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Sets: Basic Concepts

The concept of set is considered a primitive concept in math

A set is a collection of elements whose description must be
unambiguous and unique: it must be possible to decide
whether an element belongs to the set or not.

Examples:
the students in this classroom
the points in a straight line
the cards in a playing pack

are all sets, while

students that hates math
amusing books

are not sets.
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Describing Sets

In set theory there are several description methods:

Listing: the set is described listing all its elements
Example: A = {a, e, i , o, u}.

Abstraction: the set is described through a property of its
elements
Example: A = {x | x is a vowel of the Latin alphabet }.

Eulero-Venn Diagrams: graphical representation that supports
the formal description

Chiara Ghidini Mathematical Logic



Outline
Set Theory
Relations
Functions

Basic Concepts
Operations on Sets
Operation Properties

Sets: Basic Concepts (2)

Empty Set: ∅, is the set containing no elements;

Membership: a ∈ A, element a belongs to the set A;

Non membership: a /∈ A, element a doesn’t belong to the set
A;

Equality: A = B, iff the sets A and B contain the same
elements;

inequality: A 6= B, iff it is not the case that A = B;

Subset: A ⊆ B, iff all elements in A belong to B too;

Proper subset: A ⊂ B, iff A ⊆ B and A 6= B.
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Power set

We define the power set of a set A, denoted with P(A), as the
set containing all the subsets of A.

Example: if A = {a, b, c}, then
P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, }

If A has n elements, then its power set P(A) contains 2n

elements.

Exercise: prove it!!!
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Operations on Sets

Union: given two sets A and B we define the union of A and
B as the set containing the elements belonging to A or to B
or to both of them, and we denote it with A ∪ B.

Example: if A = {a, b, c}, B = {a, d , e} then
A ∪ B = {a, b, c , d , e}

Intersection: given two sets A and B we define the
intersection of A and B as the set containing the elements
that belongs both to A and B, and we denote it with A ∩ B.

Example: if A = {a, b, c}, B = {a, d , e} then
A ∩ B = {a}
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Operations on Sets (2)

Difference: given two sets A and B we define the difference of
A and B as the set containing all the elements which are
members of A, but not members of B, and denote it with
A− B.

Example: if A = {a, b, c}, B = {a, d , e} then
A− B = {b, c}

Complement: given a universal set U and a set A, where
A ⊆ U, we define the complement of A in U ,denoted with A
(or CUA), as the set containing all the elements in U not
belonging to A.

Example: if U is the set of natural numbers and A is the set
of even numbers (0 included), then the complement of A in U
is the set of odd numbers.
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Sets: Examples

Examples:

Given A = {a, e, i , o, {u}} and B = {i , o, u}, consider the
following statements:

1 B ∈ A NO!

2 (B − {i , o}) ∈ A OK

3 {a} ∪ {i} ⊂ A OK

4 {u} ⊂ A NO!

5 {{u}} ⊂ A OK

6 B − A = ∅ NO! B − A = {u}

7 i ∈ A ∩ B OK

8 {i , o} = A ∩ B OK
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Sets: Exercises

Exercises:

Given A = {t, z} and B = {v , z , t} consider the following
statements:

1 A ∈ B
2 A ⊂ B
3 z ∈ A ∩ B
4 v ⊂ B
5 {v} ⊂ B
6 v ∈ A− B

Given A = {a, b, c , d} and B = {c , d , f }
find a set X s.t. A ∪ B = B ∪ X ; is this set unique?
there exists a set Y s.t. A ∪ Y = B ?
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Sets: Exercises (2)

Exercises:

Given A = {0, 2, 4, 6, 8, 10}, B = {0, 1, 2, 3, 4, 5, 6} and
C = {4, 5, 6, 7, 8, 9, 10}, compute:

A ∩ B ∩ C , A ∪ (B ∩ C), A− (B − C)
(A ∪ B) ∩ C , (A− B)− C , A ∩ (B − C)

Describe 3 sets A,B,C s.t. A ∩ (B ∪ C ) 6= (A ∩ B) ∪ C
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Sets: Operation Properties

A ∩ A = A,
A ∪ A = A

A ∩ B = B ∩ A,
A ∪ B = B ∪ A (commutative)

A ∩ ∅ = ∅,
A ∪ ∅ = A

(A ∩ B) ∩ C = A ∩ (B ∩ C ),
(A ∪ B) ∪ C = A ∪ (B ∪ C ) (associative)
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Sets: Operation Properties(2)

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ),
A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
(distributive)

A ∩ B = A ∪ B,
A ∪ B = A ∩ B (De Morgan laws)

Exercise: Prove the validity of all the properties.
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Cartesian Product

Given two sets A and B, we define the Cartesian product of A
and B as the set of ordered couples (a, b) where a ∈ A and
b ∈ B; formally,
A× B = {(a, b) : a ∈ A and b ∈ B}

Notice that: A× B 6= B × A
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Cartesian Product (2)

Examples:
given A = {1, 2, 3} and B = {a, b}, then
A× B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} and
B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.
Cartesian coordinates of the points in a plane are an example
of the Cartesian product <× <

The Cartesian product can be computed on any number n of
sets A1,A2 . . . ,An, A1 × A2 × . . .× An is the set of ordered
n-tuple (x1, . . . , xn) where xi ∈ Ai for each i = 1 . . . n.
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Relations

A relation R from the set A to the set B is a subset of the
Cartesian product of A and B: R ⊆ A× B; if (x , y) ∈ R, then
we will write xRy for ’x is R-related to y ’.

A binary relation on a set A is a subset R ⊆ A× A

Examples:
given A = {1, 2, 3, 4}, B = {a, b, d , e, r , t} and aRb iff in the
Italian name of a there is the letter b, then
R = {(2, d), (2, e), (3, e), (3, r), (3, t), (4, a), (4, r), (4, t)}
given A = {3, 5, 7}, B = {2, 4, 6, 8, 10, 12} and aRb iff a is a
divisor of b, then
R = {(3, 6), (3, 12), (5, 10)}

Exercise: in prev example, let aRb iff a + b is an even number
R = ?
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Relations (2)

Given a relation R from A to B,

the domain of R is the set Dom(R) = {a ∈ A | there exists a
b ∈ B, aRb}
the co-domain of R is the set Cod(R) = {b ∈ B | there exists
an a ∈ A, aRb}

Let R be a relation from A to B. The inverse relation of R is
the relation R−1 ⊆ B × A where
R−1 = {(b, a) | (a, b) ∈ R}
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Relation properties

Let R be a binary relation on A. R is

reflexive iff aRa for all a ∈ A;

symmetric iff aRb implies bRa for all a, b ∈ A;

transitive iff aRb and bRc imply aRc for all a, b, c ∈ A;

anti-symmetric iff aRb and bRa imply a = b for all a, b ∈ A;
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Equivalence Relation

Let R be a binary relation on a set A. R is an equivalence
relation iff it satisfies all the following properties:

reflexive

symmetric

transitive

an equivalence relation is usually denoted with ∼ or ≡
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Set Partition

Let A be a set, a partition of A is a family F of non-empty
subsets of A s.t.:

the subsets are pairwise disjoint

the union of all the subsets is the set A

Notice that: each element of A belongs to exactly one subset
in F .
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Equivalence Classes

Let A be a set and ≡ an equivalence relation on A, given an
x ∈ A we define equivalence class X the set of elements
x ′ ∈ A s.t. x ′ ≡ x , formally
X = {x ′ | x ′ ≡ x}

Notice that: any element x is sufficient to obtain the
equivalence class X , which is denoted also with [x ]

x ≡ x ′ implies [x ] = [x ′] = X

We define quotient set of A with respect to an equivalence
relation ≡ as the set of equivalence classes defined by ≡ on A,
and denote it with A/ ≡
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Equivalence Classes (2)

Theorem: Given an equivalence relation ≡ on A, the
equivalence classes defined by ≡ on A are a partition of A.
Similarly, given a partition on A, the relation R defined as
xRx ′ iff x and x ′ belong to the same subset, is an equivalence
relation on A.
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Equivalence classes (3)

Example: Parallelism relation.
Two straight lines in a plane are parallel if they do not have
any point in common or if they coincide.

The parallelism relation || is an equivalence relation since it is:

reflexive r ||r
symmetric r ||s implies s||r
transitive r ||s and s||t imply r ||t

We can thus obtain a partition in equivalence classes:
intuitively, each class represent a direction in the plane.

Chiara Ghidini Mathematical Logic



Outline
Set Theory
Relations
Functions

Properties
Equivalence Relation

Order Relation

Let A be a set and R be a binary relation on A. R is an order
(partial) , usually denoted with ≤, if it satisfies the following
properties:

reflexive a ≤ a
anti-symmetric a ≤ b and b ≤ a imply a = b
transitive a ≤ b and b ≤ c imply a ≤ c

If the relation holds for all a, b ∈ A then it is a total order

A relation is a strict order, denoted with <, if it satisfies the
following properties:

transitive a < b and b < c imply a < c
for all a, b ∈ A either a < b or b < a or a = b
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Relations : Exercises

Exercises:

Decide whether the following relations R : Z× Z are
symmetric, reflexive and transitive:

R = {(n,m) ∈ Z× Z : n = m}
R = {(n,m) ∈ Z× Z : |n −m| = 5}
R = {(n,m) ∈ Z× Z : n ≥ m}
R = {(n,m) ∈ Z× Z : n mod 5 = m mod 5}
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Relations : Exercises (2)

Exercises:

Let X = {1, 2, 3, . . . , 30, 31}. Consider the relation on X :
xRy if the dates x and y of January 2006 are on the same day
of the week (Monday, Tuesday ..). Is R an equivalence
relation? If this is the case describe its equivalence classes.

Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Consider the following relation on X : xRy iff x + y is an even
number. Is R an equivalence relation? If this is the case
describe its equivalence classes.
Consider the following relation on X : xRy iff x + y is an odd
number. Is R an equivalence relation? If this is the case
describe its equivalence classes.
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Relations : Exercises (3)

Exercises:

Let X be the set of straight-lines in the plane, and let x be a
point in the plane. Are the following relations equivalence
relations? If this is the case describe the equivalence classes.

r ∼ s iff r and s are parallel
r ∼ s iff the distance between r and x is equal to the distance
between s and x
r ∼ s iff r and s are perpendicular
r ∼ s iff the distance between r and x is greater or equal to
the distance between s and x
r ∼ s iff both r and s pass through x
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Relations : Exercises (4)

Exercises:

Let div be a relation on N defined as a div b iff a divides b.
Where a divides b iff there exists an n ∈ N s.t. a ∗ n = b

Is div an equivalence relation?
Is div an order?
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Given two sets A and B, a function f from A to B is a
relation that associates to each element a in A exactly one
element b in B. Denoted with
f : A −→ B

The domain of f is the whole set A; the image of each element
a in A is the element b in B s.t. b = f (a); the co-domain of f
(or image of f ) is a subset of B defined as follows:
Imf = {b ∈ B | there exists an a ∈ A s.t. b = f (a)}

Notice that: it can be the case that the same element in B is
the image of several elements in A.
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Classes of functions

A function f : A −→ B is surjective if each element in B is
image of some elements in A:
for each b ∈ B there exists an a ∈ A s.t. f (a) = b

A function f : A −→ B is injective if distinct elements in A
have distinct images in B:
for each b ∈ Imf there exists a unique a ∈ A s.t. f (a) = b

A function f : A −→ B is bijective if it is injective and
surjective:
for each b ∈ B there exists a unique a ∈ A s.t. f (a) = b
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Inverse Function

If f : A −→ B is bijective we can define its inverse function:
f −1 : B −→ A

For each function f we can define its inverse relation; such a
relation is a function iff f is bijective.

Example:

the inverse relation of f is NOT a function.
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Composed functions

Let f : A −→ B and g : B −→ C be functions. The
composition of f and g is the function g ◦ f : A −→ C
obtained by applying f and then g :
(g ◦ f )(a) = g(f (a)) for each a ∈ A
g ◦ f = {(a, g(f (a)) | a ∈ A)}
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Functions : Exercises

Exercises:
Given A = { students that passed the Logic exam } and
B = {18, 19, .., 29, 30, 30L}, and let f : A −→ B be the
function defined as f (x) = grade of x in Logic. Answer the
following questions:

What is the image of f ?
Is f bijective?

Let A be the set of all people, and let f : A −→ A be the
function defined as f (x) = father of x . Answer the following
questions:

What is the image of f ?
Is f bijective?
Is f invertible?

Let f : N −→ N be the function defined as f (n) = 2n.
What is the image of f ?
Is f bijective?
Is f invertible?
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