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Overview

• Description Logics (DLs) is a family of KR 
formalisms that represent the knowledge of 
an application domain (“the world”) by

• defining the relevant concepts of the 
domain (i.e., its terminology), and then

• using these concepts to specify the 
properties of objects in the domain (i.e., 
the world’s description). 
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Terminology

• Previously used names for DLs are: 

• terminological knowledge representation 
languages, 

• concept languages, 

• term subsumption languages, 

• Kl-One-based knowledge representation 
languages.
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Some History on DLs

• Descended from the “structured inheritance 
networks” (Brachman, 1977).

• Introduced to overcome the ambiguities of 
early semantic networks and frames.

• First realized in the system Kl-One by 
Brachman and Schmolze (1985).

• First DL presented in the B & S’s paper.

5
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Three Basic Features

1. The basic syntactic building blocks are 
atomic concepts, atomic roles, individuals. 

2. The expressive power of DLs is restricted 
to a rather small set of constructors for 
building complex concepts and relations.

3. Implicit knowledge about concepts and 
individuals can be inferred automatically 
with the help of specific reasoning services.

6
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Language

7

Language (Syntax)

• The first step in setting up a formal language 
(viz. a descriptive language) is to list the 
symbols, that is, the alphabet of symbols. 

• We denote a generic alphabet of a 
descriptive (or ‘description’) language: d!.

• Similarly to any logical language we can 
divide symbols in d! in ‘descriptive’ 
(nonlogical) and ‘non-descriptive’ (logical).

8
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Language (Syntax)

• Descriptive d! consists of concept names 
(set C), which denote sets of individuals, role 
names (set R), which denote binary relations 
between individuals, and individual names, 
(set I), which denote individuals. 

• Example:
concept names: Room, Person, Fruit
role names: likeSkiing, hasChild, partOf, isA,..
individual names: I, you, apple, Fido, ...

9
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DL Language and
Previous Languages

• concept names are propositional variables 

• (PL/ClassL) 

• role names are binary predicate symbols

• (FOL) 

• individual names are constants

• (FOL)

10
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• Strictly speaking we do not need DLs to 
represent concepts and roles, 

• but the variable-free syntax of DLs is 
much more concise! 

• That’s good for automation!! 

Remark
FOL versus DLs

11
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Language (Syntax)

• Non-descriptive d! provides concept 
constructors to build complex formulas, 
called concept descriptions and role 
descriptions, from atomic formulas. 

• Example: 

¬ (negation),  ! (conjunction)
∀ (for all), ∃ (there exists) 

12

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 



AL-family Languages

• We shall now discuss various descriptive 
languages from the family of AL-languages. 

• An AL-language (= Attributive Languages) is 
a minimal DL language of practical interest. 

• More expressive descriptive languages are 
usually extensions of some AL-language. 

• AL-languages do not deal with individuals. 

13

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

AL Logical Symbols 

• 1. Universal concept symbol: !.
2. Bottom concept symbol: ⊥.

• 3. Logical constants (concept constructors):
¬ (atomic negation),  ! (conjunction)
∀R (for all atomic roles)

∃R (there exists an atomic role) 

• 4. Parentheses (auxiliary symbols): (, ) 

14
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AL Non-logical Symbols

• 5. Atomic concept names: A, B, ... 

• 6. Atomic role names: R (generic) 

• 7. Concept names: C, D, ... 

• Remark. There is no logical symbol in AL for 
logical implication (as ‘"’ in PL and in FOL). 
For, we will use the subsumption symbol ‘"’ 
instead (as in classL).

15
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Defined Symbols

• Similarly to ClassL, !and ⊥ can be defined:

• For all concept names C, 

• ⊥ =df C ! ¬C

• !=df ¬⊥  or also !=df U 

for U be a special coincept name denoting 
the Universal Concept.

• We prefer to consider!and ⊥ AL’ symbols.

16
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Formation Rules for AL

• Atomic Concepts: 1. A, B,..., ⊥, !. 

• Concepts (concept descriptions): 
2. All the atomic concepts
3.¬A for A (atomic concept negation)
4. C!D (intersection) 
5. ∀R.C (value restriction)

6. ∃R.!(limited existential quantification) 

• Resulting language: attributive language (AL).

17
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Examples

• Atomic concepts: Person, Female, Room, ...
Atomic roles:  hasChild, partOf, isIn, isA,...

• Concepts: Person ! Female,
Person ! ∃hasChild.!            ( ∃hasChild )

Person ! ∀hasChild.⊥  (Not:¬∃hasChild.!) 

Person ! ∀hasChild.¬Female 

• Question: What is the intended meaning?

18
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Examples (cont’)

• Person ! Female    “persons that are female”

• Person ! ∃hasChild.!

           “(all those) persons that have a child” 

• Person ! ∀hasChild.⊥ 

            “(all those) persons without a child” 

• Person ! ∀hasChild.Female 

    “persons all of whose children are female”

19
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AL’s Extensions - ALU

• Extended Alphabet: 
Logical constants (concept constructors):
   (disjunction).

• Extended concepts (descriptions): 
C   D (union) 

• The resulting new language (i.e. AL plus the 
new set of concepts) usually denoted ALU.

20
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AL’s Extensions - ALE

• Extended Alphabet: 
Logical constants (concept constructors):
∃R (there exists an arbitrary role) 

• Extended concepts (descriptions): 
∃R.C (full existential quantification) 

• The resulting new language (i.e. AL plus the 
new set of concepts) usually denoted ALE. 

21
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AL’s Extensions - ALN

• Extended Alphabet: 
Logical constants (concept constructors):
!n, "n for all n ∈ N (at-least/at-most n)

• Extended concepts (descriptions): 
!nR (at-least number restriction)
"nR (at-most number restriction)

• The resulting new language (i.e. AL plus the 
new set of concepts) usually denoted ALN. 

22
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AL’s Extensions - ALC

• Extended Alphabet: 
Logical constants (concept constructors):
¬ (general negation)

• Extended concepts (descriptions): 
¬C (full concept negation)

• The resulting new language (i.e. AL plus the 
new set of concepts) usually denoted ALC. 
(C stands for “Complement”).

23
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AL’s Extensions 
(Summary)

• Extending AL by any subsets of the above 
constructors yields a particular DL language.

• Each language is denoted by a string of the 
form AL[U][E][N][C], where a letter in the 
name stands for the presence of the 
corresponding constructor. Notation: AL*.

• ALC as the most important in many aspects.
(We’ll see that ALU ⊆ ALC and ALE ⊆ ALC.) 

24
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AL’s Contractions 

• Contracting AL by eliminating any subsets of 
symbols yields a particular DL language.

• The most important language obtained by 
contraction of a language in the AL family is 
the language of class logic (see next slide).

• Historically, another important contraction 
defines the Frame Language FL0.

25

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

ALC’s Contraction: 
The Language of ClassL
• Contracted Alphabet (w.r.t. ALUEC!): 

Logical constants (concept constructors):
∀R, ∃R (quantifiers on arbitrary roles)

• Contracted concepts (descriptions): 
∀R.C, ∃R.C (∀,∃ quantifications)

• The new language is a propositional 
description language. Such language is 
exactly our class propositional language.

26
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AL’s Contractions: FL-

• Contracted Alphabet (w.r.t AL’s alphabet): 
Universal and bottom symbols: !, ⊥.

Logical constants (concept constructors):
¬ (atomic negation)

• Contracted concepts (descriptions): 
!, ⊥ ,¬A (atomic negation)

• The resulting new language (i.e. AL without 
the contracted concepts) is denoted: FL-.  

27

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

AL’s Contractions: FL0

• Contracted Alphabet (w.r.t FL-’s alphabet): 
Logical constants (concept constructors):
∃R (there exists an atomic role)

• Contracted concepts (descriptions): 
∃R.!(limited existential quantification)

• The resulting new language (i.e. FL- without 
the contracted concepts) is denoted: FL0. 

• FL = Frame Language (for historical reasons)

28
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• DLs are a family of logic-based KR 
formalisms to describe a domain in terms of 
- concepts - roles - individuals (“grounding”)

• Strictly speaking we do not need DLs to 
represent concepts and roles, but the 
variable-free syntax of DLs is much more 
concise! (That’s good for automation!) 

• Class language is ALC without quantification.

Summary

29
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Semantics

30



Semantics

• The elements of the description languages in 
AL-family (AL*) are plain strings of symbols

       without a formal meaning

• The meaning which is intended to be 
attached to concept, role, and individual 
names form an informal interpretation of the 
given AL* language’s expressions.

31
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DL Interpretations
AL* Interpretation (#,I)
• DL languages (AL* for us now) have a formal 

semantics defined in terms of  DL 
interpretations over a domain of “objects”.

• Definition. An interpretation of an AL* 
language L is a pair I = (#,I), where:
- # (domain) is a non-empty set of objects 
- I (interpretation function) is a mapping 
from L to # defined as follows.
                                     (see the next slide)
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AL* Interpretation (#,I)
(Definition, cont’)

• I(⊥) = ∅ and I(!) = # (domain, “Universe”)

• For every individual name a of L, I(a) ∈ #.

• For every concept name A of L, I(A) ⊆ #.

• For every role name R of L, I(R) ⊆ # $ #.

• I(¬C) = # \ I(C). 

• I(C!D) = I(C) ∩ I(D); I(C   D) = I(C) ∪ I(D).

33
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AL* Interpretation (#,I)
(Definition, cont’)

• I(∀R.C) = 

= {a ∈ # | for all b, if (a,b)∈I(R) then b∈I(C)}. 

• I(∃R.!) = {a ∈ # | exists b s.t. (a,b) ∈ I(R)}.

• I(∃R.C) = 

= {a ∈ # | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)}. 

• I(!nR) = {a ∈ # | |{b | (a, b) ∈ I(R)}| ! n}. 

• I("nR) = {a ∈ # | |{b | (a, b) ∈ I(R)}| " n}.

34

AL* Interpretation (#,I)

• I(∀R.C) = 

= {a ∈ # | for all b, if (a,b)∈I(R) then b∈I(C)}

• Remark: a ∈ #

35

b I(C)

a if (a,b)  ∈I(R) 

 b'
  b''

if (a,b') ∈I(R) 
if (a,b'') ∈I(R) 
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Example

• I(∀R.C) = I(∀hasChild.Female) = 

= {a ∈ # | for all b, if (a,b)∈I(R) then b∈I(C)}

36

b I(C)

a if a has a child b, b is a female 

 b'
  b''

if a has a child b', b' is a female 
if a has a child b'', b'' is a female 
if ...
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AL* Interpretation (#,I)

• I(∃R.C) = 

= {a ∈ # | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)} 

• Remark: a ∈ #

37

b I(C)

a (a,b)∈I(R) 
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Example

• I(∃R.C) = I(∃hasChild.Female) = 

= {a ∈ # | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)} 

38

b I(C)

a a has a child b and b is a female 
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AL* Interpretation (#,I)

• I(!nR) =
= {a ∈ # |  ||{b : (a, b) ∈ I(R)}|| ! n } 

39

#

a
||{b, b', b''... : (a,b) ∈ I(R)}|| ! n 

b
 b'
  b''

(a,b') ∈ I(R)
(a,b'') ∈ I(R)
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Example

• I(!nR) = I(!2hasChild) =
= {a ∈ # |  ||{b : (a, b) ∈ I(R)}|| ! n } 

40

#

a
a’s children {b, b', b''...} are ! 2 

b
 b'
  b''
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AL* Interpretation (#,I)

• I("nR) =
= {a ∈ # |  ||{b : (a, b) ∈ I(R)}|| "n } 

41

#

a
||{b, b', b''... : (a,b) ∈ I(R)}|| "n 

b
 b'
  b''

(a,b') ∈ I(R)
(a,b'') ∈ I(R)
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Example

• I("nR) = I("2hasChild) =
= {a ∈ # |  ||{b : (a, b) ∈ I(R)}|| ! n } 

42

#

a
a’s children {b, b', b''...} are " 2 

b
 b'
  b''

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 



Simple Exercise

• Verify the following equivalences hold 
for all interpretations (#,I):

• I(¬(C!D)) = I(¬C   ¬D)

• I(¬(C   D)) = I(¬C!¬D)

• I(¬∀R.C) = I(∃R.¬C)

• I(¬∃R.C) = I(∀R.¬C) 

43
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Concept Equivalence

• Definition. Concepts C, D are equivalent 
(C≡D), if I(C) = I(D) for all interpretations I.

• Example: 
1. ∀hasChild.Female !∀hasChild.Student 

2. ∀hasChild.Female ! Student

• Exercise: Prove that 1 and 2 are equivalent.

• Notation: For I = (#,I), CI in place of I(C).

44
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Exercise (Solution)

• I(∀hasChild.F !∀hasChild.S) =

= I(∀hasChild.F) ∩ I(∀hasChild.S)

= {a∈# | for all b, if (a,b)∈I(hasChild) then 

b∈I(F)} ∩ {a∈#| for all b, if (a,b)∈I(hasChild) 

then b∈I(S)}

= {a ∈ # | for all b, if (a,b)∈I(hasChild) then 

b∈I(F ! S)}

45
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Correspondence 
Theorems

46

• The semantics of concepts identifies DL 
(AL*) languages as fragments of FOL:

• a DL interpretation (#,I) assigns to every 
atomic concept or role a unary or binary 
relation over #, respectively,

• so one can think of atomic concepts and 
roles as unary and binary predicates.

DL vs. FOL 
Concepts as Predicates

47
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DL vs. FOL (cont’)

• Strictly speaking we do not need DLs to 
represent concepts and roles, but the 
variable-free syntax of DLs is much more 
concise! (That’s good for automation!)

• Any concept description C can be translated 
effectively into a predicate logic formula 
C(x), which has one free variable, such that 
for all (#,I), the set of elements of #  
satisfying C(x) is exactly I(C). 

48
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We define an effective mapping # from AL-
concepts to FO-formulas (wffs) as follows:
i. #(⊥) = ⊥, ii. #(!) = !

iii. #(A) = A(x) (A atomic, x free variable in A)

iv. #(¬C) = ¬#(C)

v. #(C!D) = #(C)∧#(D)

vi. #(C   D) = #(C)∨#(D) 

Correspondence to 
FOL (I)

49
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vii. Let C(x) a wff (x the only free variable).

#(∀R.C) = ∀x(R(y, x)"C(x)) (y new variable)

viii. Let C(x) a wff (x the only free variable).

#(∃R.C) = ∃x(R(y, x)∧C(x)) (y new variable)

ix. ... [see the next slide]

Correspondence to 
FOL (2)

50
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ix. #(!nR) = 

∃y1...∃ynR(x, y1)∧...∧R(x, yn)∧i<j ¬(yi " yj).

                                    Note: “"” is needed

x. #("nR) = ...

• Exercise: define #("nR).
           

Correspondence to 
FOL (3)

51
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Correspondence to 
FOL (4)

• Definition. An AL-concept C is coherent if 
there is an interpretation (#,I) s.t. I(C) is 
nonempty. (#,I) is called a model of C.

• Theorem. For every AL-concept C, C is 
coherent iff FO-formula #(C) is satisfiable 
(i.e. #(C) has a FO-model). 

Proof: Immediate from the definition of # and 
the semantics of AL*.

52
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Knowledge Bases
TBox + ABox

53

Knowledge and
DL-KB Systems

• In PL, ClassL, and FOL a KB is a theory, i.e.
a set of propositions / closed predicates

• The first question to answer for a DL-based 
KB system is: what is a DL-KB?

• if sentence = concept then a DL-KB is a 
“DL-theory” i.e. a set of concepts. True?

• Strictly speaking: No. Conceptually: Yes.

54
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DL-based KB system
(Architecture)

Programs

Description 

Language

TBox

ABox

KB

Reasoning

RulesApplication

(Baader & Nutt, 2002)

55
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DL Knowledge Base
(TBox)

• Definition. A DL knowledge base is a pair
KB = (TBox, ABox), where:

i. TBox, called terminological box, is a finite 
set of ‘expressions’ describing concepts and 
roles hierarchies, i.e.  relations between 
concepts and relations between roles).

ii. see the next slide

56
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DL Knowledge Base
(Abox)

• Definition (cont’). A DL knowledge base is a 
pair KB = (TBox, ABox), where:

i. see the previous slide

ii. ABox, called assertional box, is a finite set 
of ‘ground expressions’ asserting the relations 
between individuals and concepts or roles. 

57
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DL Knowledge Base
(Three Remarks)

• Remark 1. A TBox expresses intensional 
knowledge about concepts and relations.

• Remark 2. An ABox expresses extensional 
knowledge about individual objects. 

• Remark 3. Because of an ABox refers to 
individual objects (of the domain #), the 
expressions of  an ABox are grounded (on #). 

58
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Terminological Box
(TBox)

59

TBox
Definition

• Definition. A TBox is a set of expressions, 
called terminological axioms, of this forms:

General inclusion axioms:
C"D | concept inclusion
Role axioms:
R"S   | role inclusion
Equivalence axioms:
C≡D (R≡S) | concept/role equivalence

60
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TBox
Example

• General inclusion axioms:
C"D:   Arm"∃isPartOf.Body, 

Body"∃isDirectPartOf.Human!"2hasArm

• Role axioms:
R"S:   isDirectPartOf " isPartOf

• Equivalence axioms:
C≡D:   Men ≡ Person!Male

61
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A TBox for UniTn
(Example)

• TBox = { DISI " ∃isPartOf.UniTn, 

UniTn " ∃isPartOf.ItalianEdu,

UniTn " "4hasLocation, 
DISI ≡ exDIT

FacScience ≡ {DISI} # {MAT} # {PH} # ...

DISI ≡ Research ! Education ! ¬Profit }

62
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TBox 
(Descriptive) Semantics
• Definition.  (1) A DL interpretation (#,I) 

satisfies 
i. C " D (R " S) if I(C) ⊆ I(D) (I(R) ⊆ I(S)); 

ii. C ≡ D (R ≡ S) if I(C) = I(D) (I(R) = I(S)).

(2) (#,I) satisfies a Tbox T if (#,I) satisfies all 
the axioms in T.

• Remark. Thus, semantically, we have that 
C " D and D " C iff C ≡ D for all C,D.

63
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TBox - Definitions

• Definition. Equivalence axioms of the form 
A≡C with A atomic are called definitions. 

• Remark 1. Definitions are used to 
introduce symbolic names to shorten 
complex descriptions (abbreviations).

• Remark 2. Definitions are typical of frame 
systems from which DLs originate. 
[Think of FL- and FL0 languages (1984).]

64
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Taxonomy
(Definition)

• From the Greek: #$%&', taxis, i.e. 'order' 

• A taxonomy (of concepts) T is a partially 
ordered set (of concepts) such that: 
(a) there is no more than one definition for a 
concept in T, 
(b) each definition is acyclic, i.e., concepts in T 
are neither defined in terms of themselves 
nor in terms of other concepts that refer to 
them via a chain of definitions.
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DL Taxonomy

• A taxonomy is the minimal relation in the 
space of concepts s.t. its reflexive-transitive 
closure is the subsumption relation.

66
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DL Taxonomy

• A DL taxonomy is a taxonomy of concepts 
ordered by a subsumption relation.

• Example (Franconi):

Note the
arrows’ direction - there are no cycles!

67
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DL Taxonomy
(Example)

• A taxonomy of docs policy at DIT is:
{ ICT " UniTn, Student " ICT, Faculty " ICT, 
Student ≡ PhD   ¬College,

Public " DIT, Internal " DIT,
Internal ≡ ¬Public; 

ICT " ∃readDocs.DIT; 

Student " ∀readDocs.Public} 

68
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Assertional Box
(ABox)

69

ABox
Definition

• Definition. An ABox is a set of expressions, 
called individual axioms or assertions:

C(a) | concept assertion
R(b, c) | role assertion

where a, b, c are individual names.

• Alternative notation: 
‘a : C’ for C(a), ‘(b, c) : R’ for R(b, c).

70

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

ABox 
Example

• Concept assertions:

C(a):   Men(John)

• Role assertions:

R(b, c):   isPartOf(head,John) 

71
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ABox
(Descriptive) Semantics
• Definition. (1) A DL interpretation (#,I) 

satisfies  
i. C(a) if I(a) ∈ I(C) (notation: I |= C(a))

ii. R(b, c) if (I(b),I(c)) ∈ I(R) (I |= R(b,c)).

(2) (#,I) satisfies an Abox if (#,I) satisfies all 
its (concept, role) assertions.

• Unique Name Assumption: For all 
individual names a, b, if a(b then I(a)(I(b). 
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DL-KB Semantics

• Definition. 
(1) A DL interpretation (#,I) satisfies a DL 
knowledge base KB if (#,I) satisfies all the 
(terminological, individual) axioms in KB.

                      (#,I) |= KB

(2) (#,I) is a model of KB if it satisfies KB.
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DL-KB Semantics

• Definition (cont’).
(3) A DL knowledge base KB is satisfiable if 
there is a model of KB (i.e. KB has a model).

(4) KB is unsatisfiable if it is not satisfiable.

• Example:
KB = {∀toBe.X!¬∀toBe.X, X≡Human}

is unsatisfiable.
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DL (AL*) Entailment

• Definition. Let a (concept, role, individual) 
axiom ) of a DL (AL*) language be given. 
A DL (AL*) knowledge base KB entails 
(also: logically implies) ) if every model of 
KB satisfies ). 
                        KB |= ).

• Be aware: 
‘|=’ used in both (#,I) |= ) and KB |= )!
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