
KDI
OWL

Fausto Giunchiglia and Mattia Fumagallli
University of Trento

• Introduction
• The OWL Full Language
• OWL DL and OWL lite

• Exercises

2

Roadmap

Introduction

Chapter 1 3

Ontology languages allow users to write explicit, formal conceptualizations of domain
models (i.e. formal ontologies)

The main requirements are:
• A well-defined formal syntax
• Sufficient expressive power
• Convenience of expression
• Formal semantics
• Support for efficient reasoning
• A good tread-off between expressivity and efficiency

OWL (Web Ontology Language) has been designed to meet these requirements for the
specification of ontologies and to reason about them and their instances

4

Requirements for Ontology Languages

Class membership
If x is an instance of a class C, and C is a subclass of D, then we can infer that x is
an instance of D

Equivalence of classes
If class A is equivalent to class B, and class B is equivalent to class C, then A is
equivalent to C

Disjointness and Consistency
Determine that if the classes A and B are disjoint there cannot be individuals x
which are instances of both A and B. This is an indication of an error in the
ontology.

Classification
Certain property-value pairs are a sufficient conditions for membership in a class
A; if an individual x satisfies such conditions, we can conclude that x must be an
instance of A.

5

Reasoning capabilities required

Range restrictions
We cannot declare range restrictions that apply to some classes only (e.g. cows eat only
plants, while other animals may eat meat too).

Disjointness of classes
We cannot declare that two classes are disjoint (e.g. male and female).

Combinations of classes
We cannot define new classes as union, intersection, and complement of other classes
(e.g. person is the disjoint union of the classes male and female).

Cardinality restrictions
We cannot express restrictions in the number of relations (e.g. a person has exactly two
parents, a course is taught by at least one lecturer)

Meta-properties
Transitive property (e.g. “greater than”)
Unique property (e.g. “is mother of”)
Inverse property (e.g. “eats” and “is eaten by”)

6

Limitations in the expressive power of RDF schema

• Each OWL Lite representation
belongs to OWL DL

• Each OWL DL representation
belongs to OWL Full

• Each valid OWL Lite conclusion is
also valid in OWL DL

• Each valid OWL DL conclusion is
also valid in OWL Full

7

OWL Lite

OWL DL

OWL Full

OWL sub-languages

OWL Lite trades expressivity for efficiency
• The less expressive of all languages (it cannot be used to express enumerated classes,

disjointness, and arbitrary cardinality restrictions)
• It allows assigning simple cardinality constraints of kind 0 or 1
• It allows encoding simple classification hierarchies (e.g., taxonomies and thesauri)
• Partially compatible with RDF

OWL DL is a balance between expressivity and computational completeness
• More expressive than OWL Lite while guarantees decidability
• It allows expressing all DL constructs, some of them with certain restrictions (e.g. the

restriction of not making a class an instance of another class)
• Partially compatible with RDF

OWL Full trades computational completeness for expressivity
• More expressive than OWL DL, maximum expressiveness (e.g., a class can be

represented also as an individual)
• It is computationally very expensive and does not guarantee decidability
• Fully upward-compatible with RDF, both syntactically and semantically

8

OWL sub-languages

The OWL Full language

Chapter 1 9

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XLMSchema#">

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology </rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

</rdf:RDF> 10

HEADER

ONTOLOGY

OWL XML/RDF syntax

Defined using owl:Class that is a subclass of rdfs:Class
owl:Thing is the most general class, which contains everything
owl:Nothing is the empty class

DISJOINT CLASSES owl:disjointWith
<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>
<owl:disjointWith rdf:resource="#assistantProfessor"/>

</owl:Class>

EQUIVALENT CLASSES equivalentClass

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource= "#academicStaffMember"/>

</owl:Class>

11

Classes

Data type properties relate objects to datatype values (ATTRIBUTES)

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource= "http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

Object properties relate objects to other objects (RELATIONS)

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource= "#academicStaffMember"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>
12

Properties

VALUE CONSTRAINT owl:allValuesFrom
A value constraint puts constraints on the range of the property. It corresponds
to universal quantification.

<owl:Class rdf:about="#firstYearCourse">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:allValuesFrom rdf:resource="#Professor"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

13

Property restrictions: a kind of class description (I)

CARDINALITY CONSTRAINT someValuesFrom / owl:hasValue
A cardinality constraint puts constraints on the number of values. It
corresponds to the existential quantification or can indicate a specific value.

<owl:Class rdf:about="#firstYearCourse">
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource="#undergraduateCourse"/>
(or)
<owl:onProperty rdf:resource= "#isTaughtBy"/>
<owl:hasValue rdf:resource= "#949352"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
14

Property restrictions: a kind of class description (I)

owl:maxCardinality

It describes a class of all individuals that have at most N semantically distinct
values (individuals or data values) for the property.
<owl:Restriction>

<owl:onProperty rdf:resource="#hasParent" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">2</owl:maxCardinality>

</owl:Restriction>

owl:minCardinality

It describes a class of all individuals that have at least N semantically distinct
values (individuals or data values) for the property.
<owl:Restriction>

<owl:onProperty rdf:resource="#hasParent" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality>

</owl:Restriction>
15

Cardinality restrictions (I)

owl:cardinality

It describes a class of all individuals that have exactly N semantically distinct
values (individuals or data values) for the property concerned, where N is the
value of the cardinality constraint.

<owl:Restriction>

<owl:onProperty rdf:resource="#hasParent" />

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality>

</owl:Restriction>

This construct is redundant in that it can be replaced by a pair of matching
owl:minCardinality and owl:maxCardinality constraints with the same value.

16

Cardinality restrictions (I)

EQUIVALENCE owl:equivalentProperty
x P y implies x Q y

<owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

NOTE: in RDF we need P rdfs:subPropertyOf Q and Q rdfs:subPropertyOf P

INVERSE owl:inverseOf
x P y implies y Q x

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource= "#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty> 17

Meta-properties (I)

SYMMETRIC owl:SymmetricProperty
x P y implies y P x

<owl:ObjectProperty rdf:ID=“married">

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:range rdf:resource="#person"/>

<rdfs:domain rdf:resource= "#person"/>

</owl:ObjectProperty>

TRANSITIVE owl:TransitiveProperty
x P y and y P z implies x P z

<owl:ObjectProperty rdf:ID=“ancestor">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdfs:range rdf:resource="#person"/>

<rdfs:domain rdf:resource= "#person"/>

</owl:ObjectProperty> 18

Meta-properties (II)

FUNCTIONAL PROPERTY owl:FunctionalProperty
A functional property is a property that can have only one value as range for
any given individual (e.g., hasMother , hasPresident).

INVERSE FUNCTIONAL PROPERTY owl:InverseFunctionalProperty
It defines a property that cannot have the same value as range for any given
individual (e.g., MotherOf , PresidentOf).

19

Functional and inverse functional properties

It allows a class to be defined by exhaustively enumerating its instances. The
class extension of a class described with owl:oneOf contains exactly the
enumerated individuals, no more, no less.

<owl:Class rdf:ID="weekdays">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>
<owl:Thing rdf:about="#Tuesday"/>
<owl:Thing rdf:about="#Wednesday"/>
<owl:Thing rdf:about="#Thursday"/>
<owl:Thing rdf:about="#Friday"/>
<owl:Thing rdf:about="#Saturday"/>
<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>
</owl:Class>

20

Enumerations

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Tosca" />
<owl:Thing rdf:about="#Salome" />

</owl:oneOf>

</owl:Class>
<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Turandot" />
<owl:Thing rdf:about="#Tosca" />

</owl:oneOf>

</owl:Class>
</owl:intersectionOf>

</owl:Class> 21

Intersection

<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Tosca" />
<owl:Thing rdf:about="#Salome" />

</owl:oneOf>

</owl:Class>
<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Turandot" />
<owl:Thing rdf:about="#Tosca" />

</owl:oneOf>

</owl:Class>
</owl:unionOf>

</owl:Class> 22

Union

<owl:Class>

<owl:complementOf>

<owl:Class rdf:about="#Meat"/>

</owl:complementOf>

</owl:Class>

23

Complement

Instances of classes are declared as in RDF:
<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource= "#academicStaffMember"/>
</rdf:Description>
<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">39<uni:age>
</academicStaffMember>

Same instances:
<rdf:Description rdf:about="#William_Jefferson_Clinton">
<owl:sameAs rdf:resource="#BillClinton"/>

</rdf:Description>
Different instances:

<Opera rdf:ID="Nozze_di_Figaro">

<owl:differentFrom rdf:resource="#Don_Giovanni"/>

</Opera>
24

Instances

OWL DL and OWL lite

Chapter 1 25

OWL DL is a sublanguage of OWL which places a number of constraints on the
use of the OWL language constructs which ensure that computational
complexity is the same as corresponding Description Logic.
• Each individual must be an instance of a class, and in particular of owl:Thing
• Pairwise separation between classes, datatypes, datatype properties, object properties,

annotation properties, ontology properties (i.e., the import and versioning stuff),
individuals, data values and the built-in vocabulary. This means that, for example, a class
cannot be at the same time an individual.

• No cardinality constraints can be placed on transitive properties or their inverses or any of
their super-properties.

• It is allowed to use the intersectionOf construct with any number of classes and of any non
negative integer in the cardinality restrictions value fields

26

OWL DL

OWL lite is a sublanguage of OWL DL which places further constraints on the
use of the OWL language constructs which ensure a lower computational
complexity
• Users are allowed to use a subset of the OWL, RDF and RDFS vocabulary
• To define a class, one must use the OWL construct owl:Class
• OWL constructs complementOf, disjointWith, hasValue, oneOf and unionOf are not

allowed
• All three cardinality constructs – cardinality, maxCardinality and minCardinality, can only

have 0 or 1 in their value fields
• equivalentClass and intersectionOf cannot be used in a triple if the subject or object

represents an anonymous class

27

OWL lite

Exercises

Chapter 1 28

Suppose that a family consists of a father (John), a mother (Maria), two

sisters (Sara and Jenifer) and two brothers (David and Robert). In an OWL

representation the two brothers and the two sisters are codified as follows:

:David :hasFather :John
:Sara :hasFather :John
:John :spouseOf :Maria

Later on another property :hasChild is codified.

(i) What will be the output of the following SPARQL Query when a

reasoner is activated?

:John :hasChild ?y

Exercise 1

(ii) Expand the OWL representation in a way that supports returning non-

empty result of the following query and this expansion is independent of

the entity-entity triples.

:John :hasChild ?y
(iii) Add also the following axioms to the dataset.

:Jenifer :hasFather :John
:Robert :hasFather :John

What results the following query will return?
:John :hasChild ?y

(iv) How can we infer the spouse relation in the reverse direction?

Exercise 1 (cont)

The result of the query is empty.(i
)

We can make the property :hasFather as an inverse property of :hasChild
:hasFather owl:inverseOf :hasChild
Query Result:

:David
:Sara

(ii
)

:David
:Sara
:Jenifer
:Robert

(ii
i)

We can make the relation :spouseOf its own inverse as follows:
:spouseOf owl:inverseOf :spouseOf

(i
v)

Solution 1

Within a family, the following relations are applicable in both directions
(from subject to object, and vice versa):

:spouseOf
:marriedTo
:siblingOf

whereas the same those not always apply to the following:
:brotherOf

:sisterOf
(i) Which property holds in the relations that are applicable in both
directions?
(ii) How can we represent these relations in OWL?
(iii) In which basic category this property belongs?

Exercise 2

Symmetric property(i
)

:spouseOf rdf:type owl:SymmetricProperty
:marriedTo rdf:type owl:SymmetricProperty
:siblingOf rdf:type owl:SymmetricProperty

(ii
)

The symmetric property is an object property. Moreover, the domain
and range of the symmetric property are the same (owl:Class)

(ii
i)

Solution 2

Consider that in the family of John and Maria, also John’s father (James)
and mother (Jerry) live. Relations such as :hasAncestor and
:hasDescendent can be applied between different levels. For example:

:John :hasAncestor :James
:Sara :hasAncestor :John
:James :hasDescendent :John
:John :hasDescendent :Sara

(i) Which property holds in the relations that are applicable in different
levels of the hierarchy?
(ii) How can we represent these relations in OWL?
(iii) In which basic category this property belongs?
(iv) Show the results of the following queries:

a) :James :hasDescendent ?y
b) :John :hasAncestor ?y

Exercise 3

Transitive property(i
)

:hasAncestor rdf:type owl:TransitiveProperty
:hasDescendent rdf:type owl:TransitiveProperty

(ii
)

The transitive property is an object property.(ii
i)

a) :John
:Sara

b) :James

(i
v)

Solution 3

(i) In RDFS we can represent that two classes :Test and :Experiment are
equivalent.

:Test rdfs:subClassOf :Experiment
:Experiment rdfs:subClassOf :Test

Convert this representation in OWL.

(ii) In RDFS we can represent that two properties :hasChild and :hasKid
are equivalent.

:hasChild rdfs:subPropertyOf :hasKid
:hasKid rdfs:subPropertyOf :hasChild

Convert this representation in OWL.
(iii) Is there any way to represent the fact that two entities (or individuals)
:Italia and :Il_Bel_Paese are the same?

Exercise 4

:Test owl:equivalentClass :Experiment(i
)

:hasChild owl:equivalentProperty :hasKid(ii
)

:Italia owl:sameAs :Il_Bel_Paese(ii
i)

Solution 4

(i) Which OWL property allows to have exactly one value for a particular
individual?

(ii) The following relations can be defined using the OWL property above.
:hasFather

:hasMother
Represent them in OWL and demonstrate their use with necessary entity-
entity axioms.

Exercise 5

OWL Functional property(i
)

:hasFather rdf:type owl:FunctionalProperty
:hasMother rdf:type owl:FunctionalProperty

Two entity-entity axioms are provided below:
:John :hasFather :James
:John :hasFather :Handler

The objects :James and :Handler are the values of the same subject and
property. We already have defined that :hasFather property is
functional. Therefore, it can be concluded that :James and :Handler
refer to the same person.

(ii
)

Solution 5

(i) Which OWL property allows to have exactly one value for a particular
object?
(ii) Demonstrate the use of such a property in developing applications such
as the detection of possible duplicates.

Exercise 6

OWL Inverse Functional property(i
)

We can encode the property :SSN (social security number) as follows:
:SSN rdf:type owl:InverseFunctionalProperty

Two entity-entity axioms are provided below:
mo:James :SSN N123812834
ps:Handler :SSN N123812834

The subjects :James and :Handler are attached to the same social security
number, which cannot be shared by two different persons. Therefore,
we can conclude that mo:James and ps:Handler are the same entity.

(ii
)

Solution 6

o OWL Web Ontology Language(W3C): http://www.w3.org/TR/2004/REC-owl-ref-
20040210/

o G. Antoniou & F. van Harmelen (2004). A Semantic Web Primer (Cooperative Information
Systems). MIT Press, Cambridge MA, USA.

o D. Allemang and J. Hendler. Semantic web for the working ontologist: modeling in RDF,
RDFS and OWL. Morgan Kaufmann Elsevier, Amsterdam, NL, 2008.

References

