Data and Knowledge Representation Languages: July 22, 2016

NAME SURNAME STUDENT ID......

1. [6 PT] Say (mark with an X) whether the following statements are true (T) or false (F).

a) Venn diagrams in general cannot be used to prove the satisfiability of a DL ALC formula w.r.t. a TBox		□ F
b) The definition by Gruber says that an ontology is "an explicit representation of a conceptualization"		□ F
c) In a lightweight ontology there are is-a and part-of relations		F
d) The main idea of the semantic web is to link entities via URIs		F
e) RDF is a relational data model like databases		□ F
f) Meronymy lexical relations include part, substance and membership	□ T	□ F

2. [6 PT] Explain (a) the notion of formal theory, (b) the notion of model of a formal theory and the relation which exists between a model and an interpretation function, and (c) the notion of unsatisfiable theory.

(a) A formal theory is a set of facts about the world, written in a formal language, which are considered to be always true by the modeler.

(b) A formal theory can be seen as a set of constraints on possible models to filter out all undesired ones. A model of a theory is a set of true facts consistent with those constraints, i.e. an interpretation function which satisfies all the facts in the theory.

(c) It is a theory with no models.

3. [2 PT] Explain the two purposes of logic languages, i.e. specification and automation, in relation to the tension between expressiveness and computational efficiency.

Specification is to represent a problem. Automation is to draw consequences from known facts. The more expressive is a language the more computationally expensive is the reasoning.

4. [3 PT] Define a TBox for the following problem: A doctor has two types of events stored in his agenda: Familiar Events and Work Events. The Family Members of the doctor can Read only Familiar Events, while the Co-workers of the doctor can only Read Work Events. Finally, the Doctor's Assistant can Read and Write all Events.

WorkEvent ⊑ Event

 $FamiliarEvent \sqsubseteq Event$

 $FamilyMember \sqsubseteq \forall Read.FamiliarEvent$

 $Co-worker \sqsubseteq \forall Read.WorkEvent$

Assistant $\sqsubseteq \exists \text{Read}.\text{Event} \sqcap \exists \text{Write}.\text{Event}$

5. [4 PT] For each DL sentence below, say which DL language with lowest expressiveness possible (e.g. AL, ALC, FL0...) has been used and translate to natural language.

DL sentence	DL lang.	Natural language sentence
Spider ⊑ Beast ⊓ ≥8 Leg ⊓ ≤8 Leg	ALN	A spider is a beast with 8 legs
Male ⊑ ¬ Female	AL	Male and female are disjoint
Shark ⊑ ¬ (Mammal ⊔ Fish)	ALUC	A shark it is neither a mammal nor a fish
Stakhanovite ⊑ Person ⊓ employed □ ¬ ∃hasHobby.⊤ □ ≥2 hasJob	ALNCE	A stakhanovite is an employed person that does not have any hobby and with at least two jobs.

Data and Knowledge Representation Languages: July 22, 2016

NAME SURNAME STUDENT ID.....

6. [2 PT] Explain, using an example, the purpose of the instance retrieval ABox service.

Instance retrieval: given a concept C, retrieve all the instances *a* which satisfy C.

Given ABox A = {C(a), C(b), D(a) } IR(C) = {a, b}

7. [4 PT] Using the tableau calculus, say whether the DL formula below is satisfiable:

```
person \Box (¬person \sqcup \exists eats. ¬plant) \Box \forall eats.(plant \sqcup dairy)
```

Motivate your answer with a proof. If satisfiable, provide a possible ABox.

By \sqcap -rule we put into the ABox:

person(z), $(\neg person \sqcup \exists eats. \neg plant)(z), \forall eats.(plant \sqcup dairy)(z),$

(1) *person(z)* is already an ABox assertion.

(2) $(\neg person \sqcup \exists eats. \neg plant)(z)$ by \sqcup -rule has to be split into:

(2.1) $\neg person(z)$ that is clearly in contradiction with (1), therefore we backtrack;

(2.2) \exists eats. \neg plant(z) by \exists -rule we add into the ABox: eats(z, y), \neg plant(y)

(3) \forall eats.(plant \sqcup dairy) (z) by \forall -rule we add into the ABox:

eats(z, $plant(x) \sqcup dairy(x)$) (in fact person(z) is already in the ABox), that by \sqcup -rule has to be split into:

```
(3.1) plant(y) given that eats(z, y) is in the ABox because of (2.2), that is clearly in contradiction with \negplant(y) (2.2) (3.2) dairy(x)
```

Thus, there is at least a path which proves the satisfiability of the formula, for instance: (1) (2) (2.1) (3) (3.2) This path generates the ABox A = { person(z), eats(z, y), $\neg plant(y)$, dairy(x) }

8. [4 PT] Represent the database table below in RDF turtle using standard vocabularies

Title	Author	Medium	Year
Hamlet	Shakespeare	Play	1599

dc:creator Shakespeare dc:format Play	
dc:format Play	
dc:date 1599	

9. [2 PT] Explain what DBPedia, YAGO and Freebase are and spot their main similarities and differences.

- They are all knowledge resources which are built semi-automatically
- In YAGO and Freebase text is semantically analyzed, while in DBPedia it is not.
- YAGO and DBPedia are built from Wikipedia, while Freebase includes a broader set of sources.