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Example of tableaux

Consider the following formulas:

(a) Vxyz(P(x,y) A P(y,z) D P(x,z)
(b)  xy(P(x,y) D P(y,x))
(c)  Vx3IyP(x,y)
(d)  VxP(x,x)

)
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Solution ((a), (b), (¢) = (d))

(3)7 (b)7 (C)a _'(d)
\
—P(a, a)
\
JyP(a, y)
\
P(a, b)
\
P(a, b) — P(b, a)
_— ~__
—P(a, b) P(b, a)
\ \
X P(a, b) A P(b,a) D P(a, a)
— ~__
_‘(P(av b)/\P(bva)) P(aaa)
— ~ \
—P(a, b) —P(b, a) X
L L
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Solution ((a), (b), i (d))
(a). (b), ~(d)

—P(a,a)
\
P(a,a) — P(a, a)
_— ~__
—P(a, a) P(a, a)
\ \
P(a,a) A P(a,a) D P(a,a) X
_— ~__
—(P(a,a) A P(a,a)) P(a, a)
_— ~_ ‘
—P(a,a) X

~P(a,a)
The tableaux is complete, i.e., no other rules can be applied, and it contains at

least an open branch (the one on the left). From this open branch we can
construct an interpretation T with AT = {a} (the constant that appear in the
branch), and P* = (), since —P(a, a) occurs in the branch. Notice that

T = (a),(b), ~(d). Therefore we can conclude that (a), (b) i~ (d).
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Soundness and Completeness

Definition (Derivation relation via tableaux)

Let ¢ be a first-order formula and ' a set of such formulas.
M=o

means that there exists a closed tableau for ' U {=¢}.

Theorem (Soundness)
IFT - ¢ then T = 6.

Theorem (Completeness)
IfT = ¢ then T F ¢.

Important note

The mere existence of a closed tableau does not mean that we have an
effective method of finding it! Concretely: we dont know how often we
need to apply the v rule and what terms to use for the substitutions.
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Proof of Soundness

@ Soundness means that what you infer via syntactic
manipulation (I-) is correct from the semantic point of view
(E). lLe., if you are able to infer ¢ from ' (I' - ¢), then ¢ is a
logical consequence of ', (I' = ¢)

@ We have to show that TF ¢ =T = ¢

@ which is equivalent to show that I [} ¢ =T I/ ¢

@ which is equivalent to show that ' U {—¢} is consistent —>
the saturated tableaux for 71 A -+ Ay, A ¢ is open, i.e., it
contains an open branch.

@ in practice we show that each of the expansion rules preserves
satisfiability:

e If a non-branching rule is applied to a satisfiable branch, the
result is another satisfiable branch.

e If a branching rule is applied to a satisfiable branch, at least
one of the resulting branches is also satisfiable.
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Proof of Soundness

Definition (Satisfiable branch)

A branch [ of a tableaux 7 is satisfiable if the set of formulas that
occurs in 3 is satisfiable. l.e., if there is an interpretation Z, such
that Z |= ¢ for all ¢ € .

Expansion rules preserve satisfiability

We show that every rule extend a consistent branch 5 to a branch
B’ which is consistent.
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Proof of Soundness

Propositional a-rules

b A

Y
¢
(2

@ let Z be such that Z = 8

@ sincep AN € fthenZ E AN

@ which impliesthat Z = ¢ and Z = ¢
@ which implies that Z = S U {¢, ¢ }.
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Proof of Soundness

Propositional 5 Rules

o let 7 be such that Z = 8

@ sincepVyefthenZ =V

@ which impliesthat Z =g or Z E o

@ which implies that Z = S U {¢} or T |= S U {¢}.
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Proof of Soundness

Vxo(x)
¢(a)

Let 5 be a that contains the formula Vx¢(x). By applying the
gamma rule we have that it is extended to U {¢(t)} where t
is a term occurring in some formula of f.

If 3 is satisfiable then there is an interpretation Z =
This implies that Z = Vx¢(x)

which implies that Z = ¢(t) for any term t.

therefore 7 satisfies the extended branch 5 U {¢(t)}.

Similar argument can be done for the second v-rule. ﬂiﬁg)
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Proof of Soundness

(%)
4(c)

Let Z be such that Z = 3

since Ix¢p(x) € 5, then T |= Ixe(x)

this implies that for some d € A%, T |= ¢(x)[a[x/d]].

let 7' be an interpretation obtained by extending Z with

cZ' = d. Notice that ¢ being fresh, is not interpreted in Z and
therefore 7’ agrees with Z on the interpretation of every
symbol but c.

@ The fact that ¢ does not occurs in 3, Z' = 3.

e this implies that Z' = S U {¢(c)}.

c is a fresh constant

o i.e., fU{¢(c)} is consistent.
Similar argument can be done for the second v-rule. ﬂj;‘fg) with
c fresh.
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Hintikkas Lemma
Definition (Hintikka set)

A set of first-order formulas I is called a Hintikka set provided the
following hold:

© not both P(t1,...,t,) € H and =P(t,...,t,) € H for atoms
P(t1, ..., tn);

@ if -—¢ € H then ¢ € H for all formulas ¢ ;

© if « € H then a1 € H and ap € H for alpha formulas «;

@ if 8 € H then either 51 € H or 5> € H for beta formulas 5.

@ for all terms ¢ built from function symbols in H (at least one
constant symbol): if v € H then 71(t) for gamma formulas ~;

Q if 9 € H then 61(t) € H for some term t, for delta formulas §.

Lemma (Hintikka)
Every Hintikka set is satisfiable
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Proof of Hintikkas Lemma

Construct a model Z = <AI, -I> from a given Hintikka set H:

o AT is the set of terms constructible from function symbols
appearing in H (add one constant symbol in case there are
none). Namely. if H contains the constants, ci, ¢p,... and
the function symbols fi, f, ... with arity, then AT is the set
of strings recursively defined as follows:

@ C1,Cp, - e Nt
o if X1, Xarity(r) € AT then fi(x1, ..., Xariey(r)) € AT

o T is defined as follows:
Q L=+
@ function symbols are interpreted as themselves:
fI(dy,...,d,) = f(di,...,d,)
© predicate symbols:
PT ={(d,...,d,) € AT | P(dy,...,d,) € H}
Claim: ¢ € H implies Z = ¢
Proof: By structural induction on ¢.
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Proof of Hintikkas Lemma - example

Consider the following Hintikka set

H = P(a)v_‘P(f(a))vQ(av b)vQ(g(av b)va)v
o P(b) D IxQ(x, b), IxQ(x, b)

Then the interpretation Z associated to H is the following:
a, b, f(a),f(b),g(a, a),g(a, b),g(b,a),g(b, b)
7 f(f(a)), f(f(b)), f(g(a, a)), f(g(a, b)), f(g(b, 2)), f (g(b, b))
o A" = g(a,f(a)), g(a, (b)), g(b, f(a)), g(b, f(b))
g(f(a), a), g(f(a), b), g(f(b), a), g(f(b), b)
g(f(a), f(a)), &(f(a), f(b)), g(f(b), f(a)), g(f(b), (b)), ...
o fL(x) = f(x) for every x € AT
o PL ={a},

o QI = {<av b> ) (g(av b)> a>}
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Proof of Completeness

Definition (Fairness)

We call a tableau fair if every non-literal of a branch gets
eventually analysed on this branch and, additionally, every
~v-formula gets eventually instantiated with every term
constructible from the function symbols appearing on a branch.
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Proof of Completeness

Completeness proof (sketch).

@ We show that I t/ ¢ implies ' [~ ¢.

@ Suppose that there is no proof for ' U {—¢}

@ Let 7 a fair tableaux that start with ' U {—¢},
°

The fact that It/ ¢ implies that there is at least an open
branch 3.

@ fairness condition implies that the set of formulas in
constitute an Hintikka set Hg

@ From Hintikka lemma we have that there is an interpretation
Zs that satisfies 3.

@ since every branch of 7 contains its root we have that
U {—¢} C S and therefore Zg =T U {—¢}.

@ which implies that I = ¢.
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Detailed proof

The detailed proof is available at:
© http://kaharris.org/teaching/481/lectures/lec29.pdf
© http://kaharris.org/teaching/481/lectures/lec30.pdf
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