SPARQL

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

* Introduction

* Basic query forms
e SELECT
e CONSTRUCT
e ASK
* DESCRIBE

* Other clauses and modifiers

* SPARQL Federated Query

* Exercises

Introduction

SPARQL

What is SPARQL

o Al anguage for e ‘Bn essing l%u(ries to retrieve information from various datasets

represented in RDF [SPARQL Spec.]
® A query language with the capability to search graph patterns [SPARQL Spec.]

Queries
® SPARQL queries typically contain triple graph patterns: subject-property-object

[Comblnlng triple patterns gives a basic graph pattern, where an exact match to a
graph is needed to fulfill a pattern

® RDF terms in each pattern can be substituted with variables

Results
® The results of SPARQL queries can be results sets or RDF graphs

IRIs and URIs

* An URI (Uniform Resource Identifier) includes a subset of the ASCII character
set

* An IRI (Internationalized Resource Identifier) can include UNICODE characters

What is Turtle

® A terse RDF triple language

® A textual syntax for RDF that facilitates writing RDF graphs
® ina compact and natural language text form

® with abbreviations for common usage patterns and datatypes
® compatible with triple pattern syntax of SPARQL (and N-Triples)

Triple lists

® A triple is a sequence of (subject, property, object) terms separated by
whitespace

® Each triple is terminated by dot *.” after each triple

<http: //www.w3.org/ ... /Wcaving/>

<http: //purl_org/dcfe]emems/1 .17/ creator>

<http: // \'\'\\'\\'.\\'3.(,)1‘g/ Pcop]o/ Berners-Lee> .

® In compact form, subsequent triples referring to the same subject are separated
by semicolon ‘;’

<http://www.w3.org/ ... /Weaving>

<http:/ /pur].01‘g/d(:7clcmcnts/ 1.1/creator>

<http:/ /www.w3.org/People/Berners-Lee> ;

<http: / /purl.()rg/dc/clcmcnts/ 1.1/title> "\Vcaving the Web". °

Datasets in Turtle syn

RDF DATASET

|
I 1
NEW { (a Imx IRI
GRAPH -

@prefix rdf: <http://www .\\'i()l'g/1‘)‘)‘)/()2/224'(“!\"\'111.1&—115#/\/ .

EXTERNAL (@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

NAMED
GRAPHS

(@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rel: <http://www .perceive.net/schemas/relationship/> .

RELATIVE (to the current dataset) IRI

]'L‘]:(‘HL‘]H) ()1 <#S])i(lt‘l']]1dl]@\ RELATIVE STATEMENT

; # in the context of the Marvel universe

foal :nam LITERAL

<#>l)i<h,‘rmnn>

a foaf:Person ; #

rel:enemyOf <#g¢

reen-goblin> ;

a foaf:Person ;

’ LANGUAGE TAG
foaf:name "Spiderman", "L-|e}'IOBeK—I'1ayK” e

Datasets in Turtle syntax

(@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Tim Berners-Lee"

BLANK \

NODE _:a foaf:homepage <http://www.w3.org/People/Berners-Lee/> .
_:b foaf:name "Fausto Giunchiglia"

BLANK o : ;

NODE _:b foaf:homepage <http://disi.unitn.it/ ~fausto/>

_:b foaf:age 54 .

SPARQL Query
PRFFIX foaf: <http://xmlns.com/foaf/0.1/>

CLAUSE ’\
WHERE

TRIPLE PATTERN

VARIABLE TERM
STO Giunchiglia"

BASIC GRAPH
PATTERN

TYPED LITERAL

Example of SPARQL query

Retrieve all classes from the RDF data

PREFIX rdf: <http://www.w3.0org/1999/02 /ZZfrdf—s'VntaX—ns#>
PREFIX rdfs: <http://www.w3.0org/2000/01 /rdf-schema#t>
SELECT 7c

WHERE

{

?c rdf:type rdfs: Class .

Here the basic graph pattern is constituted by one triple pattern where:
-the subject is given by the variable ?c

-the property is rdf:type

-the object is rdfs: Class

Example of SPARQL query (Il)

Retrieve all instances of the class “course”

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX uni: <http://www.my domain.org/unifns#>

SELECT ?c

WHERE

f
L

?c rdf:type uni:course .

Here the basic graph pattern is constituted by one triple pattern where:

-the subject is given by the variable ?c

-the property is rdf:type

-the object is uni:course °

Basic query forms

SPARQL has four query forms. These query forms use the solutions from
pattern matching to form result sets or RDF graphs. The query forms are:

SELECT

Returns all, or a subset of, the variables bound in a query pattern match

CONSTRUCT
Returns an RDF graph constructed by substituting variables in a set of triple templates

ASK

Returns a boolean indicating whether a query pattern matches or not

DESCRIBE
Returns an RDF graph that describes the resources found

SELECT

SELECT specifies the projection: the number and order of retrieved data
FROM is used to specify the source being queried (optional)

WHERE imposes constraints on solutions in form of graph pattern templates and boolean constraints

Data

Query Result

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title .
title
FROM <http://example.org/book/>
" 5 n
WHERE { :paper1 dc:title ?title . } The Semantic Web

SELECT (multiple matches)

Data

Query Result
PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

name homepage
SELECT ?name ?h()mvpagv

<http://www.w3.org/People/

WHERE { ?x foaf:name ?name . Tim Berners-Lee Berners-Lee/>
?x foaf:homepage homepage . } Fausto
pag page -) . <http://disi.unitn.it/~fausto/>
Giunchiglia

SELECT (multiple variables)

The SELECT returns a result set.

Data Query

PREFIX dc:
<http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT 1title (2p*(1-2discount) AS ?price)
WHERE

{ 7x ns:price 7p .
x de:title ?title .

7x ns:discount ?discount

Result

title price

"The Semantic Web" 17.25
"SPARQL Tutorial" 33.6 e

(Implicit join) Retrieve all lecturers and their phone numbers:
SELECT ?x 7y
WHERE

S
l

?x rdf:type uni:Lecturer .
?x uni:phone ?y .

1
f

(Explicit join) Retrieve the name of all courses taught by the lecturer with ID 949352
SELECT ?n
WHERE
{
7x rdf:type uni:Course .
7x uni:isTaughtBy :949352 .
‘cuni:name ’n .

FILTER (?c = ?x) .

CONSTRUCT

* The CONSTRUCT query form returns a single RDF graph specified by a graph
template.

* Triples in the graph: The result is an RDF graph formed by taking each query
solution in the solution sequence, substituting for the variables in the graph template,
and combining the triples into a single RDF graph by set union.

* Unbound variables: If any such instantiation produces a triple containing an unbound
variable or an illegal RDF construct, such as a literal in subject or predicate position,
then that triple is not included in the output RDF graph.

* Ground triples: The graph template can contain triples with no variables (known as

ground or explicit triples), and these also appear in the output RDF graph returned by
the CONSTRUCT query form.

CONSTRUCT

Data

Query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.04>
CONSTRUCT { <http://example.org/person#Alice> veard:FN zname }
WHERE {<http://example.org/person#Alice> foaf:name name }

Result

It creates veard properties from the FOAF information:

ASK

* Applications can use the ASK form to test whether or not a query pattern has a solution.

* No information is returned about the possible query solutions, just whether or not a
solution exists.

Data

Query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" }
1 f

Result

DESCRIBE

* The DESCRIBE form returns a single result RDF graph containing RDF data about
resources.

* The query pattern is used to create a result set.

* The DESCRIBE form takes each of the resources identified in a solution, together with
any resources directly named by an IRI (Internationalized Resource Identifier, written in
UNICODE), and assembles a single RDF graph by taking a "description" which can come
from any information available including t%fe target RDFgDataset.

* The description is determined by the query service.

* The syntax DESCRIBE * is an abbreviation that describes all of the variables in a query.

Query 1
DESCRIBE <http://example.org/>

Query 2

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x

WHERE { ?x foaf:name "Alice" }

DESCRIBE

Query
PREFIX ent: <http: //()rg.oxam])lc.L‘()m/vmpl()}'cvs#>
DESCRIBE ?x WHERE { ?x ent:employeeld "1234" }

Result

Other clauses and
modifiers

FILTER: term restriction

FILTER specifies how solutions are restricted to those RDF terms which match with the filter expression

Data

Query Result
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?author author
WHERE { ?x dc:creator 7author . "Tim Berners-Lee"

« v

FILTER rrgcx(?nullmr, “tim®, 7). }

FILTER: term restriction

Data

Query Result
PREFIX dc: <http://purl.org/dc/clements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
author Age
SELECT ?author ?age
n
WHERE { ?x dc:creator 7author . Fausto 54
e e Giunchiglia"
?x foaf:age 7age .

FILTER (7age > 53) |

OPTIONAL

OPTIONAL allows binding variables to RDF terms to be included in the solution in case of

availability
Data
Query Result
PREFIX dc: <http://purl.org/dc/elements/1.1/> author Age
PREFIX foaf: <http://xmlns.com/foaf/0.1/> . — -
Tim Berners-Lee 53
SELECT ?author ?age
- "Fausto
WHERE { ?x dc:creator ?author . Giunchiglia"
OPTIONAL {?x foaf:age ?age} | e

ORDER BY

ORDER BY is a facility to order a solution sequence

Data

Query Result
PREFIX dc: <http://purl.org/dc/eclements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/> . author
SELECT rauthor

"Tim Berners-Lee"

WHERE { ?x dc:creator ?author .
"
- Fausto
?x foaf:age ‘age |) .
N Giunchiglia

ORDER BY Zauthor DESC (7age)

DISTINCT modified

The DISTINCT solution modifier eliminates duplicate solutions. Only one solution that binds the
same variables to the same RDF terms is returned from the query.

Data
Query Result
PREFIX dc: <http://purl.org/dc/elements/1.1/>

creator
SELECT DISTINCT ?creator

"Fausto

WHERE { ?x dc:creator ?creator}

Giunchiglia" e

REDUCED modifier

While the DISTINCT modifier ensures that duplicate solutions are eliminated from the solution set,
REDUCED simply permits them to be eliminated. The cardinality of the elements in the solution set
is at least one and no more than the cardinality without removing duplicates.

Data
Result
Query
PREFIX dc: <http: //pur].()rg/d(:/L*]vmvnrs/ 1.1/> creator
SELECT REDUCED ?creator "Fausto
) Giunchiglia"
WHERE { ?x dc:creator ?creator}
"Fausto
Giunchiglia" @

OFFSET

The OFFSET clause causes the solutions generated to start after the specified number of solutions.
An OFFSET of zero has no effect.

Data

Query Result
PREFIX dc: <http://purl.org/dc/elements/1.1/>

auhor
SELECT ?author

"Tim Berners-Lee"

WHERE { ?x dc:creator 7author }

ORDER BY 7author OFFSET 1 e

LIMIT

The LIMIT clause puts an upper bound on the number of solutions returned. If the number of actual
solutions, after OFFSET is applied, is greater than the limit, then at most the limit number of
solutions will be returned. A LIMIT of 0 would cause no results to be returned.

Data

Query Result

PREFIX dc: <http://purl.org/dc/clements/1.1/>

SELECT ?author auhor
WHERE { ?x dc:creator ?author | "Tim Berners-Lee"

ORDER BY 7author LIMIT 1 OFFSET 1 e

SPARQL Federated
Query

SPARQL Federated Query

SPARQL endpoints

* Each endpoint typically contains one (unnamed) slot holding a default graph and zero or
more named slots holding named graphs

SPARQL Federated query can be used to issue queries across different data
sources if?

* data is stored natively as RDF or data is viewed as RDF via middleware

* queries are executed over different SPARQL endpoints

The SERVICE keyword

* allows the author of a query to direct a portion of the query to a particular SPARQL
endpoint

* supports merge and joins of SPARQL queries over data distributed across the Web

Example: query to a remote SPARQL endpoints

Remote http://people.example.org/sparql endpoint:

Local FOAF file http://example.org/myfoaf.rdf:

Query: “find the names of the people I know” Result
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

name
SELECT ?name

n H n
FROM <http://example.org/myfoaf.rdf> Alice

WHERE { <http://example.org/myfoat/I> foaf:knows ?person .

SERVICE <http://people.example.org/sparql> { ?person foaf:name ?name . } } a

Example: query to two remote SPARQL endpoint

http://people.example.org/sparql: http://people2.example.org/sparql:

Query: find information of the people I know. Result
PREFIX foaf: <http://xmlns.com/foaf/0.1/> person T known
SELECT ?person ?interest 2known
WHERE { "Alice"
SERVICE <http://people.example.org/sparql> { "Bob"

?person foaf:name name .
I <http://www.w3.or

OPTIONAL { ?person foaf:interest ?interest . "Charles" | g/2001/sw/rdb2rdf/ <http://exampl
SERVICE <http://people2.example.org/sparql> { N

{ e.org/peoplel

?person foaf:knows zknown . } |

Exercises

You can try the queries here: http://www.sparql.org/query.html

Exercise |

Suppose that an RDF model represents information about real world
entities of unknown types. The entities can be persons, locations,

books, monuments, organizations, etc.

(i) Write a SPARQL query to return all possible information about all

kinds of entities.

(i) Write a SPARQL query that can return at most 5 triples

representing information

Solution |

(
i SELECT 7x 2y 7z
) WHERE

{x?yrz}

SELECT 7x 7y 7z

WHERE
{x?ytz}
LIMIT 5

~ e e~

Exercise 2

Given that an RDF model represents information about books and the

model is created using standard vocabularies:

i. Write a SPARQL query that can return the authors of the books.

Note that books can be represented as URIs.

ii. Write a SPARQL query that can return the titles and authors of the

books.

iii. Write a SPARQL query that can return the titles and the date of

publication of the books.

i PREFIX dc: <http://purl.org/dc/elements/1.1/>
) SELECT ?author
WHERE

{ ?book dc:creator ?author }

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?bookTitle ?author
WHERE
{ ?book dc:creator ?author.
book dc:title ?bookTitle }

~ e e~

(iii

) PREFIX dc: <http:/ /purl.org/dc/clcmcnts/ 1.1/>
SELECT ?bookTitle ?dateOfPublication
WHERE

{ ?book dc:date ?dateOfPublication.
book dc:title ?bookTitle }

Exercise 3

Given that an RDF model represents information about books and the

model is created using standard vocabularies:

i. Write a SPARQL query that returns the authors and publishers of

the books for which publisher information is available.

ii. Write a SPARQL query that returns the authors and publishers of

the books for which publisher might or might not be (or optionally)

available.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT?author ?publishingHouse
WHERE
{ ?book dc:creator 7author.
?book dc:title ?bookTitle.
?book dc:publisher ?publishingHouse }

—

~

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT?author ?publishingHouse
WHERE
{ ?book dc:creator ?author.
?book dc:title ?bookTitle.
OPTIONAL {?book dc:publisher ?publishingHouse . } }

Exercise 4

Given that an RDF model represents information about books and the

model is created using standard vocabularies:

i. Write a SPARQL query that returns the authors of the books in

descending order.

ii. Write a SPARQL query that returns the authors of the books whose

title starts with “Harry Potter”.

iii. Write a SPARQL query that returns the authors of the books whose

title contains the term “deathly” or “Deathly” or similar variations.

(PREFIX dc: <http://purl.org/dc/elements/1.1/>
i SELECT ?bookTitle ?author
) WHERE

{ ?book dc:creator ?author.
book dc:title ?bookTitle. }
ORDER BY DESC (?author)

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?bookTitle 7author
WHERE
{ ?book dc:creator ?author.
?book dc:title ?bookTitle.
FILTER regex(?bookTitle, ““Harry Potter") }

~ e e~

(i PREFIX dc: <http://purl.org/dc/elements/1.1/>
ii SELECT ?bookTitle ?author
) WHERE

{ 7book dc:creator ?author.
?book dc:title ?bookTitle.
FILTER regex(?bookTitle, "deathly", "i") }

Exercise 5

Given that an RDF model represents information about various entities

including books and the model is created using standard vocabularies:

i. Write a SPARQL query that extracts title and author of books and

creates another RDF model that is a subset of the original one.

ii. Write a SPARQL query that extracts title, author and publisher (if

any) of books and creates another RDF model that is a subset of the

original one.

(PREFIX dc: <http://purl.org/dc/elements/1.1/>
i CONSTRUCT {?book dc:creator ?author.
) ?book dc:title ?bookTitle}

WHERE

{ ?book dc:creator 7author.

?book dc:title ?bookTitle. }

d PREFIX dc: <http://purl.org/dc/elements/1.1/>
D CONSTRUCT {?book dc:creator ?author.
?book dc:title ?bookTitle.
?book dc:publisher ?pub }
WHERE

{ ?book dc:creator ?author.
?book dc:title ?bookTitle.

OPTIONAL {?book dc:publisher ?pub} }

References

o SPARQL 1.1 Overview (W3C): http://www.w3.org/TR/2013/REC-spargll1-overview-
20130321/

o SPARQL 1.1 Update (W3C): http://www.w3.org/TR/sparqll1-update/
0 SPARQL Query Language for RDF (W3C): www.w3.org/ TR /rdf-sparql-query/

0 SPARQL 1.1 Query Language (W3C): http://www.w3.org/TR/sparqll 1-query/

o SPARQL 1.1 Federated Query (W3C): http://www.w3.org/TR/spargll I -federated-
query/

o RDF 1.1 Turtle (W3C): http://www.w3.org/TR/turtle/

o FOAF: http://xmlns.com/foaf/spec/

O G. Antoniou & F. van Harmelen (2004). A Semantic Web Primer (Cooperative Information
Systems). MIT Press, Cambridge MA, USA.

o D. Allemang and J. Hendler. Semantic web for the working ontologist: modeling in RDF,
RDFS and OWL. Morgan Kaufmann Elsevier, Amsterdam, NL, 2008.

