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Reasoning tasks in FOL

In First order logics we have the same reasoning tatsk as in propositional
logics (and any other logics)

Model checking

For a closed formula φ chesk if I |= φ

Satisfiability

Find an interpretation I that satisfies a closed formula φ. I.e., check if
there is a I such that I |= φ.

Validity

Check if a formula φ is valid, i.e., if for all interpretations I, I |= φ

Logical consequence

Check if a formula φ is a logical consequence of a set of formulas Γ, i.e.,
Γ |= φ
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Reasoning tasks in FOL

FOL has to do with objects which have some properties, we might be
interested in knowing the set of objects which share a given property.
More in general we might be interested in knowing the set of n-tuples of
objects which are in a certain n-ary relation.

This task is similar to what we do when we query a database. E.g. we
want to know the set of people who earn more than 1300 euro per
month, or the set of pair of people who works in the same project.

A property in FOL can be expressed by a formula with free variable
φ(x1, . . . , xn).

person(x) ∧ earn(x , y) ∧ y > 1000: the persons (free variable x) who
earns more than 1000 euros

∃z(worksFor(x , z) ∧ worksFor(y , z)): the pairs of people (the free
variables 〈x , y〉) who works in the same project.
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Query answering in FOL

Query answering

Given an interpretation I (a database instance) of a FOL L and a
formula φ(x1, . . . , xn) with n-free variables, find all the n-tuples of
elements of the domain 〈d1, . . . , dn〉 ∈ (∆I)n such that
I |= φ[a[x1/d1 . . . xn/dn]]
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Example of query

Example
What is the result of the following queries agains the interpretation above?

1 friends(x, alice) {1, 4}
2 ¬friends(x, bob) {2, 3, 5, 6}

3 friends(x, y) ∧ friends(y, z)

 〈1, 2, 1〉 , 〈1, 2, 4〉 , 〈2, 1, 2〉 , 〈2, 1, 4〉 ,
〈3, 4, 3〉 , 〈4, 3, 4〉 , 〈4, 2, 4〉 , 〈4, 1, 4〉 ,
〈4, 4, 1〉 , 〈4, 4, 2〉 , 〈4, 4, 3〉 , 〈4, 4, 4〉


∃y(friends(x, y) ∧ friends(y, z))

 〈1, 1〉 , 〈1, 4〉 , 〈2, 2〉 , 〈2, 4〉 ,
〈3, 3〉 , 〈4, 4〉 , 〈4, 1〉 , 〈4, 2〉 ,
〈4, 3〉


4 ∀y(friends(x, y) → supervisor(x) = y) {3, 5, 6} Notice that 5 and 6 are there because they don’t have

any friends so the premise of the implication is always false.

The interpretation I is defined as follows:
Symbols Constants: alice, bob, carol, robert

Function: supervisor (with arity equal to 1)
Predicate: friends (with arity equal to 2)

Domain ∆I = {1, 2, 3, 4, 5, 6}
Interpretation I(alice) = 1, I(bob) = 2, I(carol) = 3,

I(robert) = 2

I(supervisor) = S
S(1) = 3 S(2) = 1
S(3) = 4 S(4) = 5
S(5) = 5 S(6) = 5

I(friends) = F =

 〈1, 2〉 , 〈2, 1〉 , 〈3, 4〉 ,
〈4, 3〉 , 〈4, 2〉 , 〈2, 4〉 ,
〈4, 1〉 , 〈1, 4〉 , 〈4, 4〉
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Hilbert style axiomatization
Axioms for propositional connectives They are the same as in
propositional logic

A1 φ ⊃ (ψ ⊃ φ)

A2 (φ ⊃ (ψ ⊃ θ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ θ))

A3 (¬ψ ⊃ ¬φ) ⊃ ((¬ψ ⊃ φ) ⊃ ψ)

MP
φ φ ⊃ ψ

ψ

Axioms and rules for quantifiers

A4 ∀x .(φ(x)) ⊃ φ(t) if t is free for x in φ(x)

A5 ∀x .(φ ⊃ ψ) ⊃ (φ ⊃ ∀x .ψ) if x does not occur free in φ

Gen
φ

∀x .φ
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Example of Hilbert style proof in FOL

Example

To show that the formula P(a) ⊃ ¬∀x¬P(x) is valid we have to generate
a sequence of formulas (i.e., a Hilbert proof) starting from the axioms
(A1-A5), using the rules (MP) and (GEN). (In the example we only
report the inferences that involves first order reasoning, propositional
proofs are omitted)

(1) ∀x¬P(x) ⊃ ¬P(a) instance of (A4)
... a proof in Propositional Logic
(2) (φ ⊃ ψ) ⊃ (¬ψ ⊃ ¬φ)
(3) (∀x¬P(x) ⊃ ¬P(a)) ⊃ (¬¬P(a) ⊃ ¬∀x¬P(x)) Instance of (2)
(4) ¬¬P(a) ⊃ ¬∀x¬P(x)) From (1) and (3) by (MP)
... a proof in Propositional Logic
(5) (¬¬φ ⊃ ψ) ⊃ (φ ⊃ ψ)
(6) (¬¬P(a) ⊃ ¬∀x¬P(x)) ⊃ (P(a) ⊃ ¬∀x¬P(x)) Instance of (5)
(7) P(a) ⊃ ¬∀x¬P(x) from (4) and (6) by (MP)
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Automatic reasoning based on Hilber Style

Hilbert style proof system was invented with the main purpose
of describing the minimal rational assumptions behind
mathematical reasoning.

Hilber style proofs are suppesed to be provided by humans,
who can use their intuition to apply smart heuristics to
generate them.

Writing an algorithm that decides on the validity of a formula
by searching a Hilbert style proof, is not a good idea.

We look at alternative ways to write algorithms for deciding
the falidity of a FOL formula.
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Tableaux Calculus

The Tableaux Calculus is an algorithm solving the problem of
satisfiability.

If a formula is satisfiable, then there exists an open branch in
the tableaux of this formula.

the procedure attempts to construct the tableaux for a
formula. Sometimes it’s not possible since the model of the
formula is infinite.

The basic idea is to incrementally build the model by looking
at the formula, by decomposing it in a top/down fashion. The
procedure exhaustively looks at all the possibilities, so that it
can possibly prove that no model could be found for
unsatisfiable formulas.
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Semantic tableaux

Definition

A tableau is a rooted tree, where each node carries a first order sentence
(closed formula), and the children of a node n are generated by applying
a set of expansion rules to n or to one of the ancestors of n.

Definition

The expansion rules for a first order semantic tableaux are those for the
propositional semantic tableaux, extended with the following rules that
deal with the quantifiers:

γ rules
∀x .φ(x)
φ(t)

¬∃x .φ(x)
¬φ(t)

Where t is a term free
for x in φ

δ rules
¬∀x .φ(x)
¬φ(c)

∃x .φ(x)
φ(c)

where c is a new
constant not previ-
ously appearing in the
tableaux
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Tableaux production rules for propositional logic

. . . for propositional connectives

α rules
φ ∧ ψ
φ
ψ

¬(φ ∨ ψ)
¬φ
¬ψ

¬¬φ
φ

¬(φ ⊃ ψ)
φ
¬ψ

β rules
φ ∨ ψ
φ ψ

φ ⊃ ψ
¬φ ψ

¬(φ ∧ ψ)
¬φ ¬ψ

φ ≡ ψ
φ ¬φ
ψ ¬ψ

¬(φ ≡ ψ)
φ ¬φ
¬ψ ψ
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Substitution φ[x/t]

If φ(x) is a free variable and t is a term, we use the notation φ(t)
instead of the more precise notation φ[x/t] to represent the
substitution of x for t in φ.

Substitution

φ[x/t] denotes the formula we get by replacing each free
occurrence of the variable x in the formula φ by the term t. This is
admitted if t does not contain any variable y such that x occurs in
the scope of a quantifier for y (i.e., in the scope of ∀y or ∃y .
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Substitution φ[x/t]

Example (of substitution)

P(x , y , f (x))[x/a] = P(a, y , f (a))

∀xP(x , y)[x/b] = ∀xP(x , y)

∃xP(x , x) ∧ Q(x)[x/c] = ∃xP(x , x) ∧ Q(c)

P(x , g(y))[y/f (x)] = P(x , g(f (x)))

∀x .P(x , y)[y/f (x)] =
Not allowed since f (x) is
not free for y in ∀x .P(x , y)
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Universal quantification rule

∀xφ(x)

φ(t)

∀xφ(x) means that for every object of the domain, the
property φ(x) should be true.

a term t that occurs in the tableaux denotes an object of the
domain

therefore, φ(t) must be true for all the terms t that occurs in
the tableaux. I.e., the ∀ rule can be applied as many time as
one want to any term that appear in the tableaux.

Exercize

Show that the following tableaux rule is sound.

∀x∃yP(y , x)

∃yP(y , f (x))
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Existential quantification rule

∃xφ(x)

φ(c)
for a new constant c

∃xφ(x) means that for some object of the domain, the
property φ(x) should be true.
we don’t know which object of the domain has the property φ,
we know only that there is one.
this means that this rule cannot be applied to the terms that
already occur in the tableaux, since otherwise we would
introduce an unjustified joiche on the element that has the
property φ.
the trick is to introduce a term to denote an unconditioned
objects (sometimes called “fresh” constant/variable) for
denoting an “unknown” object, i.e., an object on which we
haven’t done any commitment.
therefore we allow only to infer φ(c) form ∃xφ(x), where c is
fresh. Only one application is possible.
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Open and Closed Branches

a tableaux rooted with φ is a method to search an
interpretation that satisfy φ

Every branch of a tableaux with root equal to φ, corresponds
to an attempt to find an interpretation I that satisfies φ.

The interpretation corresponding to a branch b of a tableaux
should satisfy all the formulas that appear in the branch.

If the branch contains two opposite literals, i.e. P(t1, . . . , tn)
and ¬P(t1, . . . , tn), then the branch cannot correspond to an
interpretation, since there is no interpretation that satisfy at
the same time P(t1, . . . , tn) and ¬P(t1, . . . , tn). So we can
consider this attempt to find an interpretation failed. In this
case we say that the branch is closed.

if in a branch b all the rules has been applied and there is no
opposite literals, then this branch corresponds to an
interpretation. We call such a branch open
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Open and Closed Branches

Definition

A branch of a tableau is said to be closed if it contains a a
pair of formulas φ and ¬φ.

A branch of a tableau is said to be open if it is not closed.

A tableau is said to be closed if each of its paths is closed.
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The tableaux method

1 To test a formula φ for validity, form tableau starting with
¬φ. If the tableau closes off, then φ is logically valid.

2 To test whether φ is a logical consequence of Γ form a tableau
starting with each formula in Γ and ¬φ. If the tableau closes
off, then φ is indeed a logical consequence of Γ.

3 To test a set of formulas Γ is satisfiable, form a tableau
starting with Γ or equivalently an unsigned If the tableau
closes off, then Γ is not satisfiable. If the tableau does not
close off, then Γ is satisfiable, and from any open branch we
can read off an interpretation satisfying Γ.
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Example

Example

To check if the formula
(∃x(P(x)∨Q(x))) ≡ ((∃xP(x))∨ (∃xQ(x))) is satisfiable, we start
with a tableaux with this formula:
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Practicing with Semantic Tableaux

Exercize

Show with the method of semantic tableaux that the following
formulas are valid:

∀xP(x) ⊃ ¬∃x¬P(x)

∀x(P(x) ∨ A) ⊃ (∀xP(x) ∨ A) when x is not free in A

∃x(P(x) ⊃ ∀xP(x))

∃x∀yP(x , y) ⊃ ∀y∃xP(x , y)
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Practicing with Semantic Tableaux

Solution

¬(∀xP(x) ⊃ ¬∃x¬P(x))

∀xP(x)
¬¬∃x¬P(x)

∃x¬P(x)

¬P(a)

P(a)

×

¬(∀x(P(x) ∨ A) ⊃ (∀xP(x) ∨ A))

∀x(P(x) ∨ A)
¬(∀xP(x) ∨ A)

¬∀xP(x)
¬A

¬P(a)

P(a) ∨ A

P(a)

×

A

×
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Practicing with Semantic Tableaux

Solution

¬∃x(P(x) ⊃ ∀xP(x))

¬(P(a) ⊃ ∀xP(x))

P(a)
¬∀xP(x)

¬P(b)

¬(P(b) ⊃ ∀xP(x))

P(b)
¬∀xP(x)

×

¬(∃x∀yP(x , y) ⊃ ∀y∃xP(x , y))

∃x∀yP(x , y)
¬∀y∃xP(x , y)

∀yP(a, y)

¬∃xP(x , b)

P(a, b)

¬P(a, b)

×
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Example

Example

Check if ∀xP(x) ∧ ∃x¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x) ∧ ∃x¬P(f (x))

∀xP(x)
∃x¬P(f (x))

¬P(f (c))
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Example

Example

Check if ∀xP(x) ∧ ∃x¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x) ∧ ∃x¬P(f (x))

∀xP(x)
∃x¬P(f (x))

¬P(f (c))

Now to expand ∀xP(x), we can use any ground term t. possible
choices: c, f (c), f (f (c)), . . . . we choose f (c) because we want
to create a clash with ¬P(f (c)).

Luciano Serafini Mathematical Logics



Example (Cont’d)

Example

Check if ∀xP(x) ∧ ∃x¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x) ∧ ∃x¬P(f (x))

∀xP(x)
∃x¬P(f (x))

¬P(f (c))

P(f (c))

×
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Example of tableaux

Example

∃x(P(x) ∧ ¬Q(x)) ∧ ∀y(P(y) ∨ Q(y))

∃x(P(x) ∧ ¬Q(x))
∀y(P(y) ∨ Q(y))

P(a) ∧ ¬Q(a)

P(a)
¬Q(a)

P(a) ∨ Q(a)

P(a)

OPEN

Q(a)

CLASH
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Termination

For certain formulas
the tableaux can go on
for ever generating an
infinite tree. Consider,
for instance the
tableaux for the
formula
∃x .P(x) ∧ (∀xP(x) ⊃
P(f (x)))

∃x .P(x) ∧ ∀x(P(x) ⊃ P(f (x)))

∃x .P(x)
∀x(P(x) ⊃ P(f (x)))

P(a)

P(a) ⊃ P(f (a))

¬P(a)

CLASH

P(f (a))

P(f (a)) ⊃ P(f (f (a)))

¬P(f (a))

CLASH

P(f (f (a)))

...
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Tableaux

Exercize

G4ive tableau proofs for the following logical consequences:

∀x .P(x) ∨ ∀x .Q(x) |= ¬∃x(¬P(x) ∧ ¬Q(x))

|= ∃x .(P(x) ∨ Q(x)) ≡ ∃x .P(x) ∨ ∃x .Q(x)

Luciano Serafini Mathematical Logics



Some definition for tableaux

Definition (Closed branch)

A closed branch is a branch which contains a formula and its
negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition

Let φ be a first-order formula and Γ a finite set of such formulas.
We write Γ ` φ to say that there exists a closed tableau for
Γ ∪ {¬φ}
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Soundness and completeness

Theorem (Soundness)

Γ ` φ =⇒ Γ |= φ

Theorem (Completeness)

Γ |= φ =⇒ Γ ` φ

Remark

The mere existence of a closed tableau does not mean that we
have an effective method to build it! Concretely: we don’t know
how often and in which way we have to apply ] the γ-rules
(∀xφ(x)⇒ φ[x/t]), and what term to use in the substitution.
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Example

Check via tableaux if the validity/satisfiability of the formula
φ = ∀x , y(P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y))

Solution

¬(∀xy(P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y)))

∀xy(P(x) ⊃ Q(y))
¬(∃xP(x) ⊃ ∀yQ(y))

∃xP(x)
¬∀yQ(y)

P(a)

¬Q(b)

P(a) ⊃ Q(b)

¬P(a)

CLASH

Q(b)

CLASH

We try, vith the tableaux, to build a model
for the negation of φ. Since the tableaux
ends with all CLASHES, there is no such a
model. In other words, for all I, I 6|= ¬φ.
Which implies that for all I, I |= φ, i.e.,
that φ is valid.
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Infinite domains

Differently from Prop. Logic, in FOL, models can be infinite.

There are formulas which are satisfied only by infinite models. For
instance the following formula1

φ =

 ∀x¬R(x , x) ∧
∀xyz .(R(x , y) ∧ R(y , z) ⊃ R(x , z)) ∧

∀x .∃y .R(x , y)


If we build a tableaux for such a formula, searching for a model, we
will end up in an infinite tableaux.

1To verify this, suppose that I =
〈
∆I , ·I

〉
is an interpretation that satisfies

φ, and suppose that |∆| = n for some finite number n. Consider the sequence
〈d1, d2, d3, . . . dn+1〉 of n + 1 elements of ∆, such that 〈di , di+1〉 ∈ RI . This
sequence exists, because for every d there is always a d ′ with 〈d , d ′〉 ∈ RI ,
since I |= ∀x .∃y .R(x , y). I |= ∀xyz .(R(x , y) ∧ R(y , z) ⊃ R(x , z)), implies that
RI is transitive, and therefore for all 0 ≤ i < j ≤ n + 1, 〈di , dj〉 ∈ RI . The fact
that ∆ contains at most n elements implies that for some 1 ≤ i < j ≤ n + 1,
di = dj , which means that 〈di , di 〉 ∈ RI for some 1 ≤ i ≤ n. But this
contraddicts the fact that I |= ∀x¬R(x , x).

Luciano Serafini Mathematical Logics



Infinite tableaux

Exercize

Build a tableaux for
∀x¬R(x , x) ∧ ∀xyz .(R(x , y) ∧ R(y , z) ⊃ R(x , z)) ∧ ∀x .∃y .R(x , y)

Solution

∀x¬R(x , x) ∧ ∀xyz.(R(x , y) ∧ R(y , z) ⊃ R(x , z)) ∧ ∀x .∃y .R(x , y)

∀x¬R(x , x)
∀xyz.(R(x , y) ∧ R(y , z) ⊃ R(x , z))

∀x .∃y .R(x , y)

∃y .R(a0, y)

R(a0, a1)

∃y .R(a1, y)

...

By applying the γ-rule to the ax-
iom ∀x∃y(R(x , y)), we generate
∃yR(a0, y) for an initial constant
a0, and by applying the δ-rule to
this last formula we generate a new
individual a1. This allow to apply
the γ-rule again to ∀x∃yR(x , y),
obtaining ∃yR(a1, y), and again by
applying δ-rule to this new formula
we generate another constant a2.
The process can go on infinitively
without reaching any clash
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Example of tableaux

Example

∃x(P(x) ∧ ¬Q(x)) ∧ ∀y(P(y) ∨ Q(y))

∃x(P(x) ∧ ¬Q(x))
∀y(P(y) ∨ Q(y))

P(a) ∧ ¬Q(a)

P(a)
¬Q(a)

P(a) ∨ Q(a)

P(a)

OPEN

Q(a)

CLASH

Comments

From the formulas appearing
in the OPEN branch of the
tableaux it is possible to
construct a model for the
root formula.

∆ = {a}, the constants
appearing in the
formulas

I (P) = {a}, since the
formula P(a) appears in
the open branch

I (Q) = {} since the
formula ¬Q(a) appears
in the open branch
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Termination fo FO tableaux

In contrast to what happens in propositional logic, the tableau
construction is not guaranteed to terminate.
If the formula φ that labels the root is unsatisfiable, in which case
the construction is guaranteed to terminate and the tableau is
closed.
If the formula φ that labels the root is satisfiable then either the
construction is guaranteed to terminate and the tableau is open, or
the construction does not terminate.
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Saturated Branches

Saturated open branches

An open branch is called saturated if every non-literal has been
analyzed at least once and, additionally, every γ-formula
(γ-formulas are of the form ∀xφ and ¬∃xφ) has been instantiated
with every term we can construct using the function symbols on
the branch.

Failing proof

A tableau with an open saturated branch can never be closed, i.e.
we can stop an declare the proof a failure.

Is this the solution?

This only helps us in special cases though.(A single 1-place
function symbol together with a constant is already enough to
construct infinitely many terms . . . )
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Countermodels

If the construction of a tableaux ends in a saturated open
branch, you can use it to help you define a model M for all
the formulas on that branch.

domain: set of all terms we can construct using the function
symbols appearing on the branch (so-called Herbrand universe
)

terms are interpreted as themselves

interpretation of predicate symbols: see literals on branch
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