
Alessandro Agostini Fausto Giunchiglia
agostini@dit.unitn.it fausto@dit.unitn.it

University of Trento

Logics for
Data and Knowledge

Representation

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia.
The order of the names is alphabetical.

Semantic Matching

• Matching Problems

• Graphs Matching

• Syntactic

• Semantic

• Semantic Matching
via SAT in ClassL

! "#! "#

!$%&'()*$#)
+,-,),.+)".$/!0+%0)

#01#0(0.-,-&$.
,!0((,.+#$),%$(-&.&

*,2(-$)%&2.'3&%!&,

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

2

Introduction

3

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• An important problem on graphs that we
will apply to richer representations like
concept hierarchies, classifications, schemas
and ontologies is “matching.”

• This problem is also popular in semantic
networks, where one may want to check
whether a particular concept is present.

Introduction (cont’)

4

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Some popular situations that can be
modeled as a matching problem are:

- Marriage.
- Concept matching in semantic networks.
- Schema matching in distributed databases.
- Ontology matching (ontology “alignment”)
in the Semantic Web.
- ...

The Matching Problem
(An Example)

5

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Boys

Girls

un

wmw3

u3u2

w2

u1

w1

? ?? ?

Red lines not a perfect matching (i.e. a 1-1mapping).

The Matching Problem
(An Example)

6

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Boys

Girls

un

wmw3

u3u2

w2

u1

w1

Red lines: a perfect matching (i.e. a 1-1mapping).

The Semantic Matching
Problem (Example)

7

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

?

?

?

Matching Problems

• There are two kinds of matching:

• Syntactic: matching of nodes as objects or
strings (so, as such, without meaning).

• Semantic: matching of nodes as concepts.

• A Matching Problem (syntactic or semantic)
is a problem on graphs summarized as:
Given two finite graphs, is there a matching
between the (nodes of the) two graphs?

8

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Matching Problems

• A problem of matching can be decomposed
in two steps:

• 1. extract the graphs from the conceptual
models under consideration;

• 2. match the resulting graphs.

• Below we show some examples of step 1.
(We follow [Giunchiglia & Shvaiko, 2007].)

9

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Relational DB Schemas

• Let us consider the following relational
database (RDB) model, say “BANK”:

10

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

(Giunchiglia & Shvaiko, 2007)

Relational DB Schemas
Representation 1

• We can represent the RDB model “BANK”
as a graph (a tree) with root “BANK”:

• The RDB model is first partitioned into
relations, then attributes and data instances.

11

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

(Giunchiglia & Shvaiko, 2007)

Relational DB Schemas
Representation 2

• We can represent the RDB model “BANK”
as a graph (a tree) with root “BANK”:

• The model is partitioned into relations, then
into tuples, attributes and data instances.

12

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

(Giunchiglia & Shvaiko, 2007)

Relational DB Schemas
Remarks

• Which of the two representations is more
preferable depends on the concrete task.

• It is always possible to transform one
representation into the other.

• In contrast to the example of RDB
“BANK”, DB schemas are seldom trees.

• More often, DB schemas are translated into
Directed Acyclic Graphs (DAG’s).

13

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

OODB Schemas

• Let us consider the RDB “BANK” in terms
of an object-oriented DB (OODB) schema:

• The resulting graph is:

14

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

BRANCH (Street, City, Zip)
PERSON (F_Name, L_Name)
STAFF : PERSON (Position, Salary, Manager)

(Giunchiglia & Shvaiko, 2007)

OODB Schemas
Remarks

• OODB schemas capture more semantics
than the relational DBs. In particular, an
OODB schema:

• explicitly expresses subsumption relations
between elements;

• admits special types of arcs for part/whole
relationships in terms of aggregation and
composition.

15

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Semi-structured Data

• Neither RDBs nor OODBs capture all the
features of semi-structured or unstructured
data (Buneman, 1997):

• semi-structured data do not possess a
regular structure (schemaless);

• the “structure” of semi-structured data
could be partial or even implicit.

• Typical examples are: HTML and XML.

16

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

XML Schemas

• XML schemas can be represented as DAGs.

• The graph from the RDB “BANK” could
also be obtained from an XML schema.

17

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

(Giunchiglia & Shvaiko, 2007)

XML Schemas
Remarks

• Often XML schemas represent hierarchical
data models.

• In this case the only relationships between
the elements are {is-a}.

• Attributes in XML are used to represent
extra information about data. There are no
strict rules telling us when data should be
represented as elements, or as attributes.

18

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Concept Hierarchies

19

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

(Giunchiglia & Shvaiko, 2007)

• A concept hierarchy is a semi-formal
conceptualization of an application domain
in terms of concepts and relationships.

• Examples are classification hierarchies, e.g.,
 and directories (catalogs).

• Classification hierarchies / Web directories
are sometimes referred to as lightweight
ontologies (Uschold & Gruninger, 2004). However:

• they are not ontologies, as they lack of a
formal semantics (semi-formal vs formal.)

• they don’t formalize class instances.

Concept Hierarchies
Remarks

20

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Definition. A lightweight ontology is a formal
conceptualization of an application domain
in terms of concepts and {is-a, instance-of}
relationships.

• Remark: A lightweight ontology is thus a
concept hierarchy with:
- a formal semantics (semantic level)
- {instance-of} relationships (syntactic level)
- without relationships except {is-a} (‘’)

Lightweight Ontologies

21

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Lightweight Ontologies
Example

• Data instances of
the concept (class)
“Developers” are:
John, Steve.

• Data instances
“Associations” are:
BeSafe Inc.

• We define a class
instances the data
instance of a class.

22

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

John Fred BeSafe Inc.

Lightweight Ontologies
and Class Logic

• The logic of classes (ClassL) provides a
formal language (syntax + semantics) to
model lightweight ontologies, where:

• concepts are modeled by propositions;

• {is-a, instance-of} relationships are
modeled, respectively, by subsumption (!)
and class-propositions (i.e., wffs like P(a)).

• ClassL ontologies =df lightweight ontologies.

23

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Ontologies

• An ontology is a formal conceptualization of
an application domain in terms of concepts,
attributes, and relationships.

• Relations can be defined by the user.

• Pre-defined relationships with known
semantics are: {is-a, part-of, instance-of}.

• An ontology is a lightweight ontology with
attributes and a wider set of relationships.

24

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Ontologies
Example

• Attributes of the
concept
“Associations” are:
BN, City, Street, Zip.

• Data instances are:
B8 and B2.

• Data instances have
fixed attributes
values, e.g.:
City=!!Trento!!

25

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Matching of Graphs

• A matching of graphs is the process of
compute a computable function Match
(matcher), which takes two graphs G1,G2
and returns a set of mappings (or “mapping
elements”) of the form (n1, n2, R), where:

• n1 is a node of G1 and n2 is a node of G2,

• R is a binary relation R(n1,n2).

26

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Matching of Graphs:
Syntactic vs Semantic

• There are two kinds of graph matching:

• Syntactic: matching of nodes as objects or
strings (so, as such, without meaning):

• R(n1,n2) is a syntactic similarity metric;

• we are not interested in this matching.

• Semantic: matching of nodes as concepts.

• R(n1,n2) is a semantic similarity metric.

27

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Syntactic vs Semantic
Matching

• A key difference (Giunchiglia & Shvaiko, 2003):

• syntactic matching: in matching two
nodes, the meaning that we (implicitly)
attach to them depends only on their
labels, independently of their position.

• semantic matching: the nodes’ position
matters, i.e. the meaning that we attach to
them depends on the the position.

28

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• A syntactic matcher would answer
(apple, apple, =), while a semantic matcher would
answer (apple, apple, !)

Syntactic vs Semantic
Matching (Example)

29

(Agostini & Pan, 2007)

?

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Matchers as a
Decision Function

• A matcher as a decision function is a
(computable) function
 Match(G1,G2, n1,n2, R)

which takes in input:
- two graphs G1,G2,
- two nodes n1,n2 with n1 in G1 and n2 in G2

- a binary relation R = R(n1,n2)
and returns a Yes/No answer.

30

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Remark on Matchers

• Most matchers in the literature are defined
by the function
 Match(G1, G2)

which takes two graphs and returns a set of
mapping elements defined by (n1, n2, R).

• Exercise: define a matcher Match(G1, G2) by
using a matcher Match(G1,G2, n1,n2, R).

31

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Solution of the Exercise

• Exercise: define a matcher Match(G1, G2) by
using a matcher Match(G1,G2, n1,n2, R).

• Solution (naive): triple loop on the nodes of
the graphs G1, G2 and on the set of
proposed relations and, at each loop, call
Match(G1,G2, n1,n2, R).

32

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Semantic Matching
Relations (1)

• Given graphs G1,G2, we define the following
semantic relations R(n1,n2) between a node
n1 in G1 and a node n2 in G2:

n1 ⊇ n2, n1 ⊆ n2 (n1 is more general/specific than n2)

n1 ! n2 (n1 is equivalent to n2)

n1 ⊥ n2 (n1 and n2 mismatch)

• We represent n1 and n2 by a proposition, say
P and Q, and then use class-logic’ semantics.

33

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Semantic Matching
Relations (2)

• For all class-valuations ", we define R(n1,n2):
n1 ⊇ n2 if "(P) ⊇ "(Q);

n1 ⊆ n2 if "(P) ⊆ "(Q);

n1 ! n2 if "(P) = "(Q);

n1 ⊥ n2 if "(P) ∩ "(Q) = ∅.

• Notation: Be aware of the misleading use of
symbols ⊇, ⊆, and ⊥ on the left-hand side.

34

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Semantic Relations and
SAT Problem in ClassL
• A semantic relation R(n1,n2) can be checked

by class logic’s reasoning as a SAT problem:

n1 ⊇ n2 iff |= P " Q; (" defined symbol)

n1 ⊆ n2 iff |= P ! Q;

n1 ! n2 iff |= P ! Q and |= Q ! P;
n1 ⊥ n2 iff |= P # Q ! ⊥,

where P and Q represent n1 and n2 in classL.

35

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Semantic Matching
via SAT in ClassL

• The SAT problem to solve to compute
Match(G1,G2, n1,n2, R) is built in three steps:

• First, select the portion T of knowledge
(background theory) relevant to transform
nodes n1,n2 into two propositions P, Q.

• Second, select a semantic relation R(n1,n2)
and rewrite it as a SAT problem |= r(P, Q).

• Third, run a SAT solver on T |= r(P, Q).

36

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example:
Concept Hierchies

37

(Serafini et. al., 2003)

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• Suppose we want to discover the relation R
between Chat and Forum in the Google
directory (left) and Chat and Forum in the
Yahoo directory (right):

38

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• Step 1 : transformation of nodes
n1 = Chat and Forum and n2 = Chat and Forum
to propositions, P and Q; selection of the
portion T of knowledge (background theory)
relevant to the application of a SAT solver.

• WordNet is used at this step to build T.

• Step 2 : select the relation R between n1 and
n2 among the semantic relations of interest.

39

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• Step 3 : The question “Is Chat and Forum less
general than Chat and Forum?” becomes the
SAT problem “Is T |= P ! Q?” where:

P = (art#1 # literature#2 # (chat#1 forum#1)),
Q = (art#1 humanities#1) # humanities#1 # (chat#1

forum#1),
T = {art#1! humanities#1, humanities#1" literature#2}

40

! !

!

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• F. Giunchiglia, P. Shvaiko, “Semantic matching.” Knowledge
Engineering Review, 18(3):265-280, 2003.

• L. Serafini, P. Bouquet, B. Magnini, S. Zanobini, “An Algorithm
for Matching Contextualized Schemas via SAT.” IRST
Technical Report 0301-06, ITC, January 2003.

• F. Giunchiglia, M. Marchese, I. Zaihrayeu. “Encoding
Classifications into Lightweight Ontologies.” J. of Data
Semantics VIII, Springer-Verlag LNCS 4380, pp 57-81, 2007.

References
(Preprints available at http://dit.unitn.it/~ldkr/#Biblio)

41

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

