Build a tableau for {(a ∨ b) ∧ c,¬b ∨ ¬c ,¬a}

(a ∨ b) ∧ c

¬b ∨ ¬c
¬a

a ∨ b
c

¬b

a

X

b

X

¬c

a

X

b

X

Chiara Ghidini Mathematical Logic



Another solution

What happens if we first expand the disjunction and then the
conjunction?

(a ∨ b) ∧ c

¬b ∨ ¬c
¬a

¬b

a ∨ b
c

a

X

b

X

¬c

a ∨ b
c

a

X

b

X

Expanding β rules creates new branches. Then α rules may need
to be expanded in all of them.
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Strategies of expansion

Using the “wrong” policy (e.g., expanding disjunctions first)
leads to an increase of size of the tableau, which leads to an
increase of time;

yet, unsatisfiability is still proved if set is unsatisfiable;

this is not the case for other logics, where applying the wrong
policy may inhibit proving unsatisfiability of some unsatisfiable
sets.
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Finding Short Proofs

It is an open problem to find an efficient algorithm to decide
in all cases which rule to use next in order to derive the
shortest possible proof.

However, as a rough guideline always apply any applicable
non-branching rules first. In some cases, these may turn out
to be redundant, but they will never cause an exponential
blow-up of the proof.

Chiara Ghidini Mathematical Logic



Efficiency

Are analytic tableaus an efficient method of checking whether
a formula is a tautology?

Remember: using the truth-tables to check a formula
involving n propositional atoms requires filling in 2n rows
(exponential = very bad).

Are tableaux any better?

In the worst case no, but if we are lucky we may skip some of
the 2n rows !!!
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Exercise

Exercise

Give proofs for the unsatisfiability of the following formula using
(1) truth-tables, and (2) Smullyan-style tableaux.

(P ∨ Q) ∧ (P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬P ∨ ¬Q)
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