
Mathematical Logics
17 Resolution and Unification

Luciano Serafini

Fondazione Bruno Kessler, Trento, Italy

November 21, 2013

Luciano Serafini Mathematical Logics

The rule of Propositional Resolution

RES
A ∨ C , B ∨ ¬C

A ∨ B

The formula A ∨ B is called a resolvent of A ∨ C and B ∨ ¬C ,
denoted Res(A ∨ C ,B ∨ ¬C).

Exercize

Show that the Resolution rule is logically sound; i.e., that the
conclusion is a logical consequence of the premise

RES inference rules assumes that the formulas are in normal form
(CNF)

Luciano Serafini Mathematical Logics

Clausal normal forms - (CNF)

A clause is essentially an elementary disjunction l1 ∨ · · · ∨ ln
but written as a (possibly empty) set of literals {l1, . . . , ln}.
The empty clause {} is a clause containing no literals. and
therefore it is not satisfiable

A unit clause is a clause containing only one literal.

A clausal form is a (possibly empty) set of clauses, written as
a list: C1 . . .Ck it represents the conjunction of these clauses.

Every formula in CNF can be re-written in a clausal form, and
therefore every propositional formula is equivalent to one in a
clausal form.

Example (Clausal form)

the clausal form of the CNF-formula (p ∨¬q ∨¬r)∧¬p ∧ (¬q ∨ r)
is {p,¬q,¬r}, {¬p}, {¬q, r}
Note that the empty clause {} (sometimes denoted by �) is not
satisfiable (being an empty disjunction)

Luciano Serafini Mathematical Logics

Clausal Propositional Resolution rule

The Propositional Resolution rule can be rewritten for clauses:

RES
A1, . . . ,C , . . . ,Am} {B1, . . . ,¬C , . . . ,Bn}

{A1, . . . ,Am,B1, . . . ,Bn}

The clause {A1, . . . ,Am,B1, . . . ,Bn} is called a resolvent of
the clauses {A1, . . . ,C , . . . ,Am} and {B1, . . . ,¬C , . . . ,Bn}.

Example (Applications of RES rule)

{p, q,¬r} {¬q,¬r}
{p,¬r ,¬r}

{¬p, q,¬r} {r}
{¬p, q}

{¬p} {p}
{}

Luciano Serafini Mathematical Logics

The rule of Propositional Resolution

Example

Try to apply the rule RES to the following two set of clauses
{{¬p, q}, {¬q, r}, {p}, {¬r}}

Solution

{}

{r}

{¬p, r}

{¬p, q}{¬q, r}

{p}

{¬r}

Luciano Serafini Mathematical Logics

Some remarks

{p, q,¬r} {¬q,¬r}
{p,¬r ,¬r}

{¬p, q,¬r} {r}
{¬p, q}

{¬p} {p}
{}

Note that two clauses can have more than one resolvent, e.g.:

{p,¬q} {¬p, q}
{¬q, q}

{¬p, q} {p,¬p}
{¬p, p}

However, it is wrong to apply the Propositional Resolution rule for both
pairs of complementary literals simultaneously as follows:

{p,¬q} {¬p, q}
{}

Sometimes, the resolvent can (and should) be simplified, by removing
duplicated literals on the fly:

{A1, . . . ,C ,C , . . . ,Am} ⇒ {A1, . . . ,C , . . . ,Am}.

For instance:

{p,¬q,¬r} {q,¬r}
{p,¬r} instead of

{p,¬q,¬r} {q,¬r}
{p,¬r ,¬r}

Luciano Serafini Mathematical Logics

Propositional resolution as a refutation system

The underlying idea of Propositional Resolution is like the one
of Semantic Tableau: in order to prove the validity of a logical
consequence A1, . . . ,An ` B, show that the set of formulas
{A1, . . . ,An,¬B} is Unsatisfiable
That is done by transforming the formulae A1, . . . ,An and ¬B
into a clausal form, and then using repeatedly the
Propositional Resolution rule in attempt to derive the empty
clause {}.
Since {} is not satisfiable, its derivation means that
{A1, . . . ,An,¬B} cannot be satisfied together. Then, the
logical consequence A1, . . . ,An ` B holds.
Alternatively, after finitely many applications of the
Propositional Resolution rule, no new applications of the rule
remain possible. If the empty clause is not derived by then, it
cannot be derived at all, and hence the {A1, . . . ,An,¬B} can
be satisfied together, so the logical consequence
A1, . . . ,An ` B does not hold.

Luciano Serafini Mathematical Logics

Propositional resolution - Examples

Example

Check whether (¬p ⊃ q),¬r ` p ∨ (¬q ∧ ¬r) holds.

Check whether p ⊃ q, q ⊃ r |= p ⊃ r holds.

Show that the following set of clauses is unsatisfiable
{{A,B,¬D}, {A,B,C ,D}, {¬B,C}, {¬A}, {¬C}}

Luciano Serafini Mathematical Logics

First-order resolution

The Propositional Resolution rule in clausal form extended to
first-order logic:

{A1, . . . ,Q(s1, . . . , sn), . . . ,Am} {B1, . . . ,¬Q(s1, . . . , sn), . . . ,Bn}
{a1, . . . , am, b1, . . . , bn}

this rule, however, is not strong enough.
example: consider the clause set

{{p(x)}, {¬p(f (y))}}
is not satisfiable, as it corresponds to the unsatisfiable formula

∀x∀y .(p(x) ∧ ¬p(f (y)))

however, the resolution rule above cannot derive an empty
clause from that clause set, because it cannot unify the two
clauses in order to resolve them.
so, we need a stronger resolution rule, i.e., a rule capable to
understand that x and f (y) can be instantiated to the same
ground term f (a).

Luciano Serafini Mathematical Logics

Unification

Finding a common instance of two terms.

Intuition in combination with Resolution

S =


friend(x , y) ⊃ friend(y , x)

friend(x , y) ⊃ knows(x ,mother(y))
friend(Mary , John)

¬knows(John,mother(Mary))



cnf (S) =


¬friend(x , y) ∨ friend(y , x)

¬friend(x , y) ∨ knows(x ,mother(y))
friend(Mary , John)

¬knows(John,mother(Mary))


Is cnf (S) satisfiable or unsatisfiable?
The key point here is to apply the right substitutions

Luciano Serafini Mathematical Logics

Substitutions: A Mathematical Treatment

A substitution is a finite set of replacements

σ = [t1/x1, . . . , tk/xk]

where x1, . . . , xk are distinct variables and ti 6= xi .

tσ represents the result of the substitution σ applied to t.

cσ = c (non) substitution of constants
x [t1/x1, . . . tn/xn] = ti if x = xi for some i substitution of variables

x [t1/x1, . . . tn/xn] = x if x 6= xi for all i (non) substitution of variables
f (t, u)σ = f (tσ, uσ) substitution in terms

P(t, u)σ = P(tσ, uσ) . . . in literals
{L1, . . . , Lm}σ = {L1σ, . . . , Lmσ} . . . in clauses

Luciano Serafini Mathematical Logics

Composing Substitutions

Composition of σ and θ written σ ◦ θ, satisfies for all terms t

t(σ ◦ θ) = (tθ)σ

If σ = [t1/x1, . . . tn/xn] and θ = [u1/x1, . . . un/xn], then

σ ◦ θ = [t1θ/x1, . . . tnθ/xn]

Identity substitution

[x/x , t1/x1, . . . tn/xn] = [t1/x1, . . . tn/xn]

σ ◦ [] = σ

Associativity

σ ◦ (θ ◦ φ) = (σ ◦ θ) ◦ φ = σ ◦ θ ◦ φ =

Non commutativity, in general we have that

σθ 6= θσ

Luciano Serafini Mathematical Logics

Composition of substitutions - example

f (g(x), f (y , x))[f (x , y)/x][g(a)/x , x/y] =

f (g(f (x , y)), f (y , f (x , y)))[g(a)/x , x/y] =

f (g(f (g(a), x)), f (x , f (g(a), x)))

f (g(x), f (y , x))[g(a)/x , x/y][f (x , y)/x] =

f (g(g(a)), f (x , g(a)))[f (x , y)/x] =

f (g(g(a)), f (f (x , y), g(a)))

Luciano Serafini Mathematical Logics

Computing the composition of substitutions

The composition of two substitutions τ = [t1/x1, . . . , tk/xk] and σ

1 Extend the replaced variables of τ with the variables that are
replaced in σ but not in τ with the identity substitution x/x

2 Apply the substitution simultaneously to all terms [t1, . . . , tk]
to obtaining the substitution [t1σ/x1, . . . , tkσ/xk].

3 Remove from the result all cases xi/xi , if any.

Example

[f (x , y)/x , x/y][y/x , a/y , g(y)/z] =

[f (x , y)/x , x/y , z/z][y/x , a/y , g(y)/z] =

[f (y , a)/x , y/y , g(y)/z] =

[f (y , a)/x , g(y)/z]

Luciano Serafini Mathematical Logics

Unifiers and Most General Unifiers

σ is a unifier of terms t and u if tσ = uσ.
For instance

the substitution [f (y)/x] unifies the terms x and f (y)

the substitution [f (c)/x , c/y , c/z] unifies the terms g(x , f (f (z))) and
g(f (y), f (x))

There is no unifier for the pair of terms f (x) and g(y), nor for the pair of
terms f (x) and x .

σ is more general than θ if θ = σ ◦ φ for some substitution φ.

σ is a most general unifier for two terms t and u if it a unifier for t
and u and it is more general of all the unifiers of t and u.

If σ unifies t and u then so does σ ◦ θ for any θ.

A most general unifier of f (a, x) and f (y , g(z)) is
σ = [a/y , g(z)/x]. The common instance is

f (a, x)σ = f (a, g(z)) = f (y , g(z))σ

Luciano Serafini Mathematical Logics

Unifier

Example

The substitution [3/x , g(3)/y] unifies the terms g(g(x)) and g(y).
The common instance is g(g(3)). This is not however the most
general unifier for these two terms. Indeed, these terms have many
other unifiers, including the following:

unifying substitution common instance
[f (u)/x , g(f (u))/y] g(g(f (u)))
[z/x , g(z)/y] g(g(z))
[g(x)/y] g(g(x))

[g(x)/y] is also the most general unifier.

Luciano Serafini Mathematical Logics

Examples of most general unifier

Notation: x , y , z . . . are variables, a, b, c , . . . are constants
f , g , h, . . . are functions p, q, r , . . . are predicates.

terms MGU result of the substitution

p(a, b, c)
p(x , y , z)

[a/x , b/y , c/z] p(a, b, c)

p(x , x)
p(a, b)

None

p(f (g(x , a), x)
p(z , b)

[b/x , f (g(b, a))/z] p(f (g(b, a), b)

p(f (x , y), z)
p(z , f (a, y))

[f (a, y)/z , a/x] p(f (a, y), f (a, y))

Luciano Serafini Mathematical Logics

Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it
can easily be adapted to work with formulas and terms.

Sub expressions Let L be a literal. We refer to formulas and terms
appearing within L as the subexpressions of L. If there is a
subexpression in L starting at position i we call it L(i) (otherwise
(i) is undefined.

Disagreement pairs. Let L1 and L2 be literals with L1 6= L2. The

disagreement pair of L1 and L2 is the pair (L
(i)
1 , L

(i)
2) of

subexpressions of L1 and L2 respectively, where i is the smallest

number such that L
(i)
1 6= L

(i)
2).

Example The disagreement pair of

P(g(c), f (a, g(x), h(a, g(b))))
P(g(c), f (a, g(x), h(k(x , y), z)))

is (a, k(x , y))

Luciano Serafini Mathematical Logics

Robinson’s Unification Algorithm

Imput: a set of literals ∆
Output: σ = MGU(∆ or Undefined!

σ := []
while |∆σ| > 1 do

pick a disagreement pair p in ∆σ’
if no variable in p then

return ‘not unifiable’;
else

let p = (x , t) with x being a variable;
if x occurs in t then

return ‘not unifiable’;
else σ := σ ◦ [t/x];

return σ

Luciano Serafini Mathematical Logics

Theorem-Proving Example

(∃y∀xR(x , y)) ⊃ (∀x∃yR(x , y))

Negate ¬((∃y∀xR(x , y)) ⊃ (∀x∃yR(x , y)))

NNF ∃y∀xR(x , y), ∃x∀y¬R(x , y)

Skolemize R(x , b), ¬R(a, y)

Unify MGU(R(x , b),R(a, y)) = [b/x , a/y]

Contrad.: We have the contradiction R(b, a),¬R(b, a), so the
formula is valid

Luciano Serafini Mathematical Logics

Theorem-Proving Example

(∀x∃yR(x , y)) ⊃ (∃y∀xR(x , y))

Negate ¬((∀x∃yR(x , y)) ⊃ (∃y∀xR(x , y)))

NNF ∀x∃yR(x , y), ∀y∃x¬R(x , y)

Skolemize R(x , f (x)), ¬R(g(y), y)

Unify MGU(R(x , f (x)), ¬R(g(y), y)) = Undefined

Contrad.: We do not have the contradiction, so the formula is
not valid.

Luciano Serafini Mathematical Logics

Resolution for first order logic

The resolution rule for Propositional logic is

{l1, . . . , ln, p} {¬p, ln+1, . . . , lm}
{l1, . . . lm}

Luciano Serafini Mathematical Logics

The binary resolution rule

In first order logic each li and p are formulas of the form
P(t1, . . . , tn) or ¬P(t1, . . . , tn).

When two opposite literals of the form P(t1, . . . , tn) and
P(u1, . . . , un) occur in the clauses C1 and C2 respectively, we have
to find a way to partially instantiate them, by a substitution σ, in
such a way the resolution rule can be applied, to to C1σ and C2σ,
i.e., such that P(t1, . . . , tn)σ = P(u1, . . . , un)σ.

{l1, . . . , ln,P(t1, . . . , tn)}{¬P(u1, . . . , un), ln+1, . . . , lm}
{l1, . . . lm}σ

where σ is the MGU(P(t1, . . . , tn),P(u1, . . . , un)).

Luciano Serafini Mathematical Logics

The factoring rule

{l1, . . . , ln, ln+1, . . . , lm}
{l1, ln+1, . . . lm}σ

If l1σ = · · · = lnσ

Example

Prove ∀x∃y¬(P(y , x) ≡ ¬P(y , y))

Clausal form {¬P(y , a), ¬P(y , y)}, {P(y , y), P(y , a)}
Factoring yields {¬P(a, a)}, {P(a, a)}
By resolution rule we obtain the empty clauses �

Luciano Serafini Mathematical Logics

A Non-Trivial Proof

∃x [P ⊃ Q(x)] ∧ ∃x [Q(x) ⊃ P] ⊃ ∃x [P ≡ Q(x)]

Clauses are {P,¬Q(b)}, {P,Q(x)}, {¬P,¬Q(x)}, {¬P,Q(a)}
Apply resolution

{}

{P}

{P,¬Q(b)}{P,Q(x)}

{¬P}

{¬P,¬Q(x)}{¬P,Q(a)}

Luciano Serafini Mathematical Logics

Equality

In theory, it’s enough to add the equality axioms:

The reflexive, symmetric and transitive laws
{x = x}, {x 6= y , y = x}, {x 6= y , y 6= z , x = z}.
Substitution laws like
{x1 6= y1, . . . , xn 6= yn, f (x1, . . . , xn) = f (y1, . . . , yn)} for each
f with arity equal to n

Substitution laws like
{x1 6= y1, . . . , xn 6= yn,¬P(x1, . . . , xn), P(y1, . . . , yn)} for
each P with arity equal to n

In practice, we need something special: the paramodulation rule

{P(t), l1, . . . ln} {u = v , ln+1, . . . , lm}
P(v), l1, . . . , lm}σ

provides that tσ = uσ

Luciano Serafini Mathematical Logics

