LOGICS FOR DATA AND KNOWLEDGE REPRESENTATION Written Exam Session III - Monday 08-09-2008

SURNAME:	NAME:	N
1. Represent as a formal problem of the form problem, as stated by Amarel in 1968: "The rowboat that seats two is available. If the care the river, the missionaries will be eaten. How	ree missionaries and three canni unibals ever outnumber the mission	bals come to a river. A
2. Let the following propositions be given. $\alpha = (A \vee B) \wedge (\neg C \vee \neg D \vee E), \\ \beta_1 = (A \vee B \vee C) \wedge (B \wedge C \wedge D \rightarrow E),$	$\beta_2 = (A \vee B) \wedge (\neg D \vee E$	·')
Draw the Venn diagram of $\alpha \rightarrow \beta_i$ for the	ose i such that $\alpha \models \beta_i$.	
3. For all formulas p,q : Is $\forall x \forall y \exists z (p(x,y) \rightarrow (p(x,z) \land p(z,y)$	$)) \models \forall x \forall y (p(x,y) \rightarrow \exists z (p(x,z)))$	(x,y) > p(z,y))?
4. (Adapted from Smullyan, TARK 1986) Our is classified as either a knight or a knave. It false ones. Any such island will be called a claim to be a knave, since no knight would be claim to be one. Our two main characters are who makes a statement to L. An accurate log a certain statement. Once the native has mat to ever decide whether N is a knight or a knaccuracy). What statement could N make to the statement could N mak	Anights make only true statement a knight-knave island. On such falsely claim to be a knave and note a logician L who visits the islandician L visits the island and meet adde this statement, it becomes logicate (if L should ever decide either the statement).	s and knaves make only an island, no native can o knave would correctly nd and meets a native N ts a native N who makes gically impossible for L
5. Let (D, W) be a closed <i>normal</i> default the (Justify your answer.)	eory. If W is consistent then is $(L$	(D, W) consistent? yes \square no \square
6. Let default theory $\Delta = (D, W)$ be defined	d as follows.	
$D = \left\{ \frac{: MA}{\neg B}, \frac{: M}{\neg B} \right\}$	$\left\{ \frac{B}{A} \right\} \qquad W = \{ \neg A \rightarrow E, E \}.$	
Define Δ 's extensions, if any. Motivate in de	tails your answer.	
7. Translate into \mathcal{ALN} "Veal-parmesan is a	meat dish with ingredient veal and	d exactly 9 ingredients."
8. Prove the following equivalences. $1. \neg (C \sqcap D) \equiv \neg C \sqcup \neg D$	$R.C \equiv \forall R. \neg C$	
9. Let ontology \mathcal{O} defined by the set of the fo	ollowing axioms and assertions:	
Person $\sqsubseteq \forall$ parent.Person, Person $\sqsubseteq \forall$ parent(PAOLO, JOHN		
1. Is $\mathcal{O} \models Adult(JOHN)$?	_	
2. What is the retrieval set $\{a \mid \mathcal{O} \models Pers\}$	$son(a)$ }?	
3. What is the realization set $\{C \mid \mathcal{O} \models C\}$	(JOHN)}?	