
Alessandro Agostini Fausto Giunchiglia
agostini@dit.unitn.it fausto@dit.unitn.it

University of Trento

Logics for
Data and Knowledge

Representation

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia.
The order of the names is alphabetical.

Ontology Modeling
OWL

• Ontologies

• Ontology
Languages

• OWL

• Reasoning

• Appendix:
OWL syntax

! "#! "#

!$%&'()*$#)
+,-,),.+)".$/!0+%0)

#01#0(0.-,-&$.
,!0((,.+#$),%$(-&.&

*,2(-$)%&2.'3&%!&,

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

2

Ontologies in
Computer Science

• Engineering artifact consisting of:

• A vocabulary used to describe a part of
the world (view on a domain of interest).

• An explicit specification of the intended
meaning of the vocabulary.

• Constrains capturing additional (“meta”)
knowledge about the depicted domain.

3

Ontologies in
Computer Science

• Ideally, an ontology as an engineering artifact
should:

• capture a shared understanding of a
domain of interest;

• provide a formal and computable (machine
manipulable) model (of the domain).

4

Example
(Horrocks et. al. 2003)

• A suitable “pizza ontology” might include the
information that:

• Mozzarella and Gorgonzola are kinds of
cheese;

• cheese is not a kind of meat or fish;

• a vegetarian pizza is one whose toppings
do not include any meat or fish.

5

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• The information (knowledge) provided by
the “pizza ontology” allows the term

“pizza topped with Mozzarella and
Gorgonzola”

to be unambiguously interpreted (by, e.g., a
pizza ordering agent) as a specialisation of
the term “vegetarian pizza”.

6

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Ontology
(a diagram of)

7

What is a
DL Ontology?

• An ontology is a formal conceptualisation of
the “world/domain of interest.”

• a DL ontology is a DL KB = (TBox,ABox)

• It specifies constraints which declare what
should necessarily hold in the world/domain.

• Given an ontology, a legal world description
is a possible world satisfying the constraints.

8

Ontology “Animals”
Example

(Etherington & Reiter, 1983)

9

fido

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

A DL KB for Animals
(Example, cont’)

• TBox = { Reptile ! Animal,
Mammal ! Animal, Insect ! Animal,
Reptile " Mammal ! ⊥, ...

Dog ! Mammal, Cat ! Mammal,
Dog " Cat ! ⊥,

Poodle ! Dog, Afghan ! Dog,
Poodle " Afghan ! ⊥ }

• ABox = { Dog(fido) }.

10

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• A DL taxonomy is a terminology (i.e. set of
DL concept names) partially ordered by a
subsumption relation and no cycles.

• Example:

DL Taxonomy

11

Things

ObjectsIndividuals

PersonsAnimals

Animate

Course

LDKR logic

Where are
Ontologies used?

• e-Science: bioinformatics, ...

• Medicine

• Databases: schema design, sharing,
integration, matching, query-answering, ...

• User Interfaces

• Semantic Web/Grid

• Library Science: (subject) classification, ...

12

Examples

• E-commerce: ontologies facilitate
communication between buying and selling
agents by providing a common vocabulary to
describe goods (such as pizzas) and services.

• Search engines: ontologies help in finding
pages that contain semantically similar but
syntactically different words and phrases.

13

Web Catalogs

• Web catalogs (e.g., Yahoo! dmoz), use
structured vocabularies (i.e., taxonomies),
for indexing the objects of a domain:

• less pages indexed w.r.t. search engines
using statistical methods (e.g., AltaVista)...

• ...but higher classification quality as it is
hand-crafted by domain experts.

14

Web Catalogs (cont’)

• Web catalog are almost always taxonomies:

• The nodes correspond to terms (e.g.
Sciences, Mathematics) and the edges
correspond to subsumption relationships
(e.g., Mathematics ! Sciences).

• Such taxonomies may contain thousands of
terms (e.g. Yahoo! contains 20K terms;
Dmoz contains 300K terms...)

15

Ontologies: History

• A philosophical (metaphisic) discipline aimed
to understand and organize the reality and
the human (“Science of Being” Aristotele).

• Importantly, ontologies historically used to
organizing knowledge in a domain of interest

• Classification (e.g. Library science, CC,
DDC, UDC Systems, ...)

16

Photo "Bodleian Library - Oxford" by Chris Donaghue,

© The Oxford Photo Library - CP0497

Ontology Languages

• Ontology languages are typically expressed:
- by means of diagrams (graphs), such as

• Semantic Networks

• UML

• RDF (Resource Description Framework)

• RDFS (RDF Schema)

• - by logic (FOL, DLs), such as OWL.

17

Ontology Languages
(Example)

• The Entity-Relationship Diagrams and the
UML Class Diagrams can be considered as
graph-based ontology languages.

18

Requirements for OLs

• OLs allow users to write explicit, formal
conceptualizations of domain models.

• The main requirements are:

- a well-defined syntax
- a formal semantics
- an efficient reasoning support
- sufficient expressive power
- convenience of expression

19

Expressivity and
Computability

• The richer the ontology language is, the
more inefficient the reasoning services
become.

• Some OL may have noncomputable services!

• We need a compromise:
- an OL with efficient reasoning services;
- an OL that can express concepts an
knowledge viz ontologies we need to.

20

“Schema” Languages (1)

• Existing ontology (web) languages extended
to facilitate content description:

• XML ⇒ XML Schema (XMLS)

• RDF ⇒ RDF Schema (RDFS)

• XMLS is not an ontology language

• RDFS is an ontology language

• ... see next

21

“Schema” Languages (2)

• XMLS is not an ontology language:
- changes format of DTDs to be XML
- adds an extensible type hierarchy:
 * integers, stringes
 * subtypes (e.g. positive integers)

• RDFS is an ontology language:
- classes and properties
- sub/super classes and properties
- range and domain of properties

22

Limitations of RDFS
(Expressive Power)

• The RDFS ontology language has some
strong limitations in its expressive power:

• Local scope of properties

• Disjointness of classes

• Boolean combinations of classes

• Cardinality restrictions

• Special characteristic of properties

23

Limitations of RDFS (1)

• Local scope of properties:

• rdfs:range defines the range of a
property for all classes.

• Example: take property (concept) ‘read’;
in RDFS we cannot say that ‘read’ applies
to books, newspapers, or magazines.

• Thus, RDFS cannot express a property’s
restrictions that apply only to some classes.

24

Limitations of RDFS (2)

• Disjointness of classes:

• In RDFS we cannot express disjoint
classes or partitions, e.g. Meat and Cheese.

• Boolean combinations of classes:

• In RDFS we cannot define new classes as
boolean combinations of existing classes.

• Example: Body as union of Arms and Head.

25

Limitations of RDFS (3)

• Cardinality restrictions:

• In RDFS we cannot express restrictions
on the number of objects a property
applies.

• Example 1: Mammal has at-most 4 Legs.

• Example 2: Person has exactly 2 Parents.

• ...

26

Limitations of RDFS (4)

• Special characteristic of properties:

• In RDFS we cannot define many important
properties, we mention:

• transitivity - e.g. “is greater than”

• functionals - e.g. “is mother of”

• inverse - e.g. “hasChild” for “isChildOf”

• symmetrical - e.g. “touches”

27

From RDF to OWL

• OWL is defined as an extension to RDF in
the form of a vocabulary entailment:

• the syntax of OWL is the syntax of RDF;

• the semantics of OWL is an extension of
the semantics of RDF/RDFS.

• OWL uses RDF’s XML-based syntax.

• Alternative syntax: abstract, UML-based,...

28

OWL RDF/XML
Exchange Syntax

<owl:Class>

 <owl:intersectionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:allValuesFrom>
 <owl:unionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Doctor"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:someValuesFrom rdf:resource="#Doctor"/>
 </owl:Restriction>
 </owl:unionOf>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

29

(Horrocks CISA-06)

• OWL RDF/XML syntaxt is verbose, much
more than DL syntax!

OWL and DLs

<owl:Class>

 <owl:intersectionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:allValuesFrom>
 <owl:unionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Doctor"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:someValuesFrom rdf:resource="#Doctor"/>
 </owl:Restriction>
 </owl:unionOf>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

30

How do we express it in DL?

• Person"
∀hasChild.(Doctor ∃hasChild.Doctor)

• Exercise: How you represent it in DL?

OWL and DLs

31

(Horrocks et. al. JWS-03)

OWL - Introduction

• In order to allow sharing and reuse of
ontologies on the Semantic Web, a common
ontology language is required.

• The W3C has developed two ontology
languages for use on the Semantic Web:

• RDFS [Brickley & Guha, 2004], developed
as a lightweight ontology language.

• OWL [Dean & Schreiber, 2004] ...see next

32

OWL - Introduction

• OWL [Dean & Schreiber, 2004] is a more
expressive ontology language based on DLs.

• Developed by W3C’s Web-Ontology
(WebOnt) Working Group (2004).

• Starting language was an extension of RDF/
RDFS languages, called DAML+OIL.

• DAML+OIL is a combination of American
language DAML-ONT and European’s OIL.

33

OWL - Introduction

• Now a W3C Recommendation (i.e. a
standard, like HTML and XML).

• OWL (and DAML+OIL as well) is based on
description logic, in particular SHOIN(D) DL.

• In fact OWL is a “web friendly” syntaxt for
SHOIN(D) (quote attributed to I. Horrocks).

34

Three Species of OWL

• OWL consists of three “species,” namely
OWL Lite, OWL DL and OWL Full.

• These languages are intended to be layered
according to increasing expressiveness.

• Each language is based on a specific
description logic (we see it in a few slides).

• OWL Lite / OWL DL by far the most used.

35

OWL Full, DL, Lite

• OWL Full : union of OWL syntax and RDF.

• RDF semantics extended with relevant
semantic conditions and axiomatic triples.

• OWL DL : restricted to DL/FOL fragment
(DAML+OIL).
- We are mostly interested in OWL DL.

• OWL Lite : subset of OWL DL easier to
implement; tools/implemantations available.

36

OWL: Lite versus DL

• It turns out that OWL DL adds very little in
expressiveness to OWL Lite
[Horrocks & Patel-Schneider, JWS 2003].

• OWL Lite and OWL DL pose several
restrictions on the use of RDF and redefine
the semantics of the RDFS primitives.

• NB: OWL Lite and OWL DL are not
properly layered on top of RDFS.

37

OWL: DL versus Full

• OWL Full layers on top of both RDFS and
OWL DL.

• NB: Because of RDFS and OWL DL are so
different, the semantics of OWL Full is not a
proper extension of OWL DL’s semantics:

In fact, OWL DL has a model-theoretic
semantics;RDFS has an axiomatic semantics.
RDFS has also a more syntactical freedom.

38

Layering Problems

• The lack of proper layering between
(1) RDFS and OWL DL / OWL Lite, and
(2) OWL DL / OWL Lite and OWL Full
raises doubts about interoperability between
ontologies written in these languages.

• Problems arise especially in the areas of
Software Engineering and Database Systems.

[Bruijn, Pollers, Lara & Fensel, 2005]

39

OWL as a
DL-based Language

• Without regarding annotation properties of
OWL as a web language (cf. RDF/XML),

• OWL Lite is equivalent to SHIF(D) DL;

• OWL DL is equivalent to SHOIN(D) DL.

• So, an OWL ontology is equivalent to a DL
knowledge base (TBox + ABox).

40

S*-family of DLs

• More expressive description logics (DLs) are
usually extensions of some AL*-based DL.

• Starting point: S denotes the ALC-based
DL with transitive role axioms (Trans(R)).
Thus S’s Tboxes extends ALC’s Tboxes with
transitive role axioms.

• “S” stands for ‘Subsumption,’ as a reminder
that this logic models concept axioms C!D.

41

S*-family of DLs

• Each DL L that extends S is denoted by a
string S[I][H][N][Q][F][O], where:
I : L allows Inverse roles
H : L allows role inclusion axioms (i.e. role
Hierarchies as finite sets of role axioms)
N : L allows Number restrictions
Q : L allows Qualified number restrictions
F : L allows Functional number restrictions
O : L allows nOminal/singleton classes.

42

S*-family of DLs
Examples

• I : DL allows Inverse roles:
E.g.: hasChild ≡ isChildOf-

• H : DL allows role inclusion axioms:
E.g.: isDirectPartOf ! isPartOf

• N : DL allows Number restrictions:
E.g.: "2hasArm " !2hasArm (ie =2hasArm)

• Q : DL allows Qualified number restrictions:
E.g.: "2hasArm.Body, "2hasArm.!.

43

S*-family of DLs
Examples (cont’)

• F : DL allows Functional number restrictions:
E.g.: !1hasMother (i.e. !nR for n=1)

• O : DL allows nOminal classes, i.e. to define a
class by enumerating its instances.
E.g.: {Trentino}, {Mon,Wed,Fri,Sun}.

• Remark: Since ALF⊆ALN⊆ALQ, any logic of

the form S*Q extends any logic of the form
S*N or S*F. In particular, SHIQ extends SHIN.

44

From SHIQ to OWL

45

• S + role hierarchy (H) + inverse roles (I) +
qualified number restrictions (Q) = SHIQ

• SHIQ is the basis for W3C’s OWL Web
Ontology Language

• OWL DL : SHIQ extended with nominals
and datatypes, N for Q (i.e. SHOIN(D)).

• OWL Lite : SHIQ extended with
functionals and datatypes, no Q (SHIF(D)).

Datatypes

• (Concrete) datatypes are used to represent
literal values such as numbers and strings.

• A type system typically defines a set of
“primitive” datatypes, such as string or
integer, and provides a mechanism for
deriving new datatypes from existing ones.

46

Reasoning Services on
Ontology Knowledge

• Premise: see also reasoning services in DLs.

• Class membership (Instance checking):
If individual a is an instance of a class C and
C is a subclass of D, then infer that a is an
instance of C.

• Equivalence of classes: If class A is
equivalent to class B and B is equivalent to
class C, then A and C are equivalent.

47

Reasoning Services on
Ontology Knowledge

• Consistency: An individual a is an instance
of classes A and B, but A and B are disjoint.

• Consistency checking allows to discover
an error in the ontology.

• Classification: Certain property-value
pairs are a sufficient condition for
membership in a class (cf. definitions in DLs).
If a satisfies such conditions we classified it!

48

Uses of
Reasoning Services (1)
• Reasoning services are important for:

• (automatically) checking the consistency of
an ontology and the knowledge therein;

• (automatically) checking for unintended
relationships between classes;

• (automatically) classifying “objects” from a
domain of interest (#, the “world”) into
classes (concepts).

49

Uses of
Reasoning Services (2)
• Checking like the preceding are used for:

• design and maintain high quality / large /
complex / distributed ontologies

• integrating, sharing, matching of ontologies
from different sources

• correct and capture intuitions of experts,

• answer queries, retrieve objects/tuples, ...

50

Reasoning Services
for OWL

• Formal semantics is a prerequisite for
reasoning services (please see slides on DLs).

• Semantics and reasoning services are usually
provided by:

• Semantics: mapping the ontology language
to a known formalism - i.e. a certain DL!

• Reasoning: using some automated
reasoners existing for that formalism.

51

OWL Reasoning

52

• Computing ontology entailment in OWL DL
(OWL Lite) has the same complexity as
computing KB SAT in SHOIN(D) (SHIF(D)).

• DL algorithms and implementations can be
used to provide reasoning services for OWL
Lite. [Horrocks & Patel-Schneider, ISWC-03]

• The design of “practical” algorithms for
SHOIN(D) is still a hot research topic.

Using Standard DL
Techniques

• State of the art DL systems typically use
highly optimised tableaux algorithms to
decide KB satisfiability (consistency).

• Tableaux algorithms work by trying to
construct a concrete example (i.e. a model)
consistent with the KB axioms. Two steps:
- start from Abox axioms (the ground facts)
- check implications using TBox axioms.

53

• Editors and environments:
Olied, Protege, Swoop, Construct, etc.

Tools and Infrastructure

54

• Reasoning Systems:
Cerebrea, FaCT++, Pellet, Racer, Kaon2, ...

Tools and Infrastructure

55

Pellet

• FaCT++ system (open source):
- http://owl.man.ac.uk/factplusplus/

• Protege system:
- http://protege.stanford.edu/plugins/owl/

• W3C:
- http://www.w3.org/2004/OWL/

• DL Handbook:
- http://books.cambridge.org/0521781760.html

Some Resources

56

• Books:
- G. Antoniou and F. van Harmelen, A Semantic
Primer. The MIT Press, 2004. (Chs 1, 4)
http://www.ics.forth.gr/isl/swprimer/

• Papers & Links (if any):
- http://dit.unitn.it/~ldkr/#Biblio

Some Resources

57

