

1. [6 PT] Say (mark with an X) whether the following statements are true (T) or false (F).

a) Venn diagrams cannot be used to prove the satisfiability of a DL	□ T	\Box F
ALC formula w.r.t. a TBox.		
b) In syntactic matching a similarity measure between the nodes of the		\Box F
two graphs is computed by comparing their labels		
c) In a lightweight ontology there are is-a and part-of relations	$\Box \mathbf{T}$	□ F
d) In RDFS, properties are defined with respect to the classes of the		$\Box \mathbf{F}$
resources they can be attached to		
e) SPARQL forbids RDF Literals as the subject of RDF triples	$\Box \mathbf{T}$	□ F
f) OWL DL is more expressive than OWL Lite while guarantees		\Box F
conclusions and decidability		

2. [3 PT] Provide the formal semantics of propositional DL in terms of a class valuation and formally explain what it means for a propositional DL formula to be satisfiable.

 $\begin{aligned} \sigma(\bot) &= \emptyset \\ \sigma(\top) &= U \quad (\text{Universal Class, or Universe}) \\ \sigma(P) &\subseteq U, \text{ as defined by } \sigma \\ \sigma(\neg P) &= \{a \in U \mid a \notin \sigma(P)\} = comp(\sigma(P)) \quad (\text{Complement}) \\ \sigma(P \sqcap Q) &= \sigma(P) \cap \sigma(Q) \quad (\text{Intersection}) \\ \sigma(P \sqcup Q) &= \sigma(P) \cup \sigma(Q) \quad (\text{Union}) \end{aligned}$

Satisfiability:

Let σ be a class-valuation on language L, we define the truth-relation (or class-satisfaction relation) \vDash and write $\sigma \vDash P$ (read: σ satisfies P) iff $\sigma(P) \neq \emptyset$

- 3. [5 PT] Translate the following natural language sentences in DL language with lowest expressiveness possible (e.g. AL, ALC, FL0...) and say which of the languages you used:
 - a. A parent is a person having at least one natural child or an adopted child
 - b. Monkeys are animals which are disjoint from Lions
 - c. The friend of a policeman cannot be a criminal
 - d. Facebook users can only post photos about their friends
 - e. Germans do not have Italian friends and friends having Italian friends

 $PARENT \sqsubseteq PERSON \sqcap (\exists hasNaturalChild. \top \sqcup \exists hasAdoptedChild. \top) (ALU)$

 $MONKEY \sqsubseteq ANIMAL \sqcap \neg LION (AL)$

POLICEMAN $\equiv \neg \exists friendOf.Criminal (ALE)$

FACEBOOK-USER \sqsubseteq USER \sqcap \forall POST.FRIEND-PHOTO (FL0)

GERMAN \sqsubseteq \forall friendOf. (\neg ITALIAN $\sqcup \neg \exists$ friendOf.ITALIAN) (ALCE)

4. [2 PT] Formally explain the "separation of duties" RelBAC rule with an example in DL

See slides

Logics for Data and Knowledge Representation: 12th September 2014

NAME SURNAME STUDENT ID......

5. [3 PT] Formalize the following problem in DL and provide a TBox and ABox as appropriate: "Unicorns are mythical horses having a horn. Pegasus is a unicorn while George is not. Nevertheless, George is a horse". Provide also a formal proof to demonstrate whether the ABox is consistent with the TBox obtained.

TBOX T

Unicorn \sqsubseteq mythical \sqcap horse \sqcap hasHorn

ABOX A Unicorn(Pegasus), ¬Unicorn(George), horse(George)

We can check that it is consistent given that the expansion of A w.r.t. T does not contain contradictions. In fact, we have 3 possible expansions of ¬Unicorn(George):

¬Unicorn(George) ⇒ ¬ mythical (George) or ¬ horse (George) or ¬ hasHorn(George)

Where only the second would generate and contradiction.

6. [3 PT] Suppose we describe people in an academic environment using DL as follows:
Undergraduate □¬ Teach
Bachelor ≡ Student □ Undergraduate
Master ≡ Student □¬ Undergraduate
PhD ≡ Master □ Research

Assistant \equiv PhD \sqcap Teach

Are assistants undergraduates? Provide a proof to answer.

We need to check whether: $T \models Assistant \sqsubseteq Undergraduate$

Assistant = PhD \sqcap Teach = Master \sqcap Research \sqcap Teach = Student $\sqcap \neg$ Undergraduate \sqcap Research \sqcap Teach

Assistants are actually students who are not undergraduates.

7. [2 PT] List and provide a brief description of the four basic ABox reasoning services

See slides

Logics for Data and Knowledge Representation: 12th September 2014

NAME SURNAME STUDENT ID......

- 8. [3 PT] Given that an RDF model represents information about books and the model is created using standard vocabularies.
 - i) Write a SPARQL query that can return the publishers of the books. Note that books can be represented as URIs.
 - ii) Write a SPARQL query that can return the title and date of publication of the books.

i)	PREFIX dc: <http: 1.1="" dc="" elements="" purl.org=""></http:> SELECT ?book ?publisher WHERE { ?book dc:publisher ?publisher }
ii)	PREFIX dc: <http: 1.1="" dc="" elements="" purl.org=""></http:> SELECT ?bookTitle ?dateOfPublication WHERE { ?book dc:date ?dateOfPublication. ?book dc:title ?bookTitle }

9. [3 PT] What inferences can be drawn from each of the following sets of axioms?

i	i)	:researcherAt :Benedikt_Elser	rdfs:range :researcherAt	:Italian_University :UniTn
i	i)	:Researcher :publishedIn :Fausto_Giunchiglia	rdfs:subClassOf rdfs:domain :publishedIn	:Scientist :Researcher :ISWC_2007_Conference
i	ii)	:Italian_University :professorshipAt :Fausto_Giunchiglia	rdfs:subClassOf rdfs:range :professorshipAt	:European_University :Italian_University :UniTn
i	i)	:UniTn	rdf:type	:Italian_University
i	i)	:Fausto_Giunchiglia :Fausto_Giunchiglia	rdf:type rdf:type	:Researcher :Scientist
i	ii)	:UniTn :UniTn	rdf:type rdf:type	:Italian_University :European_University

10. [3 PT] Provide a comparison among OWL 2 profiles EL, QL and RL, which were specified for different kinds of representation and application needs.

See slides