

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Basic Concepts Operations on Sets Operation Properties	Outline Set Theory Relations Functions	Baric Concepts Operations on Sets Operation Properties
Sets: Basic Concepts		Describing Sets	

- . The concept of set is considered a primitive concept in math
- A set is a collection of elements whose description must be unambiguous and unique: it must be possible to decide whether an element belongs to the set or not.
- Examples:
 - . the students in this classroom
 - the points in a straight line
 - the cards in a playing pack
- · are all sets, while
 - students that hates math
 - amusing books

are not sets.

- . In set theory there are several description methods:
 - Listing: the set is described listing all its elements Example: A = {a, e, i, o, u}.
 - Abstraction: the set is described through a property of its elements
 Example: A = {x | x is a vowel of the Latin alphabet }.
 - Eulero-Venn Diagrams: graphical representation that supports the formal description

- Membership: a ∈ A, element a belongs to the set A;
 - Non membership: $a \notin A$, element a doesn't belong to the set A;
- Equality: A = B, iff the sets A and B contain the same elements;
 - inequality: A ≠ B, iff it is not the case that A = B;
- Subset: A ⊆ B, iff all elements in A belong to B too;
- Proper subset: $A \subset B$, iff $A \subseteq B$ and $A \neq B$.

- Example: if $A = \{a, b, c\}$, then $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \}$
- If A has n elements, then its power set P(A) contains 2ⁿ elements.
 - Exercise: prove it!!!

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Basic Concepts Operations on Sets Operation Properties	Outline Set Theory Relations Functions	Basic Concepts Operations on Sets Operation Properties
Operations on Sets		Operations on Sets (2)	

operations on Sets

- Union: given two sets A and B we define the union of A and B as the set containing the elements belonging to A or to B or to both of them, and we denote it with A ∪ B.
 - Example: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A \cup B = \{a, b, c, d, e\}$
- Intersection: given two sets A and B we define the intersection of A and B as the set containing the elements that belongs both to A and B, and we denote it with A ∩ B.
 - Example: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A \cap B = \{a\}$

- Difference: given two sets A and B we define the difference of A and B as the set containing all the elements which are members of A, but not members of B, and denote it with A - B.
 - Example: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A B = \{b, c\}$
- Complement: given a universal set U and a set A, where A ⊆ U, we define the complement of A in U, denoted with A (or C_UA), as the set containing all the elements in U not belonging to A.
 - Example: if U is the set of natural numbers and A is the set of even numbers (0 included), then the complement of A in U is the set of odd numbers.

Outline Set Theory Rotations Functions Operations on Sets Operations Operations	Outline Set Theory Relations Functions Constantiant Properties
Sets: Examples	Sets: Exercises
• Examples:	• Exercises:
• Given $A = \{a, e, i, o, \{u\}\}$ and $B = \{i, o, u\}$, consider the following statements: • $B \in A$ NO! • $(B - \{i, o\}) \in A$ OK • $\{a\} \cup \{i\} \subset A$ OK • $\{u\} \subset A$ NO! • $\{\{u\}\} \subset A$ OK	• Given $A = \{t, z\}$ and $B = \{v, z, t\}$ consider the following statements: • $A \in B$ • $A \in B$ • $z \in A \cap B$ • $v \in B$ • $v \in B$ • $v \in A - B$ • Given $A = \{z, b, c, d\}$ and $B = \{c, d, f\}$
	 Given A = (a, b, c, b) and D = (c, c, c); find a set X st. A ∪ B = B ∪ X; is this set unique? there exists a set Y s.t. A ∪ Y = B ?

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Basic Concepts Operations on Sets Operation Properties	Outline Set Theory Relations Functions	Basic Concepts Operations on Sets Operation Properties
Sets: Exercises (2)		Sets: Operation Propertie	es
Exercises:		• $A \cap A = A$,	
• Given $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}$ and		$A \cup A = A$	
$C = \{4, 5, 6, 7, 8, 9, 10\}, \text{ compute:}$ • $A \cap B \cap C, A \cup (B \cap C), A - (B - C)$		• $A \cap B = B \cap A$,	``````````````````````````````````````

- $(A \cup B) \cap C, (A B) C, A \cap (B C)$
- Describe 3 sets A, B, C s.t. $A \cap (B \cup C) \neq (A \cap B) \cup C$

- $A \cup B = B \cup A \text{ (commutative)}$
- $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$
- $(A \cap B) \cap C = A \cap (B \cap C),$ $(A \cup B) \cup C = A \cup (B \cup C)$ (associative)

Outline Set Theory Relations Functions on Sets Functions	Outline Set Theory Relations Functions Operations on Stats
Sets: Operation Properties(2)	Cartesian Product
• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributive) • $\overline{A \cap B} = \overline{A} \cup \overline{B},$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (De Morgan laws)	 Given two sets A and B, we define the Cartesian product of A and B as the set of ordered couples (a, b) where a ∈ A and b ∈ B; formally, A × B = {(a, b) : a ∈ A and b ∈ B} Notice that: A × B ≠ B × A

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Basic Concepts Operations on Sets Operation Properties	Outline Set Theory Relations Functions	Properties Equivalence Relation
Cartosian Broduct (2)		Polations	

• Examples:

• given $A = \{1, 2, 3\}$ and $B = \{a, b\}$, then $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$ and $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}.$

Exercise: Prove the validity of all the properties.

- Cartesian coordinates of the points in a plane are an example of the Cartesian product \$\mathcal{R} \times \$\mathcal{R}\$
- The Cartesian product can be computed on any number n of sets A₁, A₂..., A_n, A₁ × A₂ × ... × A_n is the set of ordered n-tuple (x₁,..., x_n) where x_i ∈ A_i for each i = 1...n.

- A relation R from the set A to the set B is a subset of the Cartesian product of A and B: R ⊆ A × B; if (x, y) ∈ R, then we will write xRy for 'x is R-related to y'.
- A binary relation on a set A is a subset $R \subseteq A \times A$
- Examples:
 - given $A = \{1, 2, 3, 4\}$, $B = \{a, b, d, e, r, t\}$ and *aRb* iff in the Italian name of a there is the letter *b*, then $R = \{(2, d), (2, e), (3, e), (3, r), (3, t), (4, a), (4, r), (4, t)\}$
 - given $A = \{3, 5, 7\}, B = \{2, 4, 6, 8, 10, 12\}$ and *aRb* iff *a* is a divisor of *b*, then $R = \{(3, 6), (3, 12), (5, 10)\}$
- Exercise: in prev example, let *aRb* iff *a* + *b* is an even number *R* = ?

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic

- Given a relation R from A to B,
 - the domain of R is the set $Dom(R) = \{a \in A \mid \text{there exists a} b \in B, aRb\}$
 - the co-domain of R is the set $Cod(R) = \{b \in B \mid \text{there exists} an a \in A, aRb\}$
- Let R be a relation from A to B. The inverse relation of R is the relation R⁻¹ ⊆ B × A where R⁻¹ = {(b, a) | (a, b) ∈ R}

- Let R be a binary relation on A. R is
 - reflexive iff aRa for all a ∈ A;
 - symmetric iff aRb implies bRa for all a, b ∈ A;
 - transitive iff aRb and bRc imply aRc for all a, b, c ∈ A;
 - anti-symmetric iff aRb and bRa imply a = b for all a, b ∈ A;

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Properties Equivalence Relation	Outline Set Theory Relations Functions	Properties Equivalence Relation
Equivalence Relation		Set Partition	
 Let R be a binary relation on a set A. R is an equivalence relation iff it satisfies all the following properties: 		• Let A be a set, a partition of A is a family F of non-empty subsets of A s.t.:	
 reflexive 		 the subsets are pairwise disjoint 	
 symmetric 		 the union of all the subsets is the set A 	
${ \bullet }$ transitive ${ \bullet }$ an equivalence relation is usually denoted with \sim or \equiv		• Notice that: each element of A belongs to exactly one subset in F.	

- Let A be a set and \equiv an equivalence relation on A, given an $x \in A$ we define equivalence class X the set of elements $x' \in A$ s.t. $x' \equiv x$, formally $X = \{x' \mid x' \equiv x\}$
- Notice that: any element x is sufficient to obtain the equivalence class X, which is denoted also with [x]
 - x ≡ x' implies [x] = [x'] = X
- We define quotient set of A with respect to an equivalence relation \equiv as the set of equivalence classes defined by \equiv on A, and denote it with A/\equiv

 Theorem: Given an equivalence relation ≡ on A, the equivalence classes defined by ≡ on A are a partition of A.
 Similarly, given a partition on A, the relation R defined as xRx' iff x and x' belong to the same subset, is an equivalence relation on A.

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Properties Equivalence Relation	Outline Set Theory Relations Functions	Properties Equivalence Relation
Equivalence classes (3)		Order Relation	

• Example: Parallelism relation.

Two straight lines in a plane are parallel if they do not have any point in common or if they coincide.

- The parallelism relation || is an equivalence relation since it is:
 - reflexive r || r
 - symmetric r||s implies s||r
 - transitive r||s and s||t imply r||t
- We can thus obtain a partition in equivalence classes: intuitively, each class represent a direction in the plane.

- Let A be a set and R be a binary relation on A. R is an order (partial), usually denoted with ≤, if it satisfies the following properties:
 - reflexive a ≤ a
 - anti-symmetric $a \leq b$ and $b \leq a$ imply a = b
 - \bullet transitive $a \leq b$ and $b \leq c$ imply $a \leq c$
- If the relation holds for all a, b ∈ A then it is a total order
- A relation is a strict order, denoted with <, if it satisfies the following properties:
 - transitive a < b and b < c imply a < c</p>
 - o for all a, b ∈ A either a < b or b < a or a = b</p>

Set Theory Properties Relations Equivalence Relation

Outline Set Theory Relations Functions

Properties Equivalence Relation

Relations : Exercises

• Exercises:

- Decide whether the following relations R : Z × Z are symmetric, reflexive and transitive:
 - $R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : n = m\}$
 - $R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : |n m| = 5\}$
 - $R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : n \ge m\}$

• Exercises:

Relations : Exercises (2)

- Let X = {1,2,3,...,30,31}. Consider the relation on X : xRy if the dates x and y of January 2006 are on the same day of the week (Monday, Tuesday...). Is R an equivalence relation? If this is the case describe its equivalence classes.
- Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 - Consider the following relation on X: xRy iff x + y is an even number. Is R an equivalence relation? If this is the case describe its equivalence classes.
 - Consider the following relation on X: xRy iff x + y is an odd number. Is R an equivalence relation? If this is the case describe its equivalence classes.

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Properties Equivalence Relation	Outline Set Theory Relations Functions	Properties Equivalence Relation
Relations : Exercises (3)		Relations : Exercises (4)	

• Exercises:

- Let X be the set of straight-lines in the plane, and let x be a point in the plane. Are the following relations equivalence relations? If this is the case describe the equivalence classes.
 - $r \sim s$ iff r and s are parallel
 - r ~ s iff the distance between r and x is equal to the distance between s and x
 - r ~ s iff r and s are perpendicular
 - r ~ s iff the distance between r and x is greater or equal to the distance between s and x
 - $r \sim s$ iff both r and s pass through x

• Exercises:

- Let div be a relation on N defined as a div b iff a divides b.
 Where a divides b iff there exists an n ∈ N s.t. a * n = b
 - Is div an equivalence relation?
 - Is div an order?

Set Theory Set Theory Relations Functions	Set Theory Properties Relations Functions
Functions	Classes of functions
• Given two sets A and B, a function f from A to B is a relation that associates to each element a in A exactly one element b in B. Denoted with $f: A \rightarrow B$	 A function f : A → B is surjective if each element in B is image of some elements in A: for each b ∈ B there exists an a ∈ A s.t. f(a) = b
 The domain of f is the whole set A; the image of each element a in A is the element b in B s.t. b = f(a); the co-domain of f (or image of f) is a subset of B defined as follows: 	 A function f : A → B is injective if distinct elements in A have distinct images in B: for each b ∈ lm_f there exists a unique a ∈ A s.t. f(a) = b
$Im_f = \{b \in B \mid \text{there exists an } a \in A \text{ s.t. } b = f(a)\}$	• A function $f: A \longrightarrow B$ is bijective if it is injective and

• Notice that: it can be the case that the same element in *B* is the image of several elements in *A*.

 A function *f* : *A* → *B* is bijective if it is injective and surjective:

for each $b \in B$ there exists a unique $a \in A$ s.t. f(a) = b

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Outline Set Theory Relations Functions	Properties	Outline Set Theory Relations Functions	Properties
Inverse Function		Composed functions	

- If $f: A \longrightarrow B$ is bijective we can define its inverse function: $f^{-1}: B \longrightarrow A$
- For each function f we can define its inverse relation; such a relation is a function iff f is bijective.
- Example:

the inverse relation of f is NOT a function.

• Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be functions. The composition of f and g is the function $g \circ f: A \longrightarrow C$ obtained by applying f and then g: $(g \circ f)(a) = g(f(a))$ for each $a \in A$ $g \circ f = \{a, g(f(a)) \mid a \in A\}$

```
Outline
Set Theory
Relations
Functions
```

Functions : Exercises

• Exercises:

- Given $A = \{$ students that passed the Logic exam $\}$ and $B = \{18, 19, ..., 29, 30, 30L\}$, and let $f : A \longrightarrow B$ be the function defined as f(x) = grade of x in Logic. Answer the following questions:
 - What is the image of f?
 - Is f bijective?
- Let A be the set of all people, and let f : A → A be the function defined as f(x) = father of x. Answer the following questions:
 - What is the image of f?
 - Is f bijective?
 - Is f invertible?
- Let f : N → N be the function defined as f(n) = 2n.
 - What is the image of f?
 - Is f bijective?
 - Is f invertible?

Chiara Ghidini Mathematical Logic