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The order of the names is alphabetical.  

The Logic of Defaults

• Introduction

• Language (Syntax)

• Semantics (FOL)

• Default Theories

• Reasoning Services

• Application: IHs
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Monotonic vs 
Non-Monotonic

• For all sets ! of PL/FOL formulas and for all 
PL/FOL formulas ", hold: 
1. If " ∈ ! then ! ! ".

2. If ! ! " and ! ⊆ !# then !# ! ".

• 1. reflexivity, 2. monotonicity (Minsky, 1974) 
or extension property (Hayes, 1973).

• A logic where 1.+ 2. hold is called classical.

3
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Commonsense 
Reasoninig

• Intuitively, monotonicity indicates that 
learning a new piece of knowledge cannot 
reduce the set of what is known.

• Commonsense reasoning in not monotonic:
Examples are:
- reasoning by default / use of conventions
- abductive reasoning 
- reasoning about knowledge
- belief revision

4
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Two Major Types of 
Nonmonotonicity

• Reasoning about knowledge may be:

• on incomplete knowledge or exceptions. 
This reasoning requires the use of defaults 
or conventions, e.g.:
- Closed-World Assumption (CWA)
- Negation as Failure (NasF)

• on inconsistent knowledge.This reasoning 
is belief revision as special case.

5
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Example (Tweety)
[http://en.wikipedia.org/wiki/Tweety_Bird]

• Commonsense reasoning:  most birds fly 
except for penguins, ostriches, etc. (*)

• Given a particular bird, we will conclude that 
it flies unless we happen to know that it 
satisfies one of the exceptions (*).

• How is the fact that *most* (but not all) 
birds fly to be represented?

6
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Example (Tweety)

• A non-monotonic deduction that Tweety 
does not fly is the following:
1. bird(Tweety)                           [assumed]
2. ∀x.bird(x)$flies(x)                 [assumed]

3. flies(Tweety)                 [∀Elim+MP(1,2)] 

4. penguin(Tweety)                     [assumed]
5. ¬flies(Tweety)  

• Consistent conclusion only withdrawing 3. 

7

new 
knowledge
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Example (Tweety)

• The “natural” (i.e., classical, monotonic) 
representation explicitly lists the exceptions 
to flying. In first-order logic, x flies if: 
bird(x) ∧¬penguin(x) ∧¬ostrich(x) ∧... 

• By this we cannot conclude of a ‘general’ 
bird that it can fly. 

• Consider an attempt to prove fly(Tweety)  
assuming only bird(Tweety).

8
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Example (Tweety)

• Then we must establish the subgoal: 

¬penguin(Tweety) ∧¬ostrich(Tweety) ∧... 

• This is impossible given that there is no 
further information about Tweety! 

• The problem is that we are blocked from 
concluding that Tweety can fly even if 
intuitively we want to deduce just that. 

9
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• The example shows some limits of classical 
logics (especially FOL) when applied to 
modeling of commonsense reasoning. 

• Two major limits are known as 
1. Qualification Problem. 
2. Frame Problem.

• Both motivated attacks againts classical 
logics and new work in nonmonotonic logic.

10
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Limits of Classical Logic

• A complete representation of knowledge 
makes it necessary to list all possible 
exceptions explicitly:
∀x.penguin(x) $ ¬flies(x)

∀x.ostrich(x) $ ¬flies(x)  

... (possibly infinitely many formulas!)

• Equivalently, write the infinite formula:
∀x.(penguin(x) ∨ ostrich(x) ∨ ...)$¬flies(x).

11
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Limits of Classical Logic
(Qualification Problem)

• This is beyond the expressivity power of 
FOL (infinite formulas are not allowed!)

• Even if a complete list of exceptions is 
available, and infinitary formulas are allowed 
(FOL extended), still we have to prove that 
Tweety is not a penguin, not a ostrich, etc.

• This is impossible, we have not a complete 
information on Tweety.

12
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Limits of Classical Logic
(Qualification Problem)



Default Logic 
(R. Reiter, 1939-2002)

• In A Logic of Default Reasoning (1980):  A non-
monotonic logic is a formal logic whose 
consequence relation is not monotonic.

• In the absence of any information to the 
contrary, default logic assumes that 
reasoning patterns are a form of plausible 
inference, where typically conclusions must 
be drawn despite the absence of total 
knowledge about the world. 

13
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Language (Syntax)

• From the standpoint of language, Reiter’s 
Default Logic (DfL) has nothing new. 

• The language of DfL is a (classical) first-
order language., i.e. a set of formulas (wff’s) 
over a FO-alphabet %.

• In addition to FO-formulas, the language of 
default logic employs defaults, i.e. special 
kinds of inference rules.

14
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Semantics

• In his development of default logic, Ray 
Reiter provided a kind of “fixed-point 
semantics,” i.e. a characterization of the 
extensions of a default theory.

• A reason for this is that default logic has 
attracted attention mainly as a formal 
system, i.e., the proof-theory side of a logic 
for nonmonotonic reasoning.

15
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Semantics

• In this lecture we do not present any of the 
many (model-theoretic) semantics (e.g., 
stable models) available for default logic. 

• We will focus on the original ‘semantics’, and 
present Reiter’s fixed-point characterization 
of the extensions of a default theory as a 
kind of (not model-theoretic) semantics. 

• We proceed mostly by examples.

16
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Default Reasoning with 
Incomplete Knowledge

17

Example (Tweety, cont’)

• We need to allow Tweety to fly by default. 

• The default is interpreted as: 
‘If x is a bird, then in the absence of any 
other information, infer that x can fly.’ 

• Problem:  How do we interpret “in the 
absence of any other information”?

• Solution: “It is consistent to assume that”.

18
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Example (Tweety, cont’)

• According to Reiter, we can rewrite 

‘If x is a bird, then in the absence of any 
other information, infer that x can fly’ 

as follows: 

‘If x is a bird and it is consistent to assume 
that x can fly, then infer that x can fly.’ 

19
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• To model 

‘If x is a bird and it is consistent to assume 
that x can fly, then infer that x can fly’ 

we can use a ‘default rule’ like this:

where     is read “it is consistent to assume”.

Example (Tweety, cont’)

20

M

bird(x) : Mfly(x)

fly(x)
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Defaults as
Fuzzy Quantifiers

• In Tweety’s example we defined a default to 
represent the “fuzzy quantifier” almost all.

• Similarly, we may define a rule to represent 
the dual “fuzzy quantifier few”.

• For example,

21

Italian(x) : M¬ readbooks(x)

¬ readbooks(x)
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General Defaults
(Definition)

• A default for a first-order language L is any 
expression (inference rule) of the form 

where &(x) (prerequisite), '1(x),...,'m(x) and 
w(x) (consequent) are wff’s of L whose 
variables are among those of x = x1, ..., xn, 
and ( is the default’s name (optional).

22

α(x) : Mβ1(x), ..., Mβm(x)

w(x)
ρ
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Closed Defaults
(Definition)

• A default for a first-order language L

is closed if all &(x), '1(x),...,'m(x), w(x) are 
closed formulas (&(x)=&, 'i(x)='i, w(x)=w).

(Recall that a wff is closed (L-sentence) if it 
contains no free variables, e.g. course(LDKR).

23

α(x) : Mβ1(x), ..., Mβm(x)

w(x)
ρ
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Normal Defaults
(Definition)

• A normal default is a default of the form

where &(x), w(x) are FO-formulas.

• Defaults in the examples so far are normal.

24

α(x) : Mw(x)

w(x)
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Conventions

• Conventions are special kind of defaults.

• Example: if there is no train connection on 
the timetable, then there is none. 

• Economical and convenient: conventions 
make the exchange of information efficient.

• Usually left implicit. 

• Example: no extra-note on the timetable!

25
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The CWA

• The Closed-World Assumption is the most 
known convention in database design.
[Reiter, “On closed world data bases”, 1978]

• It says that an argument " derives from ! if                  
                 
                   ! ∪ Ass(!) !", 

where Ass(!) = {¬) | ) atomic, ! " )}.

26
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Example
(Timetable)

• Let us have a train timetable (i.e. a relational 
database). Let T be its FO-representation.

• T is a set of formulas, precisely a deductively 
closed (i.e. Th(T)=T) FO-theory with 
relations (i.e., the timetable’s rows) of the 
form:
                 connection(x, y, t) 

(i.e.: “there is a train from x to y at time t”). 

27
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Example
(Timetable, cont’)

• Assume that there is no information on the 
timetable about trains from Trento to Milan 
at 10 a.m. Modulo notation, this means that

1. connection(TN, MI, 10am) is not in T.

That is (recall that T is deductively closed):

2. T " connection(TN, MI, 10am).

28
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Example
(Timetable, cont’)

• Question: what’d tell us a system based on T 
about trains from Trento to Milan at 10 a.m.?

• Classical answer (no conventions used): ?

• T is incomplete (as it is the timetable), 
no more information is available.

• Solution: make use of conventions. 

• In particular, use the CWA!

29
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Example
(Timetable, cont’)

• Assume the CWA, so define the set
Ass(T) = {¬) | ) atomic, T " )}. 

• Since T " connection(TN, MI, 10am), 
it follows that
¬connection(TN, MI, 10am) ∈ Ass(T), i.e.

T ∪ Ass(T) ! ¬connection(TN, MI, 10am)

• Using the CWA, the timetable is completed!

30
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Default Rule for CWA

• Definition. Let R be an n-ary predicate 
symbol of a FO-language L with variables 
{x1, x2, ... xn}. The following default rule

is called closed-world default rule for R.

• The rule says one can conclude (or believe) 
¬R(x, ..., x) whenever it is consistent to 
assume (or believe) so. 

31

: M¬R(x1, ..., xn)

¬R(x1, ..., xn)
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Default Rule for CWA

• The meta-rule 

is formalized by the (logical) default rule

where consistency is checked in theory   .

32

¬ connection(x1, x2, x3) ∈ Ass(T )

T ∪ Ass(T )#¬ connection(x1, x2, x3)

: M¬ connection(x1, x2, x3)

¬ connection(x1, x2, x3)

T
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Negation as Failure 
(NasF)

• Negation as Failure (NasF) is the most 
known convention in logic programming.
[Keith Clark, “Negation as Failure”, 1978]

• Informally, it says that the negation of an 
argument " derives from ! if " does not 
derive from ! (or: ! fails to derive "). 

33
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Example
(Airline Flight Schedule)
• Consider a (relational) database system of 

an airline flight schedule, and  let DB be its 
first-order formalization (DB = FO-theory).

• Now consider the query ‘Does Alitalia flight 
205 connect Milan with Rome?’ 

• To answer, the system will attempt to derive 
(“prove”) a proposition representing the 
query, say connect(AZ205, MI, RM). 

34
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Example
(Airline Flight Schedule)

• If the proof succeeds, the system will 
respond “yes”. 

• If the proof fails, the system will typically 
respond “no”, that is, it will derive the 
negation of the query 

          ¬connect(AZ205, MI, RM). 

35
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Negation as Failure 
(a meta-proof rule)

• Negation as failure can be seen as a meta-
proof rule of the form

where " is any argument (proposition).

• This meta-proof rule was called negation as 
failure by Keith Clark (see Clark, 1978).

36

!" Ψ

¬Ψ
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Default Rule for 
Negation as Failure

• Definition. Let " be any classical formula 
(e.g. a PL- or FO-formula). The following 
default

is called negation-as-failure default rule.

• The rule says one can conclude (or believe) 
¬R(x, ..., x) whenever it is consistent to 
assume (or believe) so.

37

: M¬Ψ

¬Ψ
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Default Rule for NasF
(Example, cont’)

• Negation-as-failure meta-proof rule 

is formalized by the (logical) default rule

where consistency is checked in DB .

38

: M¬ connect(x, y, z)

¬ connect(x, y, z)

DB !" connect(x, y, z)

¬ connect(x, y, z)
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Default Reasoning with 
Inconsistent Knowledge

and Beliefs

39

Defaults and 
Belief Revision

• Defaults produce formulas that extend T. 

• These formulas are interpreted as beliefs 
about the world formalized (not completely) 
by a classical, first-order theory T. 

• Problem: Defaults produce many extensions 
of the theory T (see the next Example).

40
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Example 
(Spouse, Reiter 1980)

41

1. A person’s hometown is that of his/her 
spouse:

2. A person’s hometown is where his/her 
employer is located:

spouse(x, y)∧ hometown(y) = z : Mhometown(x) = z

hometown(x) = z

employer(x, y)∧ location(y) = z : Mhometown(x) = z

hometown(x) = z
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Example 
(Spouse, cont’)

42

• Now suppose that Mary’s spouse lives in 
Toronto while her employer is located in 
Vancouver.  Then:

• By1, Mary’s hometown is Toronto.

• By 2, Mary’s hometown is Vancouver. 

• Remark 1: to believe both is inconsistent, 
since ‘hometown’ is a function!
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Example 
(Spouse, cont’)

43

• Note that to believe both is inconsistent, 
since ‘hometown’ is a function! 

• If first we derive Toronto then we are 
blocked to use default 2 and derive 
Vancouver, and vice versa.

• It makes sense either to believe that Mary’s 
hometown is Toronto or that Mary’s 
hometown is Vancouver, but not both. 
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Take-away Point

44

• The example points out that, from the 
interpretation that default assumptions lead 
to beliefs, defaults can sanction different sets 
of beliefs about a not completely know or 
inconsistent world.

• In general, defaults can sanction different 
extensions of a (usually incomplete) theory.
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Defaults and 
Classical Theories

• Problem 1: We know defaults may produce 
many extensions of a classical theory.

• Problem 2: Defaults may produce no 
extensions of a classical theory.

• Example: Suppose the set of defaults is 
D = { : MP/¬P } for a proposition P. It is easy 
to see that D does not generate extensions.

45
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Defaults and 
Classical Theories

• Problem 3: Defaults may produce  
inconsistent extensions of a classical theory.

• Example: Suppose that the classical theory is 
T = {P ∨ Q}. Consider two defaults 

D = { : M¬P/¬P : M¬Q/¬Q}.

D generates an extension {¬P,¬Q}. Clearly, 
the new theory T∪{¬P,¬Q} is inconsistent.

46
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Default Theories
(Definitions)

• Def 1. Let L be a first-order language. A 
default theory of L is a pair (D, W), where:

• D is a (finite) set of defaults on L ;

• W is a (finite, or computable) L-theory 
(i.e. a set of sentences or closed wffs of L). 

• Def 2. A default theory (D, W) is closed if 
every default in D is closed. 

47
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Extensions of a 
Closed Default Theory
• An extension E of a theory W (“world”): 

1. contains W (i.e. W ⊆ E). 

2. is deductively closed (i.e. Th(E) = E). 
3. For every closed default

if & ∈ E and ¬'1, ..., ¬'m ∉ E (i.e. each '1,..., 

'm is consistent with E), then w ∈ E. 

48

α : Mβ1, ..., Mβm

w
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Extensions of a 
Closed Default Theory
• Theorem. [Reiter, 1980] Let !=(D, W) be a 

closed default theory of L and let E be a set 
of L-sentences.
1. E0 = W. 
2. For all i ∈ N and all j<m, Ei+1 = Th(Ei) ∪ 

{w | (&: M'1, ...,M'm/w)∈D, &∈Ei, ¬'j ∈ E}. 

E is an extension for ! iff E = ∪i ∈N Ei. 

49
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Default Extensions
(Examples)

• Let default theory ! = (D, W) be defined as 

D = { : MA/A, : MB/B, : MC/C }
W = {B $(¬A∧¬C)}. 

! has two extensions: 

E1= Th(W ∪ {A, C}) and 

E2= Th(W ∪ {B}).

50
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Default Extensions
(Examples, cont’)

• Let default theory ! = (D, W) be defined as

D = { : MA/¬B, : MB/¬C, : MC/¬F}
W = ∅. 

! has one extension: E = Th({¬ B, ¬F}).

(To see this observe that neither A nor ¬A 
can be derived by using the available defaults 
in D; thus A is consistent in E0= W.)

51
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Default Extensions
(Examples, cont’)

• Let default theory ! = (D, W) be defined as

D = { : MA/¬B, : MB/¬A }
W = ∅. 

! has two extensions: 

E1 = Th({¬ A}) and 
E2 = Th({¬B}). 

52
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Default Extensions
(Examples, cont’)

• Let default theory ! = (D, W) be defined as

D ={A : M∃xP(x)/∃xP(x), : MA/A, : M¬A/¬A}

W = ∅. 

! has two extensions: 

E1 = Th({¬ A}) and 
E2 = Th({A, ∃xP(x)}). 

53
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Normal Default 
Theories

• Definition. Let L be a first-order language. A 
normal default theory of L is a pair (D, W), 
where:

• D is a (finite) set of normal defaults on L ;

• W is a (finite, or computable) L-theory 
(i.e. a set of sentences or closed wffs of L). 

• Theorem. [Reiter, 1980] Every closed normal 
default theory has an extension. 

54
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Application to 
Inheritance Hierarchies

55

Motivation

• By using default logic we can give a precise 
formal semantics to semantic networks.

• Inheritance hierarchies (IHs) with 
exceptions are a kind of semantic network.

• Default logic provides a formal semantics to 
IHs with exceptions in the same spirit first-
order logic does for inheritance hierarchies 
without exceptions and ontologies.

56
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Inheritance Hierarchies
(without exceptions)

• Definition. An inheritance hierarchy (or 
network) without exceptions is a directed, 
acyclic graph composed by nodes and links; 

• nodes represent individuals and classes, 

• links represent relations with no 
exceptions between nodes; these links are 
called strict, or monotonic.

• There are several kinds of links.

57
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IHs without exceptions
(IS-A/Not-IS-A Links)

• The most important links are IS-A links:
‘A IS-A B’ 
and NOT-IS-A links: 

‘A NOT-IS-A B’
for A, B be any two nodes of the hierarchy.

• Other important links are PART-OF links.

• IHs with these links are called bipolar. 

58
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• An IH without exceptions is a taxonomy 
organized by the IS-A relation according to 
IS-A and, optionally, NOT-IS-A links, e.g.:

Example

(Etherington & Reiter, 1983)

59
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• A first-order theory TIH for the inheritance 
hierarchy IH about animals contains the 
following formulas (axioms) to represent 
subsumption of concepts and inheritance:

∀x (poodle(x)$dog(x)) 

∀x (dog(x)$mammal(x)) 

∀x (mammal(x)$animal(x)) 

Example (cont’)

60
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• Theory TIH consisting of above axioms is 
incomplete with respect to the expected 
semantics of the inheritance hierarchy IH. 

• Further formulas could be added to model 
the conventional knowledge that immediate 
subclasses of a node are mutually disjoint: 
∀x (mammal(x)$¬reptile(x)) 

∀x (mammal(x)$¬insect(x)) ... 

Example (cont’)

61
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Logical Features of IHs
(1)

• Labels of nodes of an IH without exceptions 
are unary predicate symbols. 

• For example, ANIMAL = animal(x)

• Inheritance is a logical property

• modeled by repeated application of mp:

poodle(Fido)

∀x (poodle(x)→ dog(x))

poodle(Fido)→ dog(Fido)
∀E

dog(Fido)
mp

∀x (dog(x)→mammal(x))

dog(Fido)→mammal(Fido)
∀E

mammal(Fido)
mp

62
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Logical Features of IHs
(2)

• Inheritance as a classical (FO) logical 
property does not admits exceptions!

• For example, the derivation 

         poodle(Fido) ! animal(Fido) 

holds even if for some reason Fido enjoys 
other properties.

63
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Inheritance Hierarchies
(with exceptions)

• Definition. An inheritance hierarchy with 
exceptions is an inheritance hierarchy  
whose set of links is enriched with a set of 
(new) links which represent relations with 
exceptions between nodes.

• The additional links are called default links.

64
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IHs with exceptions
(Default-IS-A Links)

• The most important links are default-IS-A 
links: ‘Typically A IS-A B’ 

and default-NOT-IS-A links: 
‘Typically A NOT-IS-A B’

for A, B be any two nodes of the hierarchy.

• IHs with these links are called bipolar. 

65

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

• An IH with exceptions is a
taxonomy organized by the 
IS-A relation and default IS-A 
relations  according to 
IS-A/NOT-IS-A and default 
IS-A/NOT-IS-A links.

• The inheritance hierarchy 
whose semantics is given by 
default theory about elephants,
albino elephants, and Fred,
is illustrated on the right.

66

Example
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Example (Tweety, cont’) 

• Let’s consider a default theory ! = (D, W): 

D = {                          }, 

W = {∀x penguin(x)$bird(x), 

∀x penguin(x)$¬fly(x), penguin(Tweety)}.

67

bird(x) : Mfly(x)

fly(x)
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• The inheritance hierarchy 
corresponding to such default 
theory is illustrated on the 
right.

68

Example (Tweety, cont’)
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IHs Links and Logic
(Summary, 1)

We fix the correspondence between links of 
an inheritance hierarchy with exceptions and 
first-order formulas and defaults.

1. Strict IS-A:  ∀x (A(x)$B(x) 

(read: “A’s are always B’s”) 

2. Strict NOT-IS-A: ∀x (A(x)$¬B(x) 

(read: “A’s are never B’s”)

69

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

IHs Links and Logic
(Summary, 2)

3. Default-IS-A: 
 

(“Typically A’s are B’s, with exceptions”) 

4. Default-NOT-IS-A: 

(“Typically A’s are not B’s, with exceptions”) 
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A(x) : MB(x)

B(x)

A(x) : M¬B(x)

¬B(x)

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

Summary

• Default logic can be used to model:

• exceptions (Ex: Tweety)

• conventions (Ex: timetable, CWA)

• belief revision (Ex: Spouse)

• negation as failure (Ex: AirFlights)

• inheritance hierarchies with exceptions
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• Books:
- G. Brewka, Nonmonotonic reasoning: Logical Foundations of 
Commonsense. Cambridge University Press, 1991. 
- G. Antoniou and M.A. Williams, Nonmonotonic reasoning. 
The MIT Press, 1997.
- D. Makinson, Bridges from Classical to Nonmonotonic Logic. 
King’s College Publications, London, UK, 2005.

• Papers &  Links (if any):
- http://dit.unitn.it/~ldkr#Biblio/

Some Resources
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