Mathematical Logic

9. Reasoning in Modal Logics

Luciano Serafini

FBK-IRST, Trento, Italy
December 16, 2014

Proof methods for modal logics

Problem

Problem 1 How can we show that a modal formula ϕ is valid? (i.e. that $F \models \phi$ for every frame F).
Problem 2 How can we show that ϕ is satisfiable? (i.e., that there is a model $M=(F, V)$ and a world $v \in W$ such that $M, w \models \phi)$

Remark

Problem 1 and problem 2 can be rewriten one in terms of the other. Indeed, proving that $\models \phi$ (i.e., that ϕ is valid) corresponds to prove that $\neg \phi$ is not satisfiable. Viceversa, proving that ϕ is satisfiable is equivalent to prove that $\neg \phi$ is not valid.

Solution

There are at least two alternatives.

- We can transform ϕ into a first order formula using the standard translation, and to show that ϕ is valid it is enough to show that $\forall x \mathrm{ST}^{x}(\phi)$ is valid.
- we can use a more direct method, and to show that ϕ one can try to search for a counterexample ($=$ an interpretation that falsifies ϕ). and, when trying out all ways of generating a counterexample without success, this counts as a proof of validity. method of (analytic/semantic) tableaux

Reasoning in ML via transformation in FOL

- to check the satisfiability of $\phi_{M L}$
- we transform $\phi_{F O L}(x)=\mathrm{ST}^{x}\left(\phi_{M L}\right)$
- we apply tableaux to $\phi_{F O L}(w)$ for some constant w.

Example

Check if the following formula is valid:

$$
(\square p \wedge \diamond q) \supset \diamond(p \wedge q)
$$

Solution

- $\mathrm{ST}^{x}((\square p \wedge \diamond q) \supset \diamond(p \wedge q))=$

$$
\begin{gathered}
\forall y(R(x, y) \supset p(y)) \wedge \exists y(R(x, y) \wedge q(y))) \supset \\
\exists y(R(x, y) \wedge P(y) \wedge q(y))
\end{gathered}
$$

- Check if it is valid, e.g., via Tableaux

Reasoning in ML via transformation in FOL

$$
\begin{aligned}
& \neg(\forall y(R(w, y) \supset p(y)) \wedge \exists y(R(w, y) \wedge q(y))) \supset \exists y(R(w, y) \wedge P(y) \wedge q(y)) \\
& \forall y(R(w, y) \supset p(y)) \wedge \exists y(R(w, y) \wedge q(y)) \\
& \neg \exists y(R(w, y) \wedge P(y) \wedge q(y)) \\
& \forall y(R(w, y) \supset p(y)) \\
& \exists y(R(w, y) \wedge q(y)) \\
& R(w, v) \wedge q(v) \\
& R(w, v) \\
& q(v) \\
& \neg R(w, v) \\
& C L O S E D \quad \neg R(w, v) \wedge p(v) \wedge q(v) \\
& \neg R(w, v) \\
& \text { CLOSED } \\
& \text { CLOSED } \\
& \text { CLOSED }
\end{aligned}
$$

- The FOL formulas generated by the standard transformation of a modal formulas are of a special forms.
- Quantifiers are always generated in the following two shapes:
(1) $\exists y(R(w, y) \wedge \phi(y))$
(2) $\forall y(R(w, y) \supset \phi(y))$
- γ and δ Tablueaux rules are applied only to these formulas, and generated tableaux of the following two shapes

$$
\text { (2) } \begin{gathered}
\exists y(R(w, y) \\
R(w, v) \\
\left.\left.\right|_{1} \wedge \phi(y)\right) \\
R(w, v) \\
\phi(v)
\end{gathered}
$$

(1)

If we have $R(w, v)$ then
this branch is closed.
If we don't have $R(w, v)$
this branch will remain open

Analytic/Semantic Tableau Method - References

Early work by Beth and Hintikka (around 1955). Later refined and popularized by Raymond Smullyan:

- R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.

Modern expositions include:

- M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
- M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
- R. Hähnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
- Proceedings of the yearly Tableaux conference: http://i12www.ira.uka.d/TABLEAUX/

Tableau - basic definition

Definition

Tableau A tableau is a finite tree with nodes marked with one of the following assertions:

$$
w \models \phi \quad w \not \models \phi \quad w R w^{\prime}
$$

which is build according to a set of expansion rules (see next slide)

Definition (Branch, open branch and closed branch)

A branch of a tableaux is a sequence $n_{1}, n_{2} \ldots n_{k}$ where n_{1} is the root of the tree, n_{k} is a leaf, and n_{i+1} is a children of n_{i} for $1 \leq i<k$.
A closed branch is a branch that contains nodes marked with $w \models \phi$ and $w \not \models \phi$. All other branches are open.
If all branches are closed, the tableau is closed.

Tableau Rules for the Propositional Logic

Expansion rules for propositional connectives

$$
\begin{aligned}
& \begin{array}{cccc}
w \models \phi \wedge \psi \\
w \models \phi \\
w \models \psi
\end{array} \frac{w \not \models(\phi \vee \psi)}{w \not \vDash \phi} \quad \frac{w \models \neg \phi}{w \not \models \phi} \quad \frac{w \not \models \neg \phi}{w \models \phi} \quad \frac{w \not \models(\phi \supset \psi)}{w \models \phi} \\
& \frac{w \models \phi \vee \psi}{w \models \phi \mid w \models \psi} \quad \frac{w \not \models(\phi \wedge \psi)}{w \not \models \phi \mid w \not \models \psi} \quad \frac{w \models \phi \supset \psi}{w \not \models \phi \mid w \models \psi}
\end{aligned}
$$

Expansion rules for modal operators

$$
\begin{aligned}
& \frac{w \models \square \phi}{w^{\prime} \models \phi} \text { If } w R w^{\prime} \text { is already in } \frac{w \not \models \square \phi}{w R w^{\prime}} \text { wher } w^{\prime} \text { is new in the } \\
& w^{\prime} \not \models \phi \\
& \text { brench }
\end{aligned}
$$

Applications of expansion rules

- If a branch $\beta=n_{1}, \ldots, n_{k}$ contains a node n_{i} labelled with a premise of one of a rule ρ, and such a rule has not applied yet on this node, then ρ can be applied, and the branch is expanded in the following way
- if ρ has only one consequence, then β is expanded in $n_{1}, \ldots n_{k}, n_{k+1}$ where n_{k+1} is labelled with the consequence of ρ
- if ρ has two consequences (one on top of the other), then β is expanded in $n_{1}, \ldots n_{k}, n_{k+1}, n_{k+2}$ where n_{k+1} and n_{k+2} are labelled with the consequences of ρ
- if ρ has two alternative consequences (i.e., two consequences separated by a "|"), then β is expanded into two branches $n_{1}, \ldots n_{k}, n_{k+2}$ and $n_{1}, \ldots n_{k}, n_{k+2}$, where n_{k+1} and n_{k+2} are labelled with the alternative consequences of ρ

Example of tableaux

Example (Check satisfiability of $\diamond(P \wedge \neg Q) \wedge \square(P \vee Q))$

$$
\begin{aligned}
& w \models \diamond(P \wedge \neg Q) \wedge \square(P \vee Q) \\
& w \models \stackrel{\mid}{\mid}(P \wedge \neg Q) \\
& w \models \stackrel{\square}{\square}(P \vee Q)
\end{aligned}
$$

- The tableau we have constructed starting from
$w \models \diamond(P \wedge \neg Q) \wedge \square(P \vee Q)$, has an open branch (the one on the left)
- if we collect all the assertions of the form $w \models A$ and $w \not \models A$ for all atomic A and the assertions of the form and $w R w^{\prime}$, which label the node of such an open branch we obtain

$$
w R w^{\prime}, w^{\prime} \models P, w^{\prime} \not \models Q
$$

which corresponds to the model

with A true in w^{\prime} and B false in

Checking validity via tableaux

Example (Check validity of $\diamond(A \vee B) \equiv \diamond A \vee \diamond B)$

To check the validity of $\diamond(A \vee B) \equiv \diamond A \vee \nabla B)$, we construct a tableaux that searches for a countermodel. I.e., we check the satisfiability of $\neg(\diamond(A \vee B) \equiv \diamond A \vee \diamond B)$

$$
\begin{aligned}
& w \models \neg(\diamond(A \vee B) \equiv \diamond A \vee \diamond B) \\
& w \not \vDash \diamond\left(A \vee B^{\prime}\right) \equiv \diamond A \vee \diamond B \\
& w \not \vDash \diamond(A \vee B) \supset \widehat{\diamond A \vee \diamond B} \\
& w \models \nabla_{1}^{\prime}(A \vee B) \\
& w \not \vDash \diamond A \vee \diamond B \\
& w \nmid^{\prime} \diamond A \\
& w \nmid^{\prime} \diamond B
\end{aligned}
$$

$$
\begin{aligned}
& w^{\prime} \models A \vee B \\
& w^{\prime} \models \bar{A} \quad \stackrel{w^{\prime}}{ } \models B \\
& w^{\prime} \mid \neq A \\
& w^{\prime} \not \vDash B \\
& \text { CLOSED } \\
& \text { CLOSED } \\
& \text { All the branches of } \\
& \text { the tableaux search- } \\
& \text { ing for a model of } \\
& \neg(\diamond(A \vee B) \equiv \diamond A \vee \\
& \diamond B) \text { are closed. This } \\
& \text { implies that there are } \\
& \text { no models for such } \\
& \text { a formulas, i.e., that } \\
& \text { there are no counter- } \\
& \text { model for } \diamond(A \vee B) \equiv \\
& \diamond A \vee \diamond B \text {, and finally } \\
& \text { that } \diamond(A \vee B) \equiv \diamond A \vee \\
& \diamond B \text {, is valid. }
\end{aligned}
$$

Checking validity via tableaux

Example (Check validity of $\square(A \vee B) \equiv \square A \vee \square B)$

$$
\begin{aligned}
& w \vDash \neg(\square(A \vee B) \equiv \square A \vee \square B) \\
& w \not \vDash \square\left(A \vee B^{\prime}\right) \equiv \square A \vee \square B \\
& w \not \vDash \square(A \vee B) \supset \square \widehat{\square \vee \square B} \\
& w \not \models \square A \vee \square B \supset \square(A \vee B) \\
& w \models \square^{\prime}(A \vee B) \\
& w \not \vDash \square A \vee \square B \\
& w \nmid^{\prime} \square A \\
& w \nmid^{\prime} \square B \\
& w^{\prime \prime} \models \overline{w^{\prime \prime}} \models A \underset{w^{\prime \prime}}{\stackrel{A}{\wedge}} \models B \\
& \text { OPEN CLOSED }
\end{aligned}
$$

The tableau is not closed as there is an open branch. This branch contains the statements: $w R w^{\prime}, \quad w R w^{\prime \prime}$, $w^{\prime} \not \vDash A, w^{\prime} \models B$ $w^{\prime \prime} \vDash A$ and $w^{\prime \prime} \not \models B$, that correspond to the model

with A false in w^{\prime}, B true in w^{\prime}, A true in $w^{\prime \prime}$ and B false in $w^{\prime \prime}$.

Comparing Reasoning in ML and FOL

Comparing tableaux reasoning directly in ML and via translation in FOL, we can discover that there are a lot of similarities:

- Reasoning about accessibility relation is explicit in FOL and implicit in ML
- Reasoning about \forall is similar to reasoning about \square
- Reasoning about \exists is similar to reasoning about \diamond

Reasoning in FOL

$\neg(\forall y(R(w, y) \supset p(y)) \wedge \exists y(R(w, y) \wedge q(y)))$ $\supset \exists y(R(w, y) \wedge P(y) \wedge q(y))$
$\forall y(R(w, y) \supset p(y)) \wedge \exists y(R(w, y) \wedge q(y))$
$\neg \exists y(R(w, y) \wedge P(y) \wedge q(y))$

$\exists y(R(w, y) \wedge q(y))$

CLOSED
CLOSED
CLOSED

Reasoning in ML

