Mathematical Logics

18 Using Prover9 and Maze4

Luciano Serafini

Fondazione Bruno Kessler, Trento, ltaly

November 27, 2013

Luciano Serafini Mathematical Logics

Prover9 Home Page

http://www.cs.unm.edu/ mccune/prover9/

the future of theorem proving

Prover9 and Mace4

@ Prover9 is an automated theorem prover for first-order and
equational logic,

@ Mace4 searches for finite models and counterexamples

Luciano Serafini Mathematical Logics

Prover9 GUI

! e

e |

Ble Preferences ‘“iew Help

Language Options | Formulas | Prower Options | Maced Options | Additional input

‘well Formad? Clear
Assumptians:

McKenzie's absorption 4-basis (self-dual, independent) for
Lattice Theory (LT).

Prover9 should produce a proof in a few seconds,

xviy”(x"z))=x # label(McKenzie 1).
x " (yvixvz)) =x # label(McKenzie 2],
((y " x) v (x~2)) vx=x # label(McKenzie 3),
([{lyvx) " [xwz)) " Xx=1x # label[Hchnzie_ﬂ}.

‘el Formed? Clear
Goals: =

fx=y) ~z=x" [y~ =2 # label(assoc meet) .

Shaw Current Input |

Proof Search

?stca}’ ?

Tirne Limit: seconds

Resume Kil |
State: Paused

Infa

Madel

FEXAME earch

Mace4

Tima Limit: seconds

Resuma kil |

State: Paused

Infe

ano Sera Mathematical Logics

Prover9 GUI

1 PIBVETSIMECET] Ll =t)|

Ble Preferences Wew Help

Language Options | Farmulas | Proverd Options | Maced Options | Additional input

?Y&Y@Y? Inference Rules

Irdinary Fules General Rastrictions

3 arch
binary_resolution: [] il:ma | ?Y Y?
Hasic Optisna Y. literal_selection: | max_negative | 3 W&’

neg_binary_resalution: []

Show Current Input

@ all options

ear PeabIt A Reanlition Restrictlans Time Limit: seconds
: ordered_res: 3 ESUMe |
pos_hyper_resolution: [Lras: @ Resume |
S I check_res_instances: [f
Tarm Ordering neg_hyper_resolution: [7] rr—
inftial_nucl r o
imits ur_resolution: [= - State: Paused
w @l o ok
Search Prep pes_ur_resolution: [7] Ll Al 1 Info

neg_L

_resolution:]

n Bestrictions

paramedulation: [ardered_para: &

chack_para_instances:

Othar Rulas
new_constants: |0 para_from_vars: i Time Limit: seconds
I X para_units_onhy;
tustorz . Resume k|
para_lit_limit; |-1 !
Reset These to Defaults State: Paused
Other Options
Info

Feset All to Defauls

Prover9’s Proof Method

@ The primary mode of inference used by Prover9 is resolution.
It repeatedly makes resolution inferences with the aim of
detecting inconsistency

@ Prover9 will first do some preprocessing on the input file to
convert it into the form it uses for inferencing.
@ First it negates the formula given as a goal
@ It then translates all formulae into clausal form.
© In some cases it will do some further pre-processing, (but you do
not need to worry about this)

@ Then it will compute inferences and by default write these
standard output. Unless the input is very simple it will often
generate a large number of inferences.

o If it detects an inconsistency it will stop and print out a proof
consisting of the sequence of resolution rules that generated
the inconsistency.

@ It will also print out various statistics associated with the
proof.

Luciano Serafini Mathematical Logics

Simple example

Example (Reasoning in proposition logic)

Check if pAs,p D q,g D r=rVtholds

Prover9 simple input file

formulas (assumptions) .

p & s. % "&" symbol is for conjunction "and"
p > q. % "->" symbol is for implication "implies"
q->r.

end_of_list.

formulas(goals) .
r | t. % "|" symbol is for distunction "or"
end_of_list.

Luciano Serafini Mathematical Logics

Output of Prover9

prooftrans
Prover9 (32) version Dec-2007, Dec 2007.
Process 71916 was started by luciano on coccobill.local,

Fri Nov 22 11:36:46 2013

The command was "/Users/luciano/Applications/Prover9-Mace4-v05B.app/Contents/Resources/bin-mac-intel/prov
end of head

end of input

PROOF

———————— Comments from original proof --------
Proof 1 at 0.00 (+ 0.00) seconds.

Length of proof is 11.

Level of proof is 3.

% Maximum clause weight is 2.

% Given clauses 5.

p & s # label(non_clause). [assumption].
p -> q # label(non_clause). [assumption].
q -> r # label(non_clause). [assumption].
r
p-

t # label(non_clause) # label(goal). [goall.
[clausify(1)].

-p | q. [clausify(2)].

-q | r. [clausify(3)].

9 -r. [deny(4)].

11 q. [ur(7,a,5,a)].

12 -q. [resolve(9,2,8,b)].

13 $F. [resolve(12,a,11,a)].

1
2
3
4
5
7
8

end of proof

Luciano Sera Mathematical Logics

A slightly more complex example using quantifiers

Example (Transitivity of subset relation)

Show that the containment relation between sets is transitive. l.e.,
For any set A, B, and C

ACBABCC—-ACC

Where A C B is defined as Vx(x € A — x € B)

Prover9 input file

formulas (assumptions) .
all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))|.
end_of_list.

formulas(goals) .
all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.

Luciano Serafini Mathematical Logics

Output of Prover9

prooftrans
Prover9 (32) version Dec-2007, Dec 2007.
Process 71873 was started by luciano on coccobill.local,

Fri Nov 22 11:32:23 2013

The command was "/Users/luciano/Applications/Prover9-Mace4-v05B.app/Contents/Resources/bin-mac-intel/prov
end of head

end of input

PROOF

———————— Comments from original proof --------
Proof 1 at 0.00 (+ 0.00) seconds.

Length of proof is 14.

Level of proof is 4.

% Maximum clause weight is 6.

% Given clauses 6.

1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]
2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goa
3 subset(x,y) | member(fi(x,y),x). [clausify(1)].

4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)].

5 subset(x,y) | -member(f1(x,y),y). [clausify(1)].

6 subset(cl,c2). [deny(2)].

7 subset(c2,c3). [deny(2)].

8 -subset(cl,c3). [deny(2)].

11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)].

12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)].

13 member (f1(c1,c3),cl). [resolve(8,a,3,a)].

14 -member (£f1(c1,c3),c3). [resolve(8,a,5,a)].

15 member (f1(c1,c3),c2). [resolve(13,a,11,a)].

18 $F. [ur(12,b,14,a),unit_del(a,15)].

Luciano Sera Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

@ Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them.

@ Also there are some grains, and grains are plants.
@ Every animal either likes to eat all plants or all animals much
smaller than itself that like to eat some plants.

@ Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which are in turn much smaller than
wolves.

@ Wolves do not like to eat foxes or grains, while birds like to
eat caterpillars but not snails.
o Caterpillars and snails like to eat some plants.

@ Prove there is an animal that likes to eat a grain-eating
animal. (where a grain eating animal is one that eats all
grains)

4

Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

@ Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them.

Vx.(Wolf (x) V Fox(x) V Bird(x) V
Caterpillar(x) V Snail(x) D animal(x))

Ix. Worlf (x) A Ix.Fox(x) A Ix.Bird(x) A
Ix. Caterpillar(x) A 3x.Snail(x)

@ Also there are some grains, and grains are plants.

dx.Grain(x) A Vx.(Grain(x) D Plant(x))

Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

@ Every animal either likes to eat all plants or all animals, much
smaller than itself that like to eat some plants.

Vx.(Animal(x) D (Vy.(Plant(y) D Eats(x,y)) V
Vz.(Animal(z) A Smaller(z, x) A
(Ju(plant(u) A eats(z, u))) D
Eats(x, z))))

@ Caterpillars and snails are much smaller than birds, which are much
smaller than foxes, which are in turn much smaller than wolves.

VxVy(Caterpillar(x) A Bird(y) D Smaller(x, y
VxVy(Snail(x) A Bird(y) D Smaller(x,y
VxVy(Bird(x) A Fox(y) D Smaller(x,y
VxVy(Fox(x) A Wolf(y) D Smaller(x, y

¥))
)
)
)

Y

<

Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

@ Wolves do not like to eat foxes or grains, while birds like to eat
caterpillars but not snails.

VxVy.(Wolf (x) A (Fox(y) V Grain(y)) — —Eatis(x, y)
VxVy.(Bird(x) A Caterpillar(y) D eats(x,y))
VxVy.(Bird(x) A Snail(y) D —eats(x, y))

@ Caterpillars and snails like to eat some plants.

Vx(Caterpillar(x) V Snail(x) D 3y(Plant(y) A Eats(x, y)))

@ Prove there is an animal that likes to eat a grain-eating animal.
(where a grain eating animal is one that eats all grains)

Axy.(Animal(x) A Animal(y) A Eats(x,y) A
(Vz.(Grain(z) D Eats(y, z)))

Luciano Serafini Mathematical Logics

Prover9 input file 1/2

formulas(assumptions) .

(wolf(x) -> animal(x)).
(fox(x) -> animal(x)).
(bird(x) -> animal(x)).
(caterpillar(x) -> animal(x)).
(snail(x) -> animal(x)).
(grain(x) -> plant(x)).

all x
all
all
all
all
all

HoM M XM

exists
exists
exists
exists
exists
exists

all x (animal(x) -> (all y (plant(y) -> eats(x,y)))

X
X
X
X
X
X

wolf(x).
fox(x).
bird(x) .
caterpillar(x).
snail(x).
grain(x) .

(all z (animal(z) & smaller(z,x) &
(exists u (plant(u) & eats(z,u)))

->

eats(x,z)))).

Luciano Serafini

Mathematical Logics

Prover9 input file 2/2

all
all
all
all
all

all
all

all
all
all

end_

HoM MMM

X
X
X

all y (caterpillar(x) & bird(y) -> smaller(x,y)).
all y (snail(x) & bird(y) -> smaller(x,y)).

all y (bird(x) & fox(y) -> smaller(x,y)).

all y (fox(x) & wolf(y) -> smaller(x,y)).

all y (bird(x) & caterpillar(y) -> eats(x,y)).

(caterpillar(x) -> (exists y (plant(y) & eats(x,y)))).
(snail(x) -> (exists y (plant(y) & eats(x,y)))).

all y (wolf(x) & fox(y) -> -eats(x,y)).
all y (wolf(x) & grain(y) -> -eats(x,y)).
all y (bird(x) & snail(y) -> -eats(x,y)).

of _list.

formulas(goals).
exists x exists y (animal(x) & animal(y) & eats(x,y) &

(all z (Grain(z) -> eats(y,z)))).

end_of_list.

Luciano Serafini Mathematical Logics

Exercize (A Murder Mystery Problem)

Translate the following sentences into FOL

© Someone who lives in Dreadbury Mansion killed Aunt Agatha.

@ Agatha, the butler, and Charles live in Dreadbury Mansion, and are
the only people who live therein.

© A killer always hates his victim, and is never richer than his victim.
@ Charles hates no one that Aunt Agatha hates.
@ Agatha hates everyone except the butler.
@ The butler hates everyone not richer than Aunt Agatha.
@ The butler hates everyone Aunt Agatha hates.
@ No one hates everyone.
@ Agatha is not the butler.
Now use the Prover9 to show

© prover to deduce who killed Aunt Agatha. (Hint: try for each of the
possibilities).

Luciano Serafini Mathematical Logics

Exercize (A Murder Mystery Problem)

Translate the following sentences into FOL

@ Someone who lives in Dreadbury Mansion killed Aunt Agatha.
exists x (livesin(x,DM) & kills(x,Agatha)).

e Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only
people who live therein.

livesin(Agatha,DM) & lives(Thebutler,DM) & lives(Charles,DM).
all x (livesin(x,DM) <-> x=Agatha | x=Thebutler | x=Charles).

A killer always hates his victim, and is never richer than his victim.
all x all y (kills(x,y) -> hates(x,y) & -richer(x,y)).

Charles hates no one that Aunt Agatha hates.
all x all y (hates(Agatha,y) -> -hates(Charles,y)).

Agatha hates everyone except the butler.
all x (hates(Agatha,x) <-> -x=Thebutler & -x=Agatha).

The butler hates everyone not richer than Aunt Agatha.
all x all y (richer(x,Agatha) -> hates(Thebutler,x)).

The butler hates everyone Aunt Agatha hates.
all x (hates(Agatha,x) -> hates(Thebutler,x)).

No one hates everyone. all x exists y -hates(x,y).
Agatha is not the butler. ~Agatha = Thebutler.
who killed Aunt Agatha?

600 ©0 0 0 © ©

v

Luciano Serafini Mathematical Logics

Model generation - Mace4

@ Prover9 tries to show that I' = ¢ by making attempts to show
that the set of formulas ' U {—¢} is not satisfiable.

@ If Prover9 succeeds ok in showing that ' U {—¢} is not
satisfiable, then clearly ' = ¢.

@ But what about if Prover9 fails in showing that ' U {—¢} is
not satisfiable? i.e., when ' U {—¢} is satisfiable?

@ Can we have a model for ' U {—¢}?

Yes, we have to use Mace4.

Luciano Serafini Mathematical Logics

@ Maced is a program that searches for finite models of
first-order formulas.

@ For a given domain size, all instances of the formulas over the
domain are constructed. The result is a set of ground clauses
with equality.

@ Then, a decision procedure based on ground equational
rewriting is applied. If satisfiability is detected, one or more
models are printed.

Luciano Serafini Mathematical Logics

Maced4 — example

Input file:

arc(x,y) -> node(x) & node(y).

exists x1 exists x2 exists x3 (color(xl) & color(x2) & color(x3) &
x1 !=x2 & x2 '= x3 & x1 !'= x3).

color(xl) & color(x2) & color(x3) & color(x4) ->
x1=x2 | x1=x3 | x1=x4 | x2=x3 | x2=x4 | x3=x4.

hascolor(x,y) -> node(x) & color(y).

color(x) -> -node(x).

color(x) | node(x).

node(x) -> exists y hascolor(x,y).

hascolor(x,yl) & hascolor(x,y2) -> yl=y2.

N1 != N2 & N1 != N3 & N1 != N4 & N2 !'= N3 & N2 != N4 & N3 != N4.

arc(N1,N2).

arc(N2,N3).

arc(N3,N1).

arc(N1,N4).

arc(N2,N4).

% arc(N3,N4).

arc(x,y) -> arc(y,x)

-arc(x,x).

arc(x,y) & hascolor(x,z) -> -hascolor(y,z).

Luciano Serafini Mathematical Logics

Maced4 — example

Produced model:

interpretation(7, [number

function(N1, [0]),
function(N2, [1]),
function(N3, [2]),
function(N4, [3]),

function(f1(_), [4,5,6,6,0,0,0]),
relation(color(_), [0,0,0,0,1,1,1]),
relation(node(_), [1,1,1,1,0,0,0]),
relation(arc(_,_), [

0,1,1,1,0,0,0,

1,seconds = 0], [
function(cl, [4]),
function(c2, [5]),
function(c3, [6]),

relation(hascolor(_,_), [

0,0,0,0,1,0,0,

Luciano Serafini Mathematical Logics

