Logics for Data and Knowledge Representation

4. Introduction to Description Logics - \mathcal{ALC}

Luciano Serafini

FBK-irst, Trento, Italy

October 9, 2012
Description Logics stem from early days knowledge representation formalisms (late '70s, early '80s):

- **Semantic Networks**: graph-based formalism, used to represent the meaning of sentences.
- **Frame Systems**: frames used to represent prototypical situations, antecedents of object-oriented formalisms.

Problems: **no clear semantics**, reasoning not well understood.

Description Logics (a.k.a. Concept Languages, Terminological Languages) developed starting in the mid '80s, with the aim of providing semantics and inference techniques to knowledge representation system
What are Description Logics today?

In the modern view, description logics are a family of logics that allow to speak about a domain composed of a set of generic (pointwise) objects, organized in classes, and related one another via various binary relations. Abstractly, description logics allows to predicate about labeled directed graphs:

- vertexes represents real world objects
- vertexes’s labels represents qualities of objects
- edges represents relations between (pairs of) objects
- vertexes’ labels represents the types of relations between objects.

Every piece of world that can be abstractly represented in terms of a labeled directed graph is a good candidate for being formalized by a DL.
What are Description Logics about?

Exercise

Represent Metro lines in Milan in a labelled directed graph
What are Description Logics about?

Exercise

Represent some aspects of Facebook as a labelled directed graph
What are **Description Logics** about?

Exercise

Represent some aspects of human anatomy as a labelled directed graph.
What are Description Logics about?

Exercise

Represent some aspects of document classification as a labelled directed graph
Many description logics
Ingredients of a Description Logic

A DL is characterized by:

1. **A description language**: how to form concepts and roles

 \[
 \text{Human} \cap \text{Male} \cap \exists \text{hasChild}. \top \cap \forall \text{hasChild}. (\text{Doctor} \sqcup \text{Lawyer})
 \]

2. **A mechanism to specify knowledge** about concepts and roles (i.e., a TBox)

 \[
 \mathcal{T} = \left\{ \begin{array}{l}
 \text{Father} \equiv \text{Human} \cap \text{Male} \cap \exists \text{hasChild}. \top \\
 \text{HappyFather} \sqsubseteq \text{Father} \cap \forall \text{hasChild}. (\text{Doctor} \sqcup \text{Lawyer}) \\
 \text{hasFather} \sqsubseteq \text{hasParent}
 \end{array} \right\}
 \]

3. **A mechanism to specify properties of objects** (i.e., an ABox)

 \[
 \mathcal{A} = \{ \text{HappyFather}(\text{john}), \text{hasChild}(\text{john}, \text{mary}) \}
 \]

4. **A set of inference services** that allow to infer new properties on concepts, roles and objects, which are logical consequences of those explicitly asserted in the T-box and in the A-box

 \[
 (\mathcal{T}, \mathcal{A}) \models \left\{ \begin{array}{l}
 \text{HappyFather} \sqsubseteq \exists \text{hasChild}. (\text{Doctor} \sqcup \text{Lawyer}) \\
 \text{Doctor} \sqcup \text{Lawyer}(\text{mary})
 \end{array} \right\}
 \]
Architecture of a Description Logic system

Knowledge Base

- Terminological knowledge (TBox)
 - $\text{Father} \equiv \text{Human} \sqcap \text{Male} \sqcap (\exists \text{child})$
 - $\text{HappyFather} \sqsubseteq \text{Father} \sqsubseteq$
 - $\forall \text{child}. (\text{Doctor} \sqsubseteq \text{Lawyer})$

- Knowledge about objects (ABox)
 - $\text{HappyFather}(\text{john})$
 - $\text{child}(\text{john}, \text{mary})$

Inference Engine

Applications
Many description logics
The description logics \mathcal{ALC}: Syntax

Alphabet

The alphabet Σ of \mathcal{ALC} is composed of:

- Σ_C: Concept names corresponding to node labels
- Σ_R: Role names corresponding to arc labels
- Σ_I: Individual names nodes identifiers

Grammar

| Concept | $C := A | \neg C | C \sqcap C | \exists R.A$ | $A \in \Sigma_C$, $R \in \Sigma_R$ |
|-------------|-----------------|-----------------|-----------------|-----------------|
| Definition | $A \sqsubseteq C$ | $A \in \Sigma_C$ |
| Subsumption | $C \sqsubseteq C$ | |
| Assertion | $C(a) | R(a, b)$ | $a, b \in \Sigma_I$, $R \in \Sigma_R$ |
The description logics \mathcal{ALC}: Syntax

Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>\top</td>
<td>$A \sqcup \neg A$ for some $A \in \Sigma_C$</td>
</tr>
<tr>
<td>\bot</td>
<td>$\neg \top$</td>
</tr>
<tr>
<td>$C \sqcup D$</td>
<td>$\neg (\neg C \sqcap \neg D)$</td>
</tr>
<tr>
<td>$\forall R.C$</td>
<td>$\neg \exists R.(\neg C)$</td>
</tr>
<tr>
<td>$C \equiv D$</td>
<td>${C \sqsubseteq D, D \sqsubseteq C}$</td>
</tr>
</tbody>
</table>

Exercise

Define Σ for speaking about the metro in Milan, and give examples of Concepts, Definitions, Subsumptions, and Assertions.
Solution

Concept Names (Σ_C):

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td>the set of metro stations</td>
</tr>
<tr>
<td>RedLineStation</td>
<td>the set of metro stations on the red line</td>
</tr>
<tr>
<td>ExchangeStation</td>
<td>the set of metro stations in which it is possible to exchange line</td>
</tr>
</tbody>
</table>

Role Names (Σ_R):

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next</td>
<td>the relation between one station and its next stations</td>
</tr>
</tbody>
</table>

Individual Names (Σ_I):

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrale</td>
<td>the station called "Centrale"</td>
</tr>
<tr>
<td>Gioia</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Solution (Cont’d)

Concepts

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{RedLineStation} \sqcap \text{GreenLineStation})</td>
<td>the set of stations which are on both red and green line</td>
</tr>
<tr>
<td>(\text{ExchangeStation} \sqcap \text{RedLineStation})</td>
<td>the set of exchange stations of the red line</td>
</tr>
<tr>
<td>(\text{Station} \sqcap \exists \text{Next. RedLineStation})</td>
<td>the set of stations which has a next station on the red line</td>
</tr>
<tr>
<td>(\text{Station} \sqcap \forall \text{Next. } \bot)</td>
<td>The set of End stations</td>
</tr>
</tbody>
</table>

Definition

\[
\begin{align*}
\text{RGExchangeStation} & \equiv \text{RedLineStation} \sqcap \text{GreenLineStation} \\
\text{RYExchangeStation} & \equiv \text{RedLineStation} \sqcap \text{YellowLineStation} \\
\text{GYExchangeStation} & \equiv \text{GreenLineStation} \sqcap \text{YellowLineStation} \\
\text{ExchangeStation} & \equiv \text{RGExchangeStation} \sqcup \text{RYExchangeStation} \sqcup \text{GYExchangeStation}
\end{align*}
\]
Solution (Cont’d)

Subsumptions

<table>
<thead>
<tr>
<th>Relation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RedLineStation</code> ⊆ <code>Station</code></td>
<td>A red line station is a station</td>
</tr>
<tr>
<td><code>⊤ ⊆ ∀Next.Station</code></td>
<td>everything next to something is a station</td>
</tr>
<tr>
<td><code>∃Next.⊤ ⊆ Station</code></td>
<td>everything that has something next must be a station</td>
</tr>
</tbody>
</table>

Subsumptions

<table>
<thead>
<tr>
<th>Relation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GreenLineStation(Gioia)</code></td>
<td>"Gioia" is a station of the green line</td>
</tr>
<tr>
<td><code>RGExchangeStation(Loreto)</code></td>
<td>"Loreto" is an exchange station between the green and the red line</td>
</tr>
<tr>
<td><code>Next(Loreto,Lima)</code></td>
<td>"Lima" is a next stop of "Loreto"</td>
</tr>
<tr>
<td>¬<code>Next(Loreto,Duomo)</code></td>
<td>"Duomo" is not next to "Loreto"</td>
</tr>
</tbody>
</table>
The description logics \mathcal{ALC}: Semantics

Definition

A DL interpretation \mathcal{I} is pair $\langle \Delta^\mathcal{I}, \cdot^\mathcal{I} \rangle$ where:

- $\Delta^\mathcal{I}$ is a non empty set called **interpretation domain**
- $\cdot^\mathcal{I}$ is an **interpretation function** of the alphabet Σ such that
 - $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$, every concept name is mapped into a subset of the interpretation domain
 - $R^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$, every role name is mapped into a binary relation on the interpretation domain
 - $o^\mathcal{I} \in \Delta^\mathcal{I}$ every individual is mapped into an element of the interpretation domain.
The description logics \mathcal{ALC}: Semantics

Interpretation of Complex concepts

\[
\begin{align*}
(\neg C)^I &= \Delta^I \setminus C^I \\
(C \sqcap D)^I &= C^I \cap D^I \\
(\exists R. C)^I &= \{d \in \Delta^I \mid \text{exists } d', \langle d, d' \rangle \in R^I \text{ and } d' \in C^I\}
\end{align*}
\]

Exercise

Provide the definition of the interpretations of the abbreviations:

\[
\begin{align*}
(\top)^I &= \ldots \\
(\bot)^I &= \ldots \\
(C \sqcup D)^I &= \ldots \\
(\forall R. C)^I &= \ldots
\end{align*}
\]
The description logics \mathcal{ALC}: Semantics

Satisfaction relation $|=\$

$\mathcal{I} \models A \sqsubseteq C$ iff $A^\mathcal{I} = C^\mathcal{I}$

$\mathcal{I} \models C \sqsubseteq D$ iff $C^\mathcal{I} \subseteq D^\mathcal{I}$

$\mathcal{I} \models C(a)$ iff $a^\mathcal{I} \in C^\mathcal{I}$

$\mathcal{I} \models R(a, b)$ iff $\langle a^\mathcal{I}, b^\mathcal{I} \rangle \in R^\mathcal{I}$

Satisfiability of a concept

A concept C is satisfiable if there is an interpretation \mathcal{I}, such that

$C^\mathcal{I} \neq \emptyset$
ALC knowledge base

Definition (Knowledge Base)

A knowledge base \mathcal{K} is a pair $(\mathcal{T}, \mathcal{A})$, where

- \mathcal{T}, called the **Terminological box (T-box)**, is a set of concept definitions and subsumptions,
- \mathcal{A}, called the **Assertional box (A-box)**, is a set of assertions.

Logical Consequence \models

A subsumption ASSERTION ϕ is a logical consequence of \mathcal{T}, $\mathcal{T} \models \phi$, if ϕ is satisfied by all interpretations that satisfy \mathcal{T}.

Satisfiability of a concept w.r.t, \mathcal{T}

A concept C is **satisfiable w.r.t. \mathcal{T}** if there is an interpretation \mathcal{I} that satisfies \mathcal{T} and such that

$$C^\mathcal{I} \neq \emptyset$$
ALC and Modal Logics

Remark

There is a strict relation between ALC and multi modal logics

<table>
<thead>
<tr>
<th>ALC</th>
<th>Multi Modal Logics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{I} = \langle \Delta^\mathcal{I}, .^\mathcal{I} \rangle$</td>
<td>$\mathcal{M} = \langle W, R_1, \ldots, R_n, \nu \rangle$</td>
</tr>
<tr>
<td>object o</td>
<td>world w</td>
</tr>
<tr>
<td>domain $\Delta^\mathcal{I}$</td>
<td>set of possible worlds W</td>
</tr>
<tr>
<td>concept name A</td>
<td>propositional variable A</td>
</tr>
<tr>
<td>concept interpretation $A^\mathcal{I}$</td>
<td>evaluation $\nu(A)$</td>
</tr>
<tr>
<td>role name R</td>
<td>modality \Box_i</td>
</tr>
<tr>
<td>role interpretation $R^\mathcal{I}$</td>
<td>accessibility relation R_i</td>
</tr>
<tr>
<td>$\exists R \ldots$</td>
<td>$\Diamond_i \ldots$</td>
</tr>
<tr>
<td>$\neg C$</td>
<td>$\neg C$</td>
</tr>
<tr>
<td>$C \sqcap D$</td>
<td>$C \land D$</td>
</tr>
<tr>
<td>$\mathcal{I} \models C(a)$</td>
<td>$\mathcal{M}, w_a \models C$</td>
</tr>
<tr>
<td>$\mathcal{I} \models C \sqsubseteq D$</td>
<td>$\mathcal{M} \models C \rightarrow D$</td>
</tr>
</tbody>
</table>
The logic \mathcal{ALC} in the language $\Sigma = \Sigma_C \cup \Sigma_R$ (i.e., with no individuals), is equivalent to the multi-modal logic K defined on the set of propositions Σ_C and the set of modalities \diamond_R with $R \in \Sigma_R$.

Theorem (From \mathcal{ALC} to multi modal K)

Let \cdot^* be a transformation that replace \sqcap with \land, and $\exists R$ with $\diamond R$,

$$\models_{\mathcal{ALC}} C \sqsubseteq D \Rightarrow \models_K C^* \rightarrow D^*$$

Theorem (From multi modal K to \mathcal{ALC})

Let \cdot^+ be a transformation that replace \land with \sqcap, and $\diamond R$ with $\exists R$,

$$\models_K C \Rightarrow \models_{\mathcal{ALC}} \top \sqsubseteq C^+$$
Axiomatization of \mathcal{ALC} (via Modal Logic)

Axioms for \mathcal{ALC}

- $\top \sqsubseteq \phi[p_1, \ldots, p_n/C_1, \ldots, C_n]$
 where ϕ is a propositional **valid formula** on the propositional variables p_1, \ldots, p_n, C_1, \ldots, C_n are \mathcal{ALC} concept expressions for, and $\phi[p_1, \ldots, p_n/C_1, \ldots, C_n]$, denotes the simultaneous substitution of p_1, \ldots, p_n with C_1, \ldots, C_n, and of \land with \sqcap.

- $\top \sqsubseteq \neg \forall R. (\neg C \sqcup B) \sqcup \neg \forall R. C \sqcup \forall R. D$
 (Translation of $\Box_R (C \rightarrow D) \rightarrow (\Box_R C \rightarrow \Box_R D)$ K axiom)

- $\top \sqsubseteq C \quad C \sqsubseteq D \quad \text{MP}$
 (translation of $\begin{array}{c} C \\ \hline D \end{array} \text{MP}$)

- $\top \sqsubseteq C \quad \text{Nec}$
 (translation of $\Box_R C \text{ Nec}$)
Remark

There is also a strong relation between \mathcal{ALC} and function free first order logics with unary and binary predicates

\[
\mathcal{ALC} \iff \text{First order logic}
\]

\[
\mathcal{I} = \langle \Delta^\mathcal{I}, \cdot^\mathcal{I} \rangle
\]

- concept name $A \iff$ unary predicate $A(x)$
- role name $R \iff$ binary predicate $R(x, y)$
- $\exists R.C \iff \exists y (R(x, y) \land C(y))$
- $\neg C \iff \neg C(x)$
- $C \sqcap D \iff C(x) \land D(x)$
- $\mathcal{I} \models C(a)$
- $\mathcal{I} \models C \sqsubseteq D \iff \mathcal{I} \models \forall x (C(x) \to D(x))$
Define a transformation \(\cdot^* \) from \(ALC \) concepts to first order formulas such that the following proposition is true

\[
\models_{ALC} \top \sqsubseteq C \implies \models_{FOL} C^*
\]
Exercise

Define a transformation \(\cdot^* \) from \(\mathcal{ALC} \) concepts to first order formulas such that the following proposition is true

\[
\models_{\mathcal{ALC}} \top \subseteq C \quad \Rightarrow \quad \models_{\mathsf{FOL}} C^*
\]

Solution

\[
\begin{align*}
ST^{x,y}(A) &= A(x) \\
ST^{x,y}(A \cap B) &= ST^{x,y}(A) \land ST^{x,y}(B) \\
ST^{x,y}(\neg A) &= \neg ST^{x,y}(A) \\
ST^{x,y}(\exists R.A) &= \exists y(R(x, y) \land ST^{y,x}(A))
\end{align*}
\]
Exercise

Define a transformation \cdot^* from \mathcal{ALC} concepts to first order formulas such that the following proposition is true

$$
\models_{\mathcal{ALC}} T \subseteq C \Rightarrow \models_{\mathcal{FOL}} C^*
$$

Solution

$$
\begin{align*}
ST^{x,y}(A) &= A(x) \\
ST^{x,y}(A \cap B) &= ST^{x,y}(A) \land ST^{x,y}(B) \\
ST^{x,y}(\neg A) &= \neg ST^{x,y}(A) \\
ST^{x,y}(\exists R.A) &= \exists y(R(x,y) \land ST^{y,x}(A))
\end{align*}
$$

Exercise

Show that

1. $ST^{x,y}(C \sqcup D)$ is equivalent to $ST^{x,y}(C) \lor ST^{x,y}(D)$
2. $ST^{x,y}(\forall R.C)$ is equivalent to $\forall y(R(x,y) \rightarrow ST^{y,x}(C))$.

L. Serafini LDKR
<table>
<thead>
<tr>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate the following \mathcal{ALC} concepts in English and then in FOL</td>
</tr>
<tr>
<td>1. $\text{Father} \sqcap \forall \text{child}.(\text{Doctor} \sqcup \text{Manage})$</td>
</tr>
<tr>
<td>2. $\exists \text{manages}.(\text{Company} \sqcap \exists \text{employs}.\text{Doctor})$</td>
</tr>
<tr>
<td>3. $\text{Father} \sqcap \forall \text{child}.(\text{Doctor} \sqcup \exists \text{manages}.(\text{Company} \sqcap \exists \text{employs}.\text{Doctor}))$</td>
</tr>
</tbody>
</table>
Exercise

Translate the following \mathcal{ALC} concepts in English and then in FOL

1. $\text{Father} \sqcap \forall \text{child}. (\text{Doctor} \sqcup \text{Manage})$
2. $\exists \text{manages}. (\text{Company} \sqcap \exists \text{employs}. \text{Doctor})$
3. $\text{Father} \sqcap \forall \text{child}. (\text{Doctor} \sqcup \exists \text{manages}. (\text{Company} \sqcap \exists \text{employs}. \text{Doctor}))$

Solution

1. Fathers whose children are either doctors or managers
 $\text{Father}(x) \land \forall y. (\text{child}(x, y) \rightarrow (\text{Doctor}(y) \lor \text{Manager}(y)))$

2. Those who manages a company that employs at least one doctor
 $\exists y. (\text{manages}(x, y) \land (\text{Company}(y) \land \exists x. (\text{employs}(y, x) \land \text{Doctor}(x))))$

3. Fathers whose children are either doctors or managers of companies that employ some doctor.
 $\text{Father}(x) \land \forall y. (\text{child}(x, y) \rightarrow (\text{Doctor}(y) \lor \exists x. (\text{manages}(y, x) \land (\text{Company}(x) \land \exists y. (\text{employs}(x, y) \land \text{Doctor}(y))))))$
ALC and First Order Logics

Two Variables First Order Logics (FO^2)

A k-variable first order logic, FO^k is a logic defined on a First Order Language without functional symbols and with k individual variables. FO^2 is the first order logic with at most two variables.

Theorem

ALC is a fragment of FO^2. However FOL with 2 variables is more expressive than ALC. In the following we can see why.
From First Order Logic to \mathcal{ALC}

Exercise

Is it possible to define a transformation \cdot^+ from function free first order formulas on unary and binary predicates such that the following is true?

$$\models_{FOL} \phi \quad \Rightarrow \quad \models_{\mathcal{ALC}} \top \sqsubseteq \phi^+$$

- if yes specify the transformation
- if not provide a formal proof
Distinguishability of Interpretations

Distinguishing between models

If M and M' are two models of a logic \mathcal{L}, then we say that \mathcal{L} is capable to **distinguish** M from M' if there is a formula ϕ of the language of \mathcal{L} such that

$$M \models_{\mathcal{L}} \phi \quad \text{end} \quad M \not\models_{\mathcal{L}} \phi$$

Proving non equivalence

To show that two logics \mathcal{L}_1 and \mathcal{L}_2 with the same class of models, are **not equivalent** it’s enough to show that there are two models m and m' which are distinguishable in \mathcal{L}_1 nd non distinguishable in \mathcal{L}_2.

L. Serafini
LDKR
Bisimulation

The notion of bisimulation in description logics is intended to capture object equivalences and property equivalences.

Definition (Bisimulation)

A **bisimulation** \(\rho \) between two \(ALC \) interpretations \(\mathcal{I} \) and \(\mathcal{J} \) is a relation on \(\Delta^\mathcal{I} \times \Delta^\mathcal{J} \) such that if \(d \rho e \) then the following hold:

- **object equivalence** \(d \in A^\mathcal{I} \) if and only if \(e \in A^\mathcal{J} \);
- **relation equivalence** for all \(d' \) with \(\langle d, d' \rangle \in R^\mathcal{I} \) there is and \(e' \) with \(d' \rho e' \) such that \(\langle e, e' \rangle \in R^\mathcal{J} \);
- Same property in the opposite direction

\((\mathcal{I}, d) \sim (\mathcal{J}, e)\) means that there is a bisimulation \(\rho \) between \(\mathcal{I} \) and \(\mathcal{J} \) such that \(e \rho e \).
Bisimulation
Bisimulation and \mathcal{ALC}

Lemma

\mathcal{ALC} cannot distinguish the interpretations \mathcal{I} and \mathcal{J} when $(\mathcal{I}, d) \sim (\mathcal{J}, e)$.

Exercise

Show by induction on the complexity of concepts, that if $(\mathcal{I}, d) \sim (\mathcal{J}, e)$, then

$$d \in C^\mathcal{I} \quad \text{if and only if} \quad e \in C^\mathcal{J}$$
Bisimulation and \(\mathcal{ALC} \)

Definition (Disjoint union)

For every two interpretations \(\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle \) and \(\mathcal{J} = \langle \Delta^{\mathcal{J}}, \cdot^{\mathcal{J}} \rangle \), the disjoint union of \(\mathcal{I} \) and \(\mathcal{J} \) is:

\[
\mathcal{I} \uplus \mathcal{J} = \langle \Delta^{\mathcal{I} \uplus \mathcal{J}}, \cdot^{\mathcal{I} \uplus \mathcal{J}} \rangle
\]

where

- \(\Delta^{\mathcal{I} \uplus \mathcal{J}} = \Delta^{\mathcal{I}} \uplus \Delta^{\mathcal{J}} \)
- \(A^{\mathcal{I} \uplus \mathcal{J}} = A^{\mathcal{I}} \uplus A^{\mathcal{J}} \)
- \(R^{\mathcal{I} \uplus \mathcal{J}} = R^{\mathcal{I}} \uplus R^{\mathcal{J}} \)

Exercise

Prove via bisimulation lemma that: if: \(\mathcal{I} \models C \subseteq D \) and \(\mathcal{J} \models C \subseteq D \) then \(\mathcal{I} \uplus \mathcal{J} \models C \subseteq D \).
Tree model property

Theorem

An \mathcal{ALC} concept C is satisfiable w.r.t. a T-box T if and only if there is a tree-shaped interpretation \mathcal{I} that satisfies T, and an object d such that $d \in C^\mathcal{I}$.

Proof.
Consequence of Tree Model Property

Exercise

Prove, using tree model property, that the formula $\forall x R(x, x)$ cannot be translated in \mathcal{ALC}. I.e., there is no T-box \mathcal{T} such that

$$\mathcal{I} \models_{\mathcal{ALC}} \mathcal{T} \text{ if and only if } \mathcal{I} \models_{\mathcal{FOL}} \forall x R(x, x)$$

\mathcal{ALC} expressive power

The consequence of the previous fact is that, function free first order logic with unary and binary predicate is more expressive than \mathcal{ALC}.
Definition

A first-order formula $\phi(x)$ is **invariant for bisimulation** if for all models \mathcal{I} and \mathcal{J}, and all d and e such that $(\mathcal{I}, d) \sim (\mathcal{J}, e)$

$$\mathcal{I} \models \phi(x)[d] \quad \text{if and only if} \quad \mathcal{J} \models \phi(x)[e]$$

Theorem (Van Benthem 1976)

The following are equivalent for all function free first-order formulas $\phi(x)$ in one free variable x, containing only unary and binary predicates.

- $\phi(x)$ is invariant for bisimulation.
- $\phi(x)$ is equivalent to the standard translation of an \mathcal{ALC} concept.
Let Man, Woman, Male, Female, and Human be concept names, and let has-child, is-brother-of, is-sister-of, and is-married-to be role names. Try to construct a T-box that contains definitions for

<table>
<thead>
<tr>
<th>Mother</th>
<th>Grandfather</th>
<th>Niece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father</td>
<td>Aunt</td>
<td>Nephew</td>
</tr>
<tr>
<td>Grandmother</td>
<td>Ancle</td>
<td>Mother-of-at-least-one-male</td>
</tr>
</tbody>
</table>
Exercise

Express the following sentences in terms of the description logic \mathcal{ALC}

1. All employees are humans.

2. A mother is a female who has a child.

3. A parent is a mother or a father.

4. A grandmother is a mother who has a child who is a parent.

5. Only humans have children that are humans.
Exercise

Express the following sentences in terms of the description logic \mathcal{ALC}

1. All employees are humans.
 \[
 \text{employee} \sqsubseteq \text{human}
 \]

2. A mother is a female who has a child.
 \[
 \text{mother} \equiv \text{female} \sqcap \exists \text{hasChild}. \top
 \]

3. A parent is a mother or a father.
 \[
 \text{parent} \equiv \text{mother} \sqcup \text{father}
 \]

4. A grandmother is a mother who has a child who is a parent.
 \[
 \text{grandmother} \equiv \text{mother} \sqcap \exists \text{hasChild}. \text{parent}
 \]

5. Only humans have children that are humans.
 \[
 \exists \text{hasChild}. \text{human} \sqsubseteq \text{human}
 \]
Exercise

Translate the following inclusion axioms in the language of First order logic

Female ⊑ Human
Child ⊑ Human
StudiesAtUni ⊑ Human
SuccessfullMan ≡ Man ⊓
 InBusiness ⊓ ∃married.Lawyer
 ∃hasChild.(StudiesAtUni)
¬Female(Pedro)
InBusiness(Pedro)
Lawyer(Mary)
mariiied(Pedro, Mary)
child(Pedro, John)
Translate the following inclusion axioms in the language of First order logic

- **Female ⊆ Human**: females are humans
- **Child ⊆ Human**: children are humans
- **StudiesAtUni ⊆ Human**: university students are humans
- **SuccessfullMan ≡ Man ∨**: a successful man is a man who
 - **InBusiness ∨ ∃married.Lawyer**: is in business, has married a lawyer
 - **∃hasChild.(StudiesAtUni)**: and has a child who is a student
- **¬Female(Pedro)**: Pedro is not a female
- **InBusiness(Pedro)**: Pedro is in business
- **Lawyer(Mary)**: Mary is a lawyer
- **married(Pedro, Mary)**: pedro is married with Mary
- **child(Pedro, John)**: John is the child of Pedre
Exercise

Let \mathcal{I} be the following \mathcal{ALC} interpretation on the domain $\Delta^\mathcal{I} = \{s_0, s_1, \ldots, s_5\}$. Calculate the interpretation of the following concepts:

$\top^\mathcal{I} =$

$\bot^\mathcal{I} =$

$A^\mathcal{I} =$

$B^\mathcal{I} =$

$(A \cap B)^\mathcal{I} =$

$(A \cup B)^\mathcal{I} =$

$(\neg A)^\mathcal{I} =$

$(\exists r. A)^\mathcal{I} =$

$(\forall r. \neg B)^\mathcal{I} =$

$(\forall r. (A \cup B))^\mathcal{I} =$
Exercise

Let \mathcal{I} be the following \mathcal{ALC} interpretation on the domain $\Delta^\mathcal{I} = \{s_0, s_1, \ldots, s_5\}$. Calculate the interpretation of the following concepts:

- $\top^\mathcal{I} = \{s_0, s_1, \ldots, s_5\}$
- $\bot^\mathcal{I} = \emptyset$
- $A^\mathcal{I} = \{s_0, s_1, s_5\}$
- $B^\mathcal{I} = \{s_0, s_2, s_5\}$
- $(A \cap B)^\mathcal{I} = \{s_0, s_5\}$
- $(A \cup B)^\mathcal{I} = \{s_0, s_1, s_2, s_5\}$
- $(\neg A)^\mathcal{I} = \{s_2, s_3, s_4\}$
- $(\exists r. A)^\mathcal{I} = \{s_0, s_1, s_4\}$
- $(\forall r. \neg B)^\mathcal{I} = \{s_3, s_2\}$
- $(\forall r. (A \cup B))^\mathcal{I} = \{s_0, s_3, s_4\}$
Exercise

Let \mathcal{I} be the following \mathcal{ALC} interpretation on the domain $\Delta^\mathcal{I} = \{s_0, s_1, \ldots, s_5\}$. Calculate the interpretation of the following concepts:

$$\begin{align*}
(A \sqcup B)^\mathcal{I} &= \\
(\exists s. \neg A)^\mathcal{I} &= \\
(\forall s. A)^\mathcal{I} &= \\
(\exists s. \exists s. A)^\mathcal{I} &= \\
(\neg \exists r. (\neg A \sqcup \neg B))^{\mathcal{I}} &= \\
(\exists s. (A \sqcup \forall s. \neg B) \sqcup \neg \forall r. \exists r. (A \sqcup \neg A))^{\mathcal{I}} &=
\end{align*}$$
Exercise

Let \mathcal{I} be the following \mathcal{ALC} interpretation on the domain $\Delta^\mathcal{I} = \{s_0, s_1, \ldots, s_5\}$. Calculate the interpretation of the following concepts:

- $(A \sqcup B)^\mathcal{I} = \{s_0, s_1, s_2\}$
- $(\exists s. \neg A)^\mathcal{I} = \{s_0, s_1, s_3\}$
- $(\forall s. A)^\mathcal{I} = \{s_2\}$
- $(\exists s. \exists s. \exists s. \exists s. A)^\mathcal{I} = \emptyset$
- $(-\exists r. (-A \sqcup -B))^\mathcal{I} = \{s_1, s_2\}$
- $(\exists s. (A \sqcup \forall s. \neg B) \sqcup -\forall r. \exists r. (A \sqcup -A))^\mathcal{I} = \{s_0, s_1, s_3\}$
Exercise

Show that $\models C \subseteq D$ implies $\models \exists R.C \subseteq \exists R.D$
Exercise

Show that $\models C \subseteq D$ implies $\models \exists R.C \subseteq \exists R.D$

Solution

We have to prove that for all \mathcal{I}, $(\exists R.C)^\mathcal{I} \subseteq (\exists R.C)^\mathcal{I}$ under the hypothesis that for all \mathcal{I}, $C^\mathcal{I} \subseteq D^\mathcal{I}$.

- Let $x \in (\exists R.C)^\mathcal{I}$, we want to show that x is also in $(\exists R.D)^\mathcal{I}$.
- If $x \in (\exists R.C)^\mathcal{I}$, then by the interpretation of $\exists R$ there must be an y with $(x, y) \in R^\mathcal{I}$ such that $y \in C^\mathcal{I}$.
- By the hypothesis that $C^\mathcal{I} \subseteq D^\mathcal{I}$ for all \mathcal{I}, we have that $y \in D^\mathcal{I}$.
- The fact that $(x, y) \in R^\mathcal{I}$ and $y \in D^\mathcal{I}$ implies that $x \in (\exists R.D)^\mathcal{I}$.
Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

\[\forall R(A \sqcap B) \equiv \forall RA \sqcap \forall RB \]
\[\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB \]
\[\exists R(A \sqcap B) \equiv \exists RA \sqcap \exists RB \]
\[\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB \]
Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

\[\forall R (A \cap B) \equiv \forall R A \cap \forall R B \]
\[\forall R (A \cup B) \equiv \forall R A \cup \forall R B \]
\[\exists R (A \cap B) \equiv \exists R A \cap \exists R B \]
\[\exists R (A \cup B) \equiv \exists R A \cup \exists R B \]

Solution

\[\forall R (A \cap B) \equiv \forall R A \cap \forall R B \text{ is valid and we can prove that} \]
\[(\forall R (A \cap B))^I = (\forall R . A \cap \forall R . B)^I \text{ for all interpretations } I. \]

\[(\forall R (A \cap B))^I = \{(x, y) \in R^I \mid y \in (A \cap B)^I\} \]
\[= \{(x, y) \in R^I \mid y \in A^I \cap B^I\} \]
\[= \{(x, y) \in R^I \mid y \in A^I\} \cap \{(x, y) \in R^I \mid y \in B^I\} \]
\[= (\forall R . A)^I \cap (\forall R . B)^I \]
\[= (\forall R . A \cap \forall R . B)^I \]
Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

\[
\forall R (A \sqcap B) \equiv \forall RA \sqcap \forall RB \\
\forall R (A \sqcup B) \equiv \forall RA \sqcup \forall RB \\
\exists R (A \sqcap B) \equiv \exists RA \sqcap \exists RB \\
\exists R (A \sqcup B) \equiv \exists RA \sqcup \exists RB
\]

Solution

\[\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB \text{ is not valid. The following model is such that } (\forall R(A \sqcup B))^I \neq (\forall RA \sqcup \forall RB)^I\]

\[
\begin{align*}
s_0 &\xrightarrow{R} s_1 \\
&s_1 \xrightarrow{R} s_0, s_2 \\
s_2 &\xrightarrow{\neg A, B} s_0
\end{align*}
\]

- \(s_0 \in (\forall R(A \sqcup B))^I\) but
- \(s_0 \notin (\forall RA)^I\) and
- \(s_0 \notin (\forall RB)^I\)

However notice that the containment: \(\forall R.A \sqcup \forall R.B \subseteq \forall R.(A \sqcup B)\) is valid
Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

\[\forall R(A \cap B) \equiv \forall RA \cap \forall RB \]
\[\forall R(A \cup B) \equiv \forall RA \cup \forall RB \]
\[\exists R(A \cap B) \equiv \exists RA \cap \exists RB \]
\[\exists R(A \cup B) \equiv \exists RA \cup \exists RB \]

Solution

\[\exists R(A \cap B) \equiv \exists RA \cap \exists RB \] is not valid. The following model is such that \((\exists R(A \cap B))^I \neq (\exists RA \cap \forall RB)^I\)

However notice that the containment: \(\exists R(A \cap B) \subseteq \exists RA \cap \exists RB\) is valid
Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

\[\forall R (A \cap B) \equiv \forall R A \cap \forall R B \]
\[\forall R (A \cup B) \equiv \forall R A \cup \forall R B \]
\[\exists R (A \cap B) \equiv \exists R A \cap \exists R B \]
\[\exists R (A \cup B) \equiv \exists R A \cup \exists R B \]

Solution

\[\exists R (A \cup B) \equiv \exists R A \cup \exists R B \] is valid. We can provide a proof similar to the case of \(\forall R . (A \cap B) \equiv \forall R . A \cap \forall R . B \), but in the following we provide an alternative proof, which is based on other equivalences:

\[\exists R (A \cup B) \equiv \neg \forall R (\neg (A \cup B)) \]
\[\equiv \neg \forall R . (\neg A \cap \neg B) \]
\[\equiv \neg (\forall R . (\neg A) \cap \forall R . (\neg B)) \]
\[\equiv \neg (\forall R . (\neg A) \cup \neg \forall R . (\neg B)) \]
\[\equiv \exists R . A \cup \exists R . B \]
Exercise

For each of the following concept say if it is valid, satisfiable or unsatisfiable. If it is valid, or unsatisfiable, provide a proof. If it is satisfiable (and not valid) then exhibit a model that interprets the concept in a non-empty set.

<table>
<thead>
<tr>
<th>Exercise Number</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\neg(\forall R. A \sqcup \exists R. (\neg A \sqcap \neg B))$</td>
</tr>
<tr>
<td>2</td>
<td>$\exists R. (\forall S. C) \sqcap \forall R. (\exists S. \neg C)$</td>
</tr>
<tr>
<td>3</td>
<td>$(\exists S. C \sqcap \exists S. D) \sqcap \forall S. (\neg C \sqcup \neg D)$</td>
</tr>
<tr>
<td>4</td>
<td>$\exists S. (C \sqcap D) \sqcap (\forall S. \neg C \sqcup \exists S. \neg D)$</td>
</tr>
<tr>
<td>5</td>
<td>$C \sqcap \exists R. A \sqcap \exists R. B \sqcap \neg \exists R. (A \sqcap B)$</td>
</tr>
</tbody>
</table>
Solution

1. \(\neg (\forall R. A \sqcup \exists R. (\neg A \sqcap \neg B)) \) Satisfiable

\[
s_0 \in (\neg (\forall R. A \sqcup \exists R. (\neg A \sqcap \neg B)))^I
\]
\[
s_1 \notin (\neg (\forall R. A \sqcup \exists R. (\neg A \sqcap \neg B)))^I
\]

2. \(\exists R. (\forall S. C) \sqcap \forall R. (\exists S. \neg C) \) unsatisfiable, since
 \(\exists R. \forall S. C \equiv \neg \forall R. \neg \forall S. C \equiv \neg \forall R. \exists S. \neg C. \) This implies that
 \(\exists R. (\forall S. C) \sqcap \forall R. (\exists S. \neg C) \) is equivalent to
 \(\neg (\forall R. \exists S. \neg C) \sqcap (\forall R. \exists S. \neg C) \), which is a concept of the form
 \(\neg B \sqcap B \) which is always unsatisfiable.

3. \((\exists S. C \sqcap \exists S. D) \sqcap \forall S. (\neg C \sqcup \neg D) \) satisfiable
4. \(\exists S. (C \sqcap D) \sqcap (\forall S. \neg C \sqcup \exists S. \neg D) \) unsatisfiable
5. \(C \sqcap \exists R. A \sqcap \exists R. B \sqcap \neg \exists R. (A \sqcap B) \) satisfiable
Check if the following subsumption is valid

\[\neg \forall R. A \sqcap \forall R ((\forall R. B) \sqcup A) \sqsubseteq \forall R. \neg (\exists R. A) \sqcap \exists R. (\exists R. B) \]
Exercise

Check if the following two models bi-simulates. If yes find the bisimulation relation, if not find a formula that is true in the first model and false in the second.
Bisimulation - exercises

Exercise

Check if the following two models bi-simulates. If yes find the bisimulation relation, if not find a formula that is true in the first model and false in the second.

![Diagram showing two models with states and transitions]

Solution

The two models bi-simulate and the bisimulation relation is

\[\{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3)\} \]
Exercise

Check if the following two models bi-simulates. If yes find the bisimulation relation, if not find a formula that is true in the first model and false in the second.

Solution

The two models do not bisimulate on s_0 and t_0, because we have that $s_0 \in (\exists R \exists R \forall R \bot) I_1$ and $t_0 \notin (\exists R \exists R \forall R \bot) I_2$, where I_1 and I_2 are the interpretations shown above.
Exercise

Check if the following two models bi-simulates. If yes find the bisimulation relation, if not find a formula that is true in the first model and false in the second.

Solution

The two models do not bisimulate on s_0 and t_0, because we have that $s_0 \in (\exists R \exists R \forall R \bot)_I^1$ and $t_0 \not\in (\exists R \exists R \forall R \bot)_I^2$, where I_1 and I_2 are the interpretations shown above.
Exercise

Let \(\rho_1 \subseteq \Delta_{\mathcal{I}_1} \times \Delta_{\mathcal{I}_2} \) and \(\rho_2 \subseteq \Delta_{\mathcal{I}_2} \times \Delta_{\mathcal{I}_3} \) be bisimulation relations. Prove that bisimulations are closed under composition, i.e., \(\rho_1 \circ \rho_2 \) is a bisimulations from \(\mathcal{I}_1 \) to \(\mathcal{I}_3 \).

Exercise

Let \(\rho_1, \rho_2 \subseteq \Delta_{\mathcal{I}_1} \times \Delta_{\mathcal{I}_2} \) and be bisimulation relations. Prove that bisimulations are closed under union i.e., \(\rho_1 \cup \rho_2 \) is a bisimulations from \(\mathcal{I}_1 \) to \(\mathcal{I}_2 \).