Algorithm DPLL
Input: A set of clauses Φ.
Output: A Truth Value.

function DPLL(Φ)

 if Φ is a consistent set of literals
 then return true;
 if Φ contains an empty clause
 then return false;
 for every unit clause l in Φ
 $\Phi \leftarrow$ unit-propagate(l, Φ);
 for every literal l that occurs pure in Φ
 $\Phi \leftarrow$ pure-literal-assign(l, Φ);
 $l \leftarrow$ choose-literal(Φ);
 return DPLL($\Phi \land l$) or DPLL($\Phi \land \neg l$);

Davis–Putnam–Logemann–Loveland (DPLL) algorithm

DPLL is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.
Where:

- `unit-propagate(l, \Phi)` and `pure-literal-assign(l, \Phi)` are functions that return the result of applying unit propagation and the pure literal rule, respectively, to the literal \(l \) and the formula \(\Phi \).

 They replace every occurrence of \(l \) with "true" and every occurrence of \(\text{not} \) with "false" in the formula \(\Phi \), and simplify the resulting formula.

- \(\Phi \land l \) denotes the simplified result of substituting "true" for \(l \) in \(\Phi \).