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Proof methods for modal logics

Problem 1 How can we show that a modal formula ¢ is valid? (i.e. that F = ¢
for every frame F).

Problem 2 How can we show that ¢ is satisfiable? (i.e., that there is a model
M = (F, V) and a world v € W such that M, w |= ¢)

Problem 1 and problem 2 can be rewriten one in terms of the other. Indeed, proving
that = ¢ (i.e., that ¢ is valid) corresponds to prove that —¢ is not satisfiable.
Viceversa, proving that ¢ is satisfiable is equivalent to prove that —¢ is not valid.

>

There are at least two alternatives.

@ We can transform ¢ into a first order formula using the standard translation,
and to show that ¢ is valid it is enough to show that VxST*(¢) is valid.

@ we can use a more direct method, and to show that ¢ one can try to search for
a counterexample (= an interpretation that falsifies ¢). and, when trying out all
ways of generating a counterexample without success, this counts as a proof of
validity. method of (analytic/semantic) tableaux

\
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Reasoning in ML via transformation in FOL

@ to check the satisfiability of ¢p
@ we transform ¢ror(x) = ST*(dmr)
@ we apply tableaux to ¢ror(w) for some constant w.

Example

Check if the following formula is valid:

(EpA0q) D O(PAQ)

° STX((OpA©g) D O(pAq)) =

(Vy(R(x,y) 2 p(y)) A 3y(R(x,y) Aq(y))) D
Jy(R(x,y) A P(y) A q(y))

@ Check if it is valid, e.g., via Tableaux
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Reasoning in ML via transformation in FOL

~(Vy(R(w,y) 2 p(y)) A3y (R(w,y) Aa(y))) 2 3y(R(w,y) A P(y) Aaly))

Vy(R(w,y) D p(y)) A Jy(R(w,y) A q(y))
=3y(R(w,y) A P(y) A q(y))

Vy(R(w,y) D p(y))
Jy(R(w,y) Aaqly))

CLOSED  —R(w,v) A p(v) A q(v)

—R(w,v) —p(v) —q(v)
CLOSED CLOSED CLOSED
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@ The FOL formulas generated by the standard transformation

of a modal formulas are of a special forms.
@ Quantifiers are always generated in the following two shapes:
Q Jy(R(w,y) A ély))
Q Vy(R(w,y) D ¢(y))
@ v and § Tablueaux rules are applied only to these formulas,
and generated tableaux of the following two shapes

Q EIy(R(W,)|/)/\¢(Y)) ° Yy(R(w,y) > 6(y))
% w,y) D oly
R(w, v) A é(v) |
| R(w,v) D ¢(v)
R(w,v)

If we have R(w, v) then
this branch is closed.

If we don't have R(w, v)
this branch will remain open
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Analytic/Semantic Tableau Method - References

Early work by Beth and Hintikka (around 1955). Later refined and
popularized by Raymond Smullyan:

@ R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
Modern expositions include:

@ M. Fitting. First-order Logic and Automated Theorem
Proving. 2nd edition. Springer-Verlag, 1996.

@ M. D'Agostino, D. Gabbay, R. Hahnle, and J. Posegga (eds.).
Handbook of Tableau Methods. Kluwer, 1999.

@ R. Hahnle. Tableaux and Related Methods. In: A. Robinson
and A. Voronkov (eds.), Handbook of Automated Reasoning,
Elsevier Science and MIT Press, 2001.

@ Proceedings of the yearly Tableaux conference:
http://il2www.ira.uka.d/TABLEAUX/
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Tableau - basic definition

Tableau A tableau is a finite tree with nodes marked with one of
the following assertions:

wE ¢ w ¢ wRw'

which is build according to a set of expansion rules (see next slide)

| \

Definition (Branch, open branch and closed branch)

A branch of a tableaux is a sequence ny, ny ... n, where ny is the
root of the tree, ng is a leaf, and njy; is a children of n; for
1<i<k.

A closed branch is a branch that contains nodes marked with

w |= ¢ and w [~ ¢. All other branches are open.

If all branches are closed, the tableau is closed.
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Tableau Rules for the Propositional Logic

W oAy w i (6 V1) AACED))
we-¢  wiEoy WEEOY)
=r: W wEé
w = w i wEe wke Wi
wE oV w i (6 A %) we ooy
WESIWED wEG|wED W wER|wEY ]

Expansion rules for modal operators

w O
w EO¢ If wRw' is already in % wher w’ is new in the

w’ = ¢ the brench W I ¢ brench

% wher w’ is new in the W [~ 09 If wRw/ is already in
brench w’ F~ ¢ the brench

W E o

\
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Applications of expansion rules

@ If a branch 8 = ny,..., nx contains a node n; labelled with a
premise of one of a rule p, and such a rule has not applied yet
on this node, then p can be applied, and the branch is
expanded in the following way

@ if p has only one consequence, then § is expanded in
Ny, ... Nk, Ngr1 where niyq is labelled with the consequence of
p

@ if p has two consequences (one on top of the other), then S is
expanded in ny,...ng, Ngi1, Nk where ng 1 and ng.o are
labelled with the consequences of p

@ if p has two alternative consequences (i.e., two consequences
separated by a “|"), then (3 is expanded into two branches
Ny, ...Nk, N2 and ny, ... Nk, N2, where ngy1 and ngy o are
labelled with the alternative consequences of p
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Example of tableaux

Example (Check satisfiability of O(P A =Q) AO(P V Q))

wEO(PA-Q)AOPV Q)
@ The tableau we have constructed
w = O(r A=Q) starting from
wE O(PA=Q)AT(PV Q), has
w0 = DEP va) an open branch (the one on the
wRw! left)
| @ if we collect all the assertions of
w' = PA=Q the form w |= A and w [~ A for
) | all atomic A and the assertions of
LY '|: P the form and wRw’, which label
the node of such an open branch
!
v ':l -Q we obtain
WlblﬁQ wRw' W' = P, W'~ Q
w =PVQ which corresponds to the model
/N o
w' =P w = Q w—
I I
CLOSED with A true in w’ and B false in
/
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Checking validity via tableaux

Example (Check validity of O(AV B) = 0AV OB)

To check the validity of O(AV B) = QA V OB), we construct a tableaux that searches
for a countermodel. l.e., we check the satisfiability of =(0(AV B) = 0AV OB)

w = —(0(AV B) = 0AV OB) All the branches of
I

the tableaux search-
wlE O(AV B)=0AV OB ing for a model of

W%O(AvB)DOA/VOB WNVQBDQ(AVB) —(0O(AV B) = 0AV
OB) are closed. This

] 1
wE <>$A v B) w = qu VOB implies that there are
w = QAV OB w I~ O(AV B) no models for such
; 7 x formulas, i.e., that
A A B a formulas, ,
W bé, 0 W ':| 0 W ':| 4 there are no counter-
w = OB W’TW' WRIW/ model for O(AV B) =
- W A w =B  OAV OB, and finally
S L L that O(AVB) = QAV
7 =AY E w' A W EB 4B, is valid.
w = A w =B CLOSED CLOSED

I I
w A w' £~ B
CLOSED CLOSED
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Checking validity via tableaux

Example (Check validity of O(AV B) = OA Vv OB)

w = —~(O(AV B) = OA Vv OB) The tableau is
1 not closed as
Y E(A vV B) = DALDB there is an open
wiEOAV B) D OAVOB wEDOAVOBDO(AV B)  branch. This
) ! branch contains
w = Dl(A vV B) w = D;A vDB the statements:
w = OAvV OB w = O(AV B) wRw’, wRw'/,
I ) / /
DA O(AV B e A e = B
v bg| W/bé ( \/\) w’ E A and
w = OB w = DA wEDOB  w” K B, that
WRIW’ W,‘\LWI WRIW’ correspond to the
| I | model
w! A w' AV B w' AV B
1 1 | R ,
w' =AVB w!' A w' £ A w
/}:Z): \/):B /EZB /EZB W/
w w w w
1 1 1 \ 1"
CLOSED wRw'' w’ ': A w' ': B R w
|
w' [~ B CLOSED CLOSED with A false in w’,
. B true in w/, A
11 A B ,
W/': \/\ true in w” and B
w' A w' = B false in w'’.
CLOSED
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Comparing Reasoning in ML and FOL

Comparing tableaux reasoning directly in ML and via translation in FOL, we can
discover that there are a lot of similarities:
@ Reasoning about accessibility relation is explicit in FOL and implicit in ML
@ Reasoning about V is similar to reasoning about [
@ Reasoning about 3 is similar to reasoning about ¢

Reasoning in FOL Reasoning in ML

—(Vy(R(w, y) D p(y)) A Jy(R(w, y) A a(y))) w e -
> 3/(For ) NP A2 =ERA > ClpA a)
Vy(R(w,y) D p(y)) A 3y(R(w,y) A q(y)) w = Up A Oq
—3y(R(w, y) |A P(y) A a(y)) w = =(O(p A q))
Vy(R(w,y) D p(y)) w = Op
Hy(R(WyT) A q(y)) w )=| Oq
wRv
R(w, V)I A q(v) viEgq
R(w, v)
Q(IV) VEDp
R(w, v) D_p(v) |
—R(w,v) p(v) vE~(pAq)
CLOSED  —R(w, v) A p(v) A q(v)
v § v -p vE-g
SRW,Y)  —p(v) (v | |
CLOSED  CLOSED CLOSED | CLOSED CLOSED J
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